SlideShare a Scribd company logo
Improving Network Efficiency
with Simplemux
Jose Saldana, Ignacio Forcén, Julián Fernández-Navajas, José Ruiz-Mas
University of Zaragoza
IEEE CIT-2015
26 October 2015, Liverpool, UK
jsaldana@unizar.es
1
This work has been partially
financed by the EU H2020 Wi-5
project, http://www.wi5.eu/
(Grant Agreement no: 644262)
Introduction
Related Work
Scenarios
Protocol design
Tests and results
Conclusions
2
26 Oct 2015
Overhead drawback in packet-switched networks
Small-packet services
Introduction
3
IPv4/TCP packet 1500 bytes
η=1460/1500=97% (IP level) 1460/1542=94% (Eth level)
IPv4/UDP/RTP packet of VoIP with two samples of 10 bytes
η=20/60=33% (IP level) 20/102=19% (Eth level)
IPv4/UDP client-to-server packets of Counter Strike (online game)
η=61/89=68% (IP level) 61/131=46% (Eth level)
IPv4 header: 20 bytes
UDP header: 8 bytes
Inter-frame gap: 12 bytes
Eth header: 26 bytes
Eth FCS: 4 bytes
Payload
RTP header: 12 bytes
26 Oct 2015
Small packets in the public Internet (trace from CAIDA.org *)
0
10000
20000
30000
40000
50000
60000
70000
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Numberofpackets
Packet size [bytes]
Packet size histogram Chicago 2015
Introduction
4
Source: https://data. caida.org/datasets/passive-2015/equinix-chicago/20150219-130000.UTC/equinix-
chicago.dirA.20150219-125911.UTC.anon.pcap.gz. Only first 200,000 packets used
44% packets are 1440
bytes or more
33% packets are
60 bytes or less
Average: 782 bytes
26 Oct 2015
Introduction
Airtime drawback: Medium access is performed before sending data
Additional delays and air time inefficiency
5
RTSDIFS
SIFS CTS
SIFS Data
SIFS ACK
NAV (RTS)
NAV (CTS)
NAV (Data)
Sender
Receiver
Other nodes
DIFS: DCF Inter Frame Space
SIFS: Short Interframe Space
RTS: Request To Send
CTS: Clear To Send
NAV: Network Allocation Vector
DCF: Distributed Coordination Function
26 Oct 2015
Introduction
Processing capacity drawback: Limit in the pps a device can manage
e.g. commercial switch. For 100-byte packets, the throughput of the switch would in fact
be limited to 8.08 Gbps.
Measurements in terms of
64-byte packets throughput
6
26 Oct 2015
• Simplemux: a tunnel of multiplexed packets
• Generic and lightweight multiplexing protocol
• Different tunneling and multiplexed protocols allowed
• Works with Layer-3 packets
• Submitted to the IETF as draft-saldana-tsvwg-simplemux-03
• Combined with header compression, savings can be huge (shared tunnel overhead)
Simplemux separator (1-3 bytes)
Tunneling header
Muxed protocol header
Protocol=
Simplemux Protocol=any
Introduction
26 Oct 2015
• Simplemux may work between a pair of intermediate nodes
• In principle, it is not aimed for multiplexing in the end host
• The optimization covers a number of hops
• The intermediate nodes do not have to implement Simplemux, they just route packets
Introduction
Native
Simplemux
ingress egress
Common network segment
Introduction
Related Work
Scenarios
Protocol design
Tests and results
Conclusions
9
26 Oct 2015
Frame grouping in 802.11 networks
New versions of Wi-Fi (from 802.11n) include mechanisms for frame grouping:
A-MPDU and A-MSDU.
Aggregation format is compulsory in 802.11ac.
10
Source: Ginzburg, B.; Kesselman, A., "Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n," Sarnoff Symposium, 2007 IEEE ,
vol., no., pp.1,5, April 30 2007-May 2 2007
The maximum number of frames in an A-MPDU is 64. The maximal A-MSDU size is 7935 bytes and thus it may contain at most 5 frames.
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 10 20 30 40 50 60
Efficiency(datarate/PHYrate)
Number of grouped frames (1500 bytes)
Efficiency (PHY rate=130Mbps)
A-MPDU, UDP
A-MPDU, TCP
A-MSDU, UDP
A-MSDU, TCP
N
CS
MPDU
len
CRC
signat
ure
MPDU padding
Subframe 1 Subframe 2 Subframe N...
MPDU delimiter (4) variable 0-3
PHYHDR A-MPDU
PSDU
Size (bytes):
reserved
A-MPDU aggregation
26 Oct 2015
IETF protocols for packet grouping
TMux [RFC1692] multiplexes a number of TCP segments between
the same pair of machines.
PPPMux [RFC3153] is able to multiplex complete IP packets, using
separators. It requires the use of PPP and L2TP.
Simplemux
11
IP
IP TCP payload IP TCP payload
TCP payload TCP payload
TMux TMux
IP IP
IP TCP payload IP TCP payload
TCP payload IP TCP payload
tunnel
L2TP
PPP PPPMux PPPMux
IP IP
IP TCP payload IP TCP payload
TCP payload IP TCP payload
tunnel First Simplemux header Non-first Simplemux header
Introduction
Related Work
Scenarios
Protocol design
Tests and results
Conclusions
12
26 Oct 2015
Scenarios: Low-bandwidth residential access
Collaboration router-network operator may save bandwidth in a limited access
network
13
ISP network Internet
Transport
network
Internet Router
DSLAM BRAS
xDSL router
With multiplexer
embedded
xDSL router
Without multiplexer
Home network with a number
of users (e.g. Internet Café,
access shared by neighbors)
Individual DSL
26 Oct 2015
Scenarios: Wireless Community Network
- Optimization can be activated when required
- Substituting 802.11 aggregation in legacy devices (prior to 802.11n)
- Optimization covers a number of hops (in 802.11 it covers only one)
14
Internet gateway
Internet
Village with
public Wi-Fi
xDSL router
Without multiplexer
Wi-Fi
Wi-Fi
Wi-Fi
Wi-Fi
Wi-Fi
W
i-Fi
Operator
3G femtocell
Remote village
3G
Operator PoP
Introduction
Related Work
Scenarios
Protocol design
Tests and results
Conclusions
15
26 Oct 2015
Protocol design
- A separator has to include:
- Length of the next packet (try to keep the number of bytes short)
- Protocol ID of the next packet
16
*http://datatracker.ietf.org/doc/draft-saldana-tsvwg-simplemux/
IPv4 packet ROHC packetIPv6 packet
Tunneling
header
Protocol=
Simplemux
Protocol=
IP
Protocol=
IP
Protocol=
ROHC
Simplemux headers/separators
26 Oct 2015
- First separator:
- Non-first separators
- Without Protocol ID field:
- With Protocol ID field:
Protocol design
17
0
SPB LXT LEN (6 bits)
packet length < 64 bytes
1
SPB LXT LEN1 (6 bits)
packet length ≥ 64 bytes
< 8192 bytes (2^13)
Protocol (8 bits)
Protocol (8 bits)
0
LXT LEN2 (7 bits)
0
LXT LEN (7 bits)
packet length < 128 bytes
1
LXT LEN1 (7 bits)
packet length ≥ 128 bytes
< 16384 bytes (2^14)
0
LXT LEN2 (7 bits)
Protocol (8 bits)
0
LXT LEN (7 bits)
packet length < 128 bytes
1
LXT LEN1 (7 bits)
packet length ≥ 128 bytes
< 16384 bytes (2^14)
0
LXT LEN2 (7 bits) Protocol (8 bits)
Introduction
Related Work
Scenarios
Protocol design
Tests and results
Conclusions
18
26 Oct 2015
Implementation details
- An implementation has been built combining (TCM)
- Header Compression: ROHC (https://rohc-lib.org/)
- Multiplexing: Simplemux (https://github.com/TCM-TF/simplemux)
- Tunneling: IPv4 (raw sockets) or UDP
- An upper bound for the delay can be set
- 2700 lines of code (ROHC not included)
19
Native traffic: Five IPv4/UDP/RTP VoIP packets with two samples of 10 bytes
Optimized traffic (network mode): One IPv4 simplemux Packet including five RTP packets
IPv4 header: 20 bytes Tunnel IP header: 20 bytes
saving
Native traffic headers: Optimized traffic headers:
Optimized traffic (transport mode): One IPv4 simplemux Packet including five RTP packets
saving
26 Oct 2015
Test scenario
- 4 PCs with Intel i3, Debian 6
- Eth switches 100 Mbps
- Wi-Fi at 5 GHz, 9 Mbps
- D-ITG traffic generator
20
Eth switchEth switchEth switch
End-to-end flows
Optimized flows
generator receivermultiplexer demultiplexer
802.11ac
26 Oct 2015
Generic Internet trace
- iptables is used to multiplex small packets (limit 200 bytes)
21
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
packetsize[bytes]
time [s]
Native packets
26 Oct 2015
- 7,908 packets travel into 395 multiplexed ones
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
packetsize[bytes]
time [s]
Packets after the optimization
Generic Internet trace
22
26 Oct 2015
- 50 % pps reduction
- Only 5% bandwidth reduction
Generic Internet trace
23
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
100 300 500 700 900 1100 1300 1500
Packetspersecondrelationship
Size limit for sending packets to the multiplexer [bytes]
Packets per second relationship when multiplexing
26 Oct 2015
RTP VoIP
5 VoIP calls sharing an Ethernet link (RTP with different codecs)
24
10%
15%
20%
25%
30%
35%
40%
45%
50%
20 40 60 80 100 120 140 160 180
BWsaving
Multiplexing period [ms]
Bandwidth Saving. 5 RTP calls
GSM
iLBC20ms
iLBC30ms
PCM-A, PCM-U
26 Oct 2015
Packet loss reduction in a saturated 802.11 link
Link: 802.11ac. 5.56GHz. 9Mbps
Offered traffic (IP level): 15,000 pps * 60 bytes = 7.2 Mbps
25
0%
10%
20%
30%
40%
50%
60%
70%
80%
native 1 2 3 4 5 10 15 20 25 30
Packetlosspercentage
Number of multiplexed packets
Packet Loss in a Saturated 802.11 Link (60-byte packets)
no ROHC
ROHC
Introduction
Related Work
Scenarios
Protocol design
Tests and results
Conclusions
26
26 Oct 2015
Conclusions
Main idea of Simplemux
 Join small packets into bigger ones
 Reduce the amount of packets
 Amortize the tunnel overhead between a higher number of payloads
 Eventually compress packets (e.g. with header compression)
Traffic optimization may provide
 Bandwidth savings (and airtime in wireless networks) for small-packet flows
 pps reduction, even for generic Internet traffic
 Energy savings
 Flexibility: optimization can be activated when required. Avoid dimensioning the
network for the worst case
At what cost?
 CPU
 I can multiplex packets already in the buffer, but additional buffering delay may be
used for increasing the multiplexing rate
27
Thanks a lot!
Jose Saldana, Ignacio Forcén, Julián Fernández-Navajas, José Ruiz-Mas
University of Zaragoza
IEEE CIT-2015
26 October 2015, Liverpool, UK
jsaldana@unizar.es
28
This work has been partially
financed by the EU H2020 Wi-5
project, http://www.wi5.eu/
(Grant Agreement no: 644262)
Extra slides
29
26 Oct 2015
Overhead in wired networks (Ethernet)
30
0
100
200
300
400
500
600
700
800
900
1,000
64 264 464 664 864 1064 1264 1464
MaximumThroughput[Mbps]
Frame size [bytes]
Maximum Ethernet Throughput (link speed 1Gbps)
TCP Payload efficiency
Eth payload efficiency
Source: Small Packet Traffic Performance Optimization for 8255x and 8254x Ethernet Controllers,
http://www.intel.com/content/dam/doc/application-note/8255x-8254x-ethernet-controllers-small-packet-traffic-performance-appl-note.pdf
Average: 782 bytes
26 Oct 2015
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Efficiency(datarate/PHYrate)
Packet size [bytes]
Efficiency (PHY rate=54 Mbps)
1 MPDU, UDP
1 MPDU, TCP
Overhead in 802.11 networks
31
Average: 782 bytes
Source: Model developed by Ginzburg, B.; Kesselman, A., "Performance analysis of A-MPDU and A-MSDU aggregation in
IEEE 802.11n," Sarnoff Symposium, 2007 IEEE , vol., no., pp.1,5, April 30 2007-May 2 2007
26 Oct 2015
Frame grouping in 802.11 networks
New versions of Wi-Fi (from 802.11n) include mechanisms for frame grouping:
A-MPDU and A-MSDU.
 A-MPDU: a number of MPDU delimiters each followed by an MPDU.
 A-MSDU: multiple payload frames share not just the same PHY, but also the same
MAC header.
In 802.11ac all the frames have an A-MPDU format, even with 1 sub-frame
21/10/2015 32
DA SA len MSDU padding
Subframe 1 Subframe 2 Subframe N...
Subframe hdr
6 6 2 0-2304 0-3
PHYHDR MACHDR A-MSDU FCS
PSDU
Size (bytes):
MPDU
len
CRC
signat
ure
MPDU padding
Subframe 1 Subframe 2 Subframe N...
MPDU delimiter (4) variable 0-3
PHYHDR A-MPDU
PSDU
Size (bytes):
reserved
A-MSDU aggregation A-MPDU aggregation
26 Oct 2015
Additional scenario: Machine to machine
33
Internet
Satellite link
Data Center 3
IP sensors
Data Center 2
Data Center 1
Satellite
Terminal
Gateway
Satellite
Terminal
Satellite
Terminal
26 Oct 2015
Implementation details
- Processing delay:
- Commodity PC (i3): 0.25 ms (N=10 packets)
- Low-cost wireless AP (OpenWRT): 3.5 ms (N=10packets)
34
Native traffic: Five IPv4/UDP/RTP VoIP packets with two samples of 10 bytes
Optimized traffic (network mode): One IPv4 simplemux Packet including five RTP packets
IPv4 header: 20 bytes Tunnel IP header: 20 bytes
UDP header: 8 bytes
RTP header: 12 bytes
Tunnel UDP header: 8 bytes
Simplemux separator: 1-3 bytes
ROHC Compressed header (IP/UDP/RTP)Payload
saving
Native traffic headers: Optimized traffic headers:
Optimized traffic (transport mode): One IPv4 simplemux Packet including five RTP packets
saving
26 Oct 2015
Delay limits
- Multiplexing must be carefully done, taking into account the
available delay budget
- It adds no delay if a number of packets are waiting in the buffer (it
may occur in congested links)
- Limit the additional buffering delays caused by packet grouping
- VoIP (150 ms)
- Online games (100 to 1000 ms)
- Remote desktop (200 ms)
- IoT samples (Constrained network scenarios, core)
- A draft surveying these limits is available*
35
* Delay Limits and Multiplexing Policies to be employed with Tunneling Compressing and Multiplexing
Traffic Flows
http://datatracker.ietf.org/doc/draft-suznjevic-tsvwg-mtd-tcmtf/

More Related Content

What's hot

Multipath TCP as Security Solution
Multipath TCP as Security SolutionMultipath TCP as Security Solution
Multipath TCP as Security Solution
Nishant Pawar
 
0-RTT TCP converters
0-RTT TCP converters0-RTT TCP converters
0-RTT TCP converters
Olivier Bonaventure
 
Part 9 : Congestion control and IPv6
Part 9 : Congestion control and IPv6Part 9 : Congestion control and IPv6
Part 9 : Congestion control and IPv6
Olivier Bonaventure
 
TCP over 6LoWPAN for Industrial Applications
TCP over 6LoWPAN for Industrial ApplicationsTCP over 6LoWPAN for Industrial Applications
TCP over 6LoWPAN for Industrial Applications
Ahmed Ayadi
 
Tunnel & vpn1
Tunnel & vpn1Tunnel & vpn1
Tunnel & vpn1
ariesubagyo
 
Multicasting and multicast routing protocols
Multicasting and multicast routing protocolsMulticasting and multicast routing protocols
Multicasting and multicast routing protocols
Abhishek Kesharwani
 
6 Lo Wpan Tutorial 20080206
6 Lo Wpan Tutorial 200802066 Lo Wpan Tutorial 20080206
6 Lo Wpan Tutorial 20080206
pauldeng
 
Optimization of Low-efficiency Traffic in OpenFlow Software Defined Networks
Optimization of Low-efficiency Traffic in OpenFlowSoftware Defined NetworksOptimization of Low-efficiency Traffic in OpenFlowSoftware Defined Networks
Optimization of Low-efficiency Traffic in OpenFlow Software Defined Networks
Jose Saldana
 
Overview of SCTP (Stream Control Transmission Protocol)
Overview of SCTP (Stream Control Transmission Protocol)Overview of SCTP (Stream Control Transmission Protocol)
Overview of SCTP (Stream Control Transmission Protocol)
Peter R. Egli
 
Sctp tutorial
Sctp tutorialSctp tutorial
Sctp tutorial
Susant Sahani
 
Comparison between-ipv6-and-6 lowpan
Comparison between-ipv6-and-6 lowpanComparison between-ipv6-and-6 lowpan
Comparison between-ipv6-and-6 lowpan
Information Technology University
 
Alternative Transport Protocols
Alternative Transport ProtocolsAlternative Transport Protocols
Alternative Transport Protocols
Peter R. Egli
 
10 routing-bgp
10 routing-bgp10 routing-bgp
10 routing-bgp
Olivier Bonaventure
 
Npppd: easy vpn with OpenBSD
Npppd: easy vpn with OpenBSDNpppd: easy vpn with OpenBSD
Npppd: easy vpn with OpenBSD
Giovanni Bechis
 
IPV6
IPV6 IPV6
TCP & UDP Streaming Comparison and a Study on DCCP & SCTP Protocols
TCP & UDP Streaming Comparison and a Study on DCCP & SCTP ProtocolsTCP & UDP Streaming Comparison and a Study on DCCP & SCTP Protocols
TCP & UDP Streaming Comparison and a Study on DCCP & SCTP Protocols
Peter SHIN
 
VXLAN BGP EVPN: Technology Building Blocks
VXLAN BGP EVPN: Technology Building BlocksVXLAN BGP EVPN: Technology Building Blocks
VXLAN BGP EVPN: Technology Building Blocks
APNIC
 
L2 tp
L2 tpL2 tp
12 ethernet-wifi
12 ethernet-wifi12 ethernet-wifi
12 ethernet-wifi
Olivier Bonaventure
 
RTP & RTCP
RTP & RTCPRTP & RTCP

What's hot (20)

Multipath TCP as Security Solution
Multipath TCP as Security SolutionMultipath TCP as Security Solution
Multipath TCP as Security Solution
 
0-RTT TCP converters
0-RTT TCP converters0-RTT TCP converters
0-RTT TCP converters
 
Part 9 : Congestion control and IPv6
Part 9 : Congestion control and IPv6Part 9 : Congestion control and IPv6
Part 9 : Congestion control and IPv6
 
TCP over 6LoWPAN for Industrial Applications
TCP over 6LoWPAN for Industrial ApplicationsTCP over 6LoWPAN for Industrial Applications
TCP over 6LoWPAN for Industrial Applications
 
Tunnel & vpn1
Tunnel & vpn1Tunnel & vpn1
Tunnel & vpn1
 
Multicasting and multicast routing protocols
Multicasting and multicast routing protocolsMulticasting and multicast routing protocols
Multicasting and multicast routing protocols
 
6 Lo Wpan Tutorial 20080206
6 Lo Wpan Tutorial 200802066 Lo Wpan Tutorial 20080206
6 Lo Wpan Tutorial 20080206
 
Optimization of Low-efficiency Traffic in OpenFlow Software Defined Networks
Optimization of Low-efficiency Traffic in OpenFlowSoftware Defined NetworksOptimization of Low-efficiency Traffic in OpenFlowSoftware Defined Networks
Optimization of Low-efficiency Traffic in OpenFlow Software Defined Networks
 
Overview of SCTP (Stream Control Transmission Protocol)
Overview of SCTP (Stream Control Transmission Protocol)Overview of SCTP (Stream Control Transmission Protocol)
Overview of SCTP (Stream Control Transmission Protocol)
 
Sctp tutorial
Sctp tutorialSctp tutorial
Sctp tutorial
 
Comparison between-ipv6-and-6 lowpan
Comparison between-ipv6-and-6 lowpanComparison between-ipv6-and-6 lowpan
Comparison between-ipv6-and-6 lowpan
 
Alternative Transport Protocols
Alternative Transport ProtocolsAlternative Transport Protocols
Alternative Transport Protocols
 
10 routing-bgp
10 routing-bgp10 routing-bgp
10 routing-bgp
 
Npppd: easy vpn with OpenBSD
Npppd: easy vpn with OpenBSDNpppd: easy vpn with OpenBSD
Npppd: easy vpn with OpenBSD
 
IPV6
IPV6 IPV6
IPV6
 
TCP & UDP Streaming Comparison and a Study on DCCP & SCTP Protocols
TCP & UDP Streaming Comparison and a Study on DCCP & SCTP ProtocolsTCP & UDP Streaming Comparison and a Study on DCCP & SCTP Protocols
TCP & UDP Streaming Comparison and a Study on DCCP & SCTP Protocols
 
VXLAN BGP EVPN: Technology Building Blocks
VXLAN BGP EVPN: Technology Building BlocksVXLAN BGP EVPN: Technology Building Blocks
VXLAN BGP EVPN: Technology Building Blocks
 
L2 tp
L2 tpL2 tp
L2 tp
 
12 ethernet-wifi
12 ethernet-wifi12 ethernet-wifi
12 ethernet-wifi
 
RTP & RTCP
RTP & RTCPRTP & RTCP
RTP & RTCP
 

Similar to Improving Network Efficiency with Simplemux

Simplemux: a generic multiplexing protocol
Simplemux: a generic multiplexing protocolSimplemux: a generic multiplexing protocol
Simplemux: a generic multiplexing protocol
Jose Saldana
 
Simplemux traffic optimization
Simplemux traffic optimizationSimplemux traffic optimization
Simplemux traffic optimization
Jose Saldana
 
6LoWPAN: An open IoT Networking Protocol
6LoWPAN: An open IoT Networking Protocol6LoWPAN: An open IoT Networking Protocol
6LoWPAN: An open IoT Networking Protocol
Samsung Open Source Group
 
UDT
UDTUDT
UDT
lilyco
 
UDT
UDTUDT
UDT
xlight
 
6LoWPAN: An Open IoT Networking Protocol
6LoWPAN: An Open IoT Networking Protocol6LoWPAN: An Open IoT Networking Protocol
6LoWPAN: An Open IoT Networking Protocol
Samsung Open Source Group
 
Insights into the performance and configuration of TCP in Automotive Ethernet...
Insights into the performance and configuration of TCP in Automotive Ethernet...Insights into the performance and configuration of TCP in Automotive Ethernet...
Insights into the performance and configuration of TCP in Automotive Ethernet...
RealTime-at-Work (RTaW)
 
Designing an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-based
Designing an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-basedDesigning an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-based
Designing an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-based
Dr. Mohieddin Moradi
 
Nad710 Network Address Translation
Nad710   Network Address TranslationNad710   Network Address Translation
Nad710 Network Address Translation
tmavroidis
 
Razin Kabir (063452556)
Razin Kabir (063452556)Razin Kabir (063452556)
Razin Kabir (063452556)
mashiur
 
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT ProtocolsSFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
South Tyrol Free Software Conference
 
Multipath TCP Upstreaming
Multipath TCP UpstreamingMultipath TCP Upstreaming
Multipath TCP Upstreaming
Graham G. Turnbull
 
VOIP QOS
VOIP QOSVOIP QOS
VOIP QOS
Thomas Mangin
 
IPHEADER_IPV4_IPV6_4.pdf
IPHEADER_IPV4_IPV6_4.pdfIPHEADER_IPV4_IPV6_4.pdf
IPHEADER_IPV4_IPV6_4.pdf
AbhishekKumar66407
 
L6 6 lowpan
L6 6 lowpanL6 6 lowpan
L6 6 lowpan
bimal2638
 
Chapter 3. sensors in the network domain
Chapter 3. sensors in the network domainChapter 3. sensors in the network domain
Chapter 3. sensors in the network domain
Phu Nguyen
 
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis DefenseVHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
Alp Sayin
 
Richard - IFIP Networking 2021 - Panel.pdf
Richard - IFIP Networking 2021 - Panel.pdfRichard - IFIP Networking 2021 - Panel.pdf
Richard - IFIP Networking 2021 - Panel.pdf
Richard Renwei Li
 
"Internet Protocol Suite" prepared by Szymon M. from Poland
"Internet Protocol Suite" prepared by Szymon M. from Poland"Internet Protocol Suite" prepared by Szymon M. from Poland
"Internet Protocol Suite" prepared by Szymon M. from Poland
irenazd
 
Generic network architecture discussion
Generic network architecture discussionGeneric network architecture discussion
Generic network architecture discussion
ARCFIRE ICT
 

Similar to Improving Network Efficiency with Simplemux (20)

Simplemux: a generic multiplexing protocol
Simplemux: a generic multiplexing protocolSimplemux: a generic multiplexing protocol
Simplemux: a generic multiplexing protocol
 
Simplemux traffic optimization
Simplemux traffic optimizationSimplemux traffic optimization
Simplemux traffic optimization
 
6LoWPAN: An open IoT Networking Protocol
6LoWPAN: An open IoT Networking Protocol6LoWPAN: An open IoT Networking Protocol
6LoWPAN: An open IoT Networking Protocol
 
UDT
UDTUDT
UDT
 
UDT
UDTUDT
UDT
 
6LoWPAN: An Open IoT Networking Protocol
6LoWPAN: An Open IoT Networking Protocol6LoWPAN: An Open IoT Networking Protocol
6LoWPAN: An Open IoT Networking Protocol
 
Insights into the performance and configuration of TCP in Automotive Ethernet...
Insights into the performance and configuration of TCP in Automotive Ethernet...Insights into the performance and configuration of TCP in Automotive Ethernet...
Insights into the performance and configuration of TCP in Automotive Ethernet...
 
Designing an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-based
Designing an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-basedDesigning an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-based
Designing an 4K/UHD1 HDR OB Truck as 12G-SDI or IP-based
 
Nad710 Network Address Translation
Nad710   Network Address TranslationNad710   Network Address Translation
Nad710 Network Address Translation
 
Razin Kabir (063452556)
Razin Kabir (063452556)Razin Kabir (063452556)
Razin Kabir (063452556)
 
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT ProtocolsSFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
 
Multipath TCP Upstreaming
Multipath TCP UpstreamingMultipath TCP Upstreaming
Multipath TCP Upstreaming
 
VOIP QOS
VOIP QOSVOIP QOS
VOIP QOS
 
IPHEADER_IPV4_IPV6_4.pdf
IPHEADER_IPV4_IPV6_4.pdfIPHEADER_IPV4_IPV6_4.pdf
IPHEADER_IPV4_IPV6_4.pdf
 
L6 6 lowpan
L6 6 lowpanL6 6 lowpan
L6 6 lowpan
 
Chapter 3. sensors in the network domain
Chapter 3. sensors in the network domainChapter 3. sensors in the network domain
Chapter 3. sensors in the network domain
 
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis DefenseVHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
VHF/UHF Uplink Solutions for Remote Wireless Sensor Networks - Thesis Defense
 
Richard - IFIP Networking 2021 - Panel.pdf
Richard - IFIP Networking 2021 - Panel.pdfRichard - IFIP Networking 2021 - Panel.pdf
Richard - IFIP Networking 2021 - Panel.pdf
 
"Internet Protocol Suite" prepared by Szymon M. from Poland
"Internet Protocol Suite" prepared by Szymon M. from Poland"Internet Protocol Suite" prepared by Szymon M. from Poland
"Internet Protocol Suite" prepared by Szymon M. from Poland
 
Generic network architecture discussion
Generic network architecture discussionGeneric network architecture discussion
Generic network architecture discussion
 

More from Jose Saldana

Pint of science Patinete as a Service
Pint of science Patinete as a ServicePint of science Patinete as a Service
Pint of science Patinete as a Service
Jose Saldana
 
Mejorar tu empleabilidad como ingeniero
Mejorar tu empleabilidad como ingenieroMejorar tu empleabilidad como ingeniero
Mejorar tu empleabilidad como ingeniero
Jose Saldana
 
POUZ Universidad de Zaragoza - Telecomunicación 2º y 3º
POUZ Universidad de Zaragoza - Telecomunicación 2º y 3ºPOUZ Universidad de Zaragoza - Telecomunicación 2º y 3º
POUZ Universidad de Zaragoza - Telecomunicación 2º y 3º
Jose Saldana
 
Cómo se conectan los ordenadores y los móviles
Cómo se conectan los ordenadores y los móvilesCómo se conectan los ordenadores y los móviles
Cómo se conectan los ordenadores y los móviles
Jose Saldana
 
La bala que dobló la esquina: el problema de los videojuegos online
La bala que dobló la esquina: el problema de los videojuegos onlineLa bala que dobló la esquina: el problema de los videojuegos online
La bala que dobló la esquina: el problema de los videojuegos online
Jose Saldana
 
Entretenimiento online. Una perspectiva cristiana
Entretenimiento online. Una perspectiva cristianaEntretenimiento online. Una perspectiva cristiana
Entretenimiento online. Una perspectiva cristiana
Jose Saldana
 
¿Por qué el WiFi se va y se viene?
¿Por qué el WiFi se va y se viene?¿Por qué el WiFi se va y se viene?
¿Por qué el WiFi se va y se viene?
Jose Saldana
 
Wi-5: Advanced Features for Low-cost Wi-Fi APs
Wi-5: Advanced Features for Low-cost Wi-Fi APsWi-5: Advanced Features for Low-cost Wi-Fi APs
Wi-5: Advanced Features for Low-cost Wi-Fi APs
Jose Saldana
 
Header compression and multiplexing in LISP
Header compression and multiplexing in LISPHeader compression and multiplexing in LISP
Header compression and multiplexing in LISP
Jose Saldana
 
Online games: a real-time problem for the network
Online games: a real-time problem for the networkOnline games: a real-time problem for the network
Online games: a real-time problem for the network
Jose Saldana
 
GAIA and Alternative Networks
GAIA and Alternative NetworksGAIA and Alternative Networks
GAIA and Alternative Networks
Jose Saldana
 
Alternative Network Deployments
Alternative Network DeploymentsAlternative Network Deployments
Alternative Network Deployments
Jose Saldana
 
TCM-TF 2014
TCM-TF 2014TCM-TF 2014
TCM-TF 2014
Jose Saldana
 
Can We Multiplex ACKs without Harming the Performance of TCP?
Can We Multiplex ACKs without Harming the Performance of TCP?Can We Multiplex ACKs without Harming the Performance of TCP?
Can We Multiplex ACKs without Harming the Performance of TCP?
Jose Saldana
 
The Effect of Multiplexing Delay on MMORPG TCP Traffic Flows
The Effect of Multiplexing Delay on MMORPG TCP Traffic FlowsThe Effect of Multiplexing Delay on MMORPG TCP Traffic Flows
The Effect of Multiplexing Delay on MMORPG TCP Traffic Flows
Jose Saldana
 
Online games traffic characterization and network support
Online games traffic characterization and network supportOnline games traffic characterization and network support
Online games traffic characterization and network support
Jose Saldana
 
The problem of using a best-effort network for online games
The problem of using a best-effort network for online gamesThe problem of using a best-effort network for online games
The problem of using a best-effort network for online games
Jose Saldana
 
Influence of the Distribution of TCRTP Multiplexed Flows on VoIP Conversation...
Influence of the Distribution of TCRTP Multiplexed Flows on VoIP Conversation...Influence of the Distribution of TCRTP Multiplexed Flows on VoIP Conversation...
Influence of the Distribution of TCRTP Multiplexed Flows on VoIP Conversation...
Jose Saldana
 
Evaluation of Multiplexing and Buffer Policies Influence on VoIP Conversation...
Evaluation of Multiplexing and Buffer Policies Influence on VoIP Conversation...Evaluation of Multiplexing and Buffer Policies Influence on VoIP Conversation...
Evaluation of Multiplexing and Buffer Policies Influence on VoIP Conversation...
Jose Saldana
 
Influence of the Router Buffer on Online Games Traffic Multiplexing
Influence of the Router Buffer on Online Games Traffic MultiplexingInfluence of the Router Buffer on Online Games Traffic Multiplexing
Influence of the Router Buffer on Online Games Traffic Multiplexing
Jose Saldana
 

More from Jose Saldana (20)

Pint of science Patinete as a Service
Pint of science Patinete as a ServicePint of science Patinete as a Service
Pint of science Patinete as a Service
 
Mejorar tu empleabilidad como ingeniero
Mejorar tu empleabilidad como ingenieroMejorar tu empleabilidad como ingeniero
Mejorar tu empleabilidad como ingeniero
 
POUZ Universidad de Zaragoza - Telecomunicación 2º y 3º
POUZ Universidad de Zaragoza - Telecomunicación 2º y 3ºPOUZ Universidad de Zaragoza - Telecomunicación 2º y 3º
POUZ Universidad de Zaragoza - Telecomunicación 2º y 3º
 
Cómo se conectan los ordenadores y los móviles
Cómo se conectan los ordenadores y los móvilesCómo se conectan los ordenadores y los móviles
Cómo se conectan los ordenadores y los móviles
 
La bala que dobló la esquina: el problema de los videojuegos online
La bala que dobló la esquina: el problema de los videojuegos onlineLa bala que dobló la esquina: el problema de los videojuegos online
La bala que dobló la esquina: el problema de los videojuegos online
 
Entretenimiento online. Una perspectiva cristiana
Entretenimiento online. Una perspectiva cristianaEntretenimiento online. Una perspectiva cristiana
Entretenimiento online. Una perspectiva cristiana
 
¿Por qué el WiFi se va y se viene?
¿Por qué el WiFi se va y se viene?¿Por qué el WiFi se va y se viene?
¿Por qué el WiFi se va y se viene?
 
Wi-5: Advanced Features for Low-cost Wi-Fi APs
Wi-5: Advanced Features for Low-cost Wi-Fi APsWi-5: Advanced Features for Low-cost Wi-Fi APs
Wi-5: Advanced Features for Low-cost Wi-Fi APs
 
Header compression and multiplexing in LISP
Header compression and multiplexing in LISPHeader compression and multiplexing in LISP
Header compression and multiplexing in LISP
 
Online games: a real-time problem for the network
Online games: a real-time problem for the networkOnline games: a real-time problem for the network
Online games: a real-time problem for the network
 
GAIA and Alternative Networks
GAIA and Alternative NetworksGAIA and Alternative Networks
GAIA and Alternative Networks
 
Alternative Network Deployments
Alternative Network DeploymentsAlternative Network Deployments
Alternative Network Deployments
 
TCM-TF 2014
TCM-TF 2014TCM-TF 2014
TCM-TF 2014
 
Can We Multiplex ACKs without Harming the Performance of TCP?
Can We Multiplex ACKs without Harming the Performance of TCP?Can We Multiplex ACKs without Harming the Performance of TCP?
Can We Multiplex ACKs without Harming the Performance of TCP?
 
The Effect of Multiplexing Delay on MMORPG TCP Traffic Flows
The Effect of Multiplexing Delay on MMORPG TCP Traffic FlowsThe Effect of Multiplexing Delay on MMORPG TCP Traffic Flows
The Effect of Multiplexing Delay on MMORPG TCP Traffic Flows
 
Online games traffic characterization and network support
Online games traffic characterization and network supportOnline games traffic characterization and network support
Online games traffic characterization and network support
 
The problem of using a best-effort network for online games
The problem of using a best-effort network for online gamesThe problem of using a best-effort network for online games
The problem of using a best-effort network for online games
 
Influence of the Distribution of TCRTP Multiplexed Flows on VoIP Conversation...
Influence of the Distribution of TCRTP Multiplexed Flows on VoIP Conversation...Influence of the Distribution of TCRTP Multiplexed Flows on VoIP Conversation...
Influence of the Distribution of TCRTP Multiplexed Flows on VoIP Conversation...
 
Evaluation of Multiplexing and Buffer Policies Influence on VoIP Conversation...
Evaluation of Multiplexing and Buffer Policies Influence on VoIP Conversation...Evaluation of Multiplexing and Buffer Policies Influence on VoIP Conversation...
Evaluation of Multiplexing and Buffer Policies Influence on VoIP Conversation...
 
Influence of the Router Buffer on Online Games Traffic Multiplexing
Influence of the Router Buffer on Online Games Traffic MultiplexingInfluence of the Router Buffer on Online Games Traffic Multiplexing
Influence of the Router Buffer on Online Games Traffic Multiplexing
 

Recently uploaded

成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
ysasp1
 
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
uehowe
 
Ready to Unlock the Power of Blockchain!
Ready to Unlock the Power of Blockchain!Ready to Unlock the Power of Blockchain!
Ready to Unlock the Power of Blockchain!
Toptal Tech
 
一比一原版(USYD毕业证)悉尼大学毕业证如何办理
一比一原版(USYD毕业证)悉尼大学毕业证如何办理一比一原版(USYD毕业证)悉尼大学毕业证如何办理
一比一原版(USYD毕业证)悉尼大学毕业证如何办理
k4ncd0z
 
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
xjq03c34
 
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
bseovas
 
HijackLoader Evolution: Interactive Process Hollowing
HijackLoader Evolution: Interactive Process HollowingHijackLoader Evolution: Interactive Process Hollowing
HijackLoader Evolution: Interactive Process Hollowing
Donato Onofri
 
怎么办理(umiami毕业证书)美国迈阿密大学毕业证文凭证书实拍图原版一模一样
怎么办理(umiami毕业证书)美国迈阿密大学毕业证文凭证书实拍图原版一模一样怎么办理(umiami毕业证书)美国迈阿密大学毕业证文凭证书实拍图原版一模一样
怎么办理(umiami毕业证书)美国迈阿密大学毕业证文凭证书实拍图原版一模一样
rtunex8r
 
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
uehowe
 
Design Thinking NETFLIX using all techniques.pptx
Design Thinking NETFLIX using all techniques.pptxDesign Thinking NETFLIX using all techniques.pptx
Design Thinking NETFLIX using all techniques.pptx
saathvikreddy2003
 
Discover the benefits of outsourcing SEO to India
Discover the benefits of outsourcing SEO to IndiaDiscover the benefits of outsourcing SEO to India
Discover the benefits of outsourcing SEO to India
davidjhones387
 
快速办理(新加坡SMU毕业证书)新加坡管理大学毕业证文凭证书一模一样
快速办理(新加坡SMU毕业证书)新加坡管理大学毕业证文凭证书一模一样快速办理(新加坡SMU毕业证书)新加坡管理大学毕业证文凭证书一模一样
快速办理(新加坡SMU毕业证书)新加坡管理大学毕业证文凭证书一模一样
3a0sd7z3
 
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
uehowe
 
Should Repositories Participate in the Fediverse?
Should Repositories Participate in the Fediverse?Should Repositories Participate in the Fediverse?
Should Repositories Participate in the Fediverse?
Paul Walk
 
快速办理(Vic毕业证书)惠灵顿维多利亚大学毕业证完成信一模一样
快速办理(Vic毕业证书)惠灵顿维多利亚大学毕业证完成信一模一样快速办理(Vic毕业证书)惠灵顿维多利亚大学毕业证完成信一模一样
快速办理(Vic毕业证书)惠灵顿维多利亚大学毕业证完成信一模一样
3a0sd7z3
 
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalmanuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
wolfsoftcompanyco
 
Gen Z and the marketplaces - let's translate their needs
Gen Z and the marketplaces - let's translate their needsGen Z and the marketplaces - let's translate their needs
Gen Z and the marketplaces - let's translate their needs
Laura Szabó
 
[HUN][hackersuli] Red Teaming alapok 2024
[HUN][hackersuli] Red Teaming alapok 2024[HUN][hackersuli] Red Teaming alapok 2024
[HUN][hackersuli] Red Teaming alapok 2024
hackersuli
 
存档可查的(USC毕业证)南加利福尼亚大学毕业证成绩单制做办理
存档可查的(USC毕业证)南加利福尼亚大学毕业证成绩单制做办理存档可查的(USC毕业证)南加利福尼亚大学毕业证成绩单制做办理
存档可查的(USC毕业证)南加利福尼亚大学毕业证成绩单制做办理
fovkoyb
 

Recently uploaded (19)

成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
成绩单ps(UST毕业证)圣托马斯大学毕业证成绩单快速办理
 
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
办理毕业证(NYU毕业证)纽约大学毕业证成绩单官方原版办理
 
Ready to Unlock the Power of Blockchain!
Ready to Unlock the Power of Blockchain!Ready to Unlock the Power of Blockchain!
Ready to Unlock the Power of Blockchain!
 
一比一原版(USYD毕业证)悉尼大学毕业证如何办理
一比一原版(USYD毕业证)悉尼大学毕业证如何办理一比一原版(USYD毕业证)悉尼大学毕业证如何办理
一比一原版(USYD毕业证)悉尼大学毕业证如何办理
 
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
办理新西兰奥克兰大学毕业证学位证书范本原版一模一样
 
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
不能毕业如何获得(USYD毕业证)悉尼大学毕业证成绩单一比一原版制作
 
HijackLoader Evolution: Interactive Process Hollowing
HijackLoader Evolution: Interactive Process HollowingHijackLoader Evolution: Interactive Process Hollowing
HijackLoader Evolution: Interactive Process Hollowing
 
怎么办理(umiami毕业证书)美国迈阿密大学毕业证文凭证书实拍图原版一模一样
怎么办理(umiami毕业证书)美国迈阿密大学毕业证文凭证书实拍图原版一模一样怎么办理(umiami毕业证书)美国迈阿密大学毕业证文凭证书实拍图原版一模一样
怎么办理(umiami毕业证书)美国迈阿密大学毕业证文凭证书实拍图原版一模一样
 
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
留学挂科(UofM毕业证)明尼苏达大学毕业证成绩单复刻办理
 
Design Thinking NETFLIX using all techniques.pptx
Design Thinking NETFLIX using all techniques.pptxDesign Thinking NETFLIX using all techniques.pptx
Design Thinking NETFLIX using all techniques.pptx
 
Discover the benefits of outsourcing SEO to India
Discover the benefits of outsourcing SEO to IndiaDiscover the benefits of outsourcing SEO to India
Discover the benefits of outsourcing SEO to India
 
快速办理(新加坡SMU毕业证书)新加坡管理大学毕业证文凭证书一模一样
快速办理(新加坡SMU毕业证书)新加坡管理大学毕业证文凭证书一模一样快速办理(新加坡SMU毕业证书)新加坡管理大学毕业证文凭证书一模一样
快速办理(新加坡SMU毕业证书)新加坡管理大学毕业证文凭证书一模一样
 
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
办理毕业证(UPenn毕业证)宾夕法尼亚大学毕业证成绩单快速办理
 
Should Repositories Participate in the Fediverse?
Should Repositories Participate in the Fediverse?Should Repositories Participate in the Fediverse?
Should Repositories Participate in the Fediverse?
 
快速办理(Vic毕业证书)惠灵顿维多利亚大学毕业证完成信一模一样
快速办理(Vic毕业证书)惠灵顿维多利亚大学毕业证完成信一模一样快速办理(Vic毕业证书)惠灵顿维多利亚大学毕业证完成信一模一样
快速办理(Vic毕业证书)惠灵顿维多利亚大学毕业证完成信一模一样
 
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaalmanuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
manuaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal
 
Gen Z and the marketplaces - let's translate their needs
Gen Z and the marketplaces - let's translate their needsGen Z and the marketplaces - let's translate their needs
Gen Z and the marketplaces - let's translate their needs
 
[HUN][hackersuli] Red Teaming alapok 2024
[HUN][hackersuli] Red Teaming alapok 2024[HUN][hackersuli] Red Teaming alapok 2024
[HUN][hackersuli] Red Teaming alapok 2024
 
存档可查的(USC毕业证)南加利福尼亚大学毕业证成绩单制做办理
存档可查的(USC毕业证)南加利福尼亚大学毕业证成绩单制做办理存档可查的(USC毕业证)南加利福尼亚大学毕业证成绩单制做办理
存档可查的(USC毕业证)南加利福尼亚大学毕业证成绩单制做办理
 

Improving Network Efficiency with Simplemux

  • 1. Improving Network Efficiency with Simplemux Jose Saldana, Ignacio Forcén, Julián Fernández-Navajas, José Ruiz-Mas University of Zaragoza IEEE CIT-2015 26 October 2015, Liverpool, UK jsaldana@unizar.es 1 This work has been partially financed by the EU H2020 Wi-5 project, http://www.wi5.eu/ (Grant Agreement no: 644262)
  • 3. 26 Oct 2015 Overhead drawback in packet-switched networks Small-packet services Introduction 3 IPv4/TCP packet 1500 bytes η=1460/1500=97% (IP level) 1460/1542=94% (Eth level) IPv4/UDP/RTP packet of VoIP with two samples of 10 bytes η=20/60=33% (IP level) 20/102=19% (Eth level) IPv4/UDP client-to-server packets of Counter Strike (online game) η=61/89=68% (IP level) 61/131=46% (Eth level) IPv4 header: 20 bytes UDP header: 8 bytes Inter-frame gap: 12 bytes Eth header: 26 bytes Eth FCS: 4 bytes Payload RTP header: 12 bytes
  • 4. 26 Oct 2015 Small packets in the public Internet (trace from CAIDA.org *) 0 10000 20000 30000 40000 50000 60000 70000 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 Numberofpackets Packet size [bytes] Packet size histogram Chicago 2015 Introduction 4 Source: https://data. caida.org/datasets/passive-2015/equinix-chicago/20150219-130000.UTC/equinix- chicago.dirA.20150219-125911.UTC.anon.pcap.gz. Only first 200,000 packets used 44% packets are 1440 bytes or more 33% packets are 60 bytes or less Average: 782 bytes
  • 5. 26 Oct 2015 Introduction Airtime drawback: Medium access is performed before sending data Additional delays and air time inefficiency 5 RTSDIFS SIFS CTS SIFS Data SIFS ACK NAV (RTS) NAV (CTS) NAV (Data) Sender Receiver Other nodes DIFS: DCF Inter Frame Space SIFS: Short Interframe Space RTS: Request To Send CTS: Clear To Send NAV: Network Allocation Vector DCF: Distributed Coordination Function
  • 6. 26 Oct 2015 Introduction Processing capacity drawback: Limit in the pps a device can manage e.g. commercial switch. For 100-byte packets, the throughput of the switch would in fact be limited to 8.08 Gbps. Measurements in terms of 64-byte packets throughput 6
  • 7. 26 Oct 2015 • Simplemux: a tunnel of multiplexed packets • Generic and lightweight multiplexing protocol • Different tunneling and multiplexed protocols allowed • Works with Layer-3 packets • Submitted to the IETF as draft-saldana-tsvwg-simplemux-03 • Combined with header compression, savings can be huge (shared tunnel overhead) Simplemux separator (1-3 bytes) Tunneling header Muxed protocol header Protocol= Simplemux Protocol=any Introduction
  • 8. 26 Oct 2015 • Simplemux may work between a pair of intermediate nodes • In principle, it is not aimed for multiplexing in the end host • The optimization covers a number of hops • The intermediate nodes do not have to implement Simplemux, they just route packets Introduction Native Simplemux ingress egress Common network segment
  • 10. 26 Oct 2015 Frame grouping in 802.11 networks New versions of Wi-Fi (from 802.11n) include mechanisms for frame grouping: A-MPDU and A-MSDU. Aggregation format is compulsory in 802.11ac. 10 Source: Ginzburg, B.; Kesselman, A., "Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n," Sarnoff Symposium, 2007 IEEE , vol., no., pp.1,5, April 30 2007-May 2 2007 The maximum number of frames in an A-MPDU is 64. The maximal A-MSDU size is 7935 bytes and thus it may contain at most 5 frames. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 60 Efficiency(datarate/PHYrate) Number of grouped frames (1500 bytes) Efficiency (PHY rate=130Mbps) A-MPDU, UDP A-MPDU, TCP A-MSDU, UDP A-MSDU, TCP N CS MPDU len CRC signat ure MPDU padding Subframe 1 Subframe 2 Subframe N... MPDU delimiter (4) variable 0-3 PHYHDR A-MPDU PSDU Size (bytes): reserved A-MPDU aggregation
  • 11. 26 Oct 2015 IETF protocols for packet grouping TMux [RFC1692] multiplexes a number of TCP segments between the same pair of machines. PPPMux [RFC3153] is able to multiplex complete IP packets, using separators. It requires the use of PPP and L2TP. Simplemux 11 IP IP TCP payload IP TCP payload TCP payload TCP payload TMux TMux IP IP IP TCP payload IP TCP payload TCP payload IP TCP payload tunnel L2TP PPP PPPMux PPPMux IP IP IP TCP payload IP TCP payload TCP payload IP TCP payload tunnel First Simplemux header Non-first Simplemux header
  • 13. 26 Oct 2015 Scenarios: Low-bandwidth residential access Collaboration router-network operator may save bandwidth in a limited access network 13 ISP network Internet Transport network Internet Router DSLAM BRAS xDSL router With multiplexer embedded xDSL router Without multiplexer Home network with a number of users (e.g. Internet Café, access shared by neighbors) Individual DSL
  • 14. 26 Oct 2015 Scenarios: Wireless Community Network - Optimization can be activated when required - Substituting 802.11 aggregation in legacy devices (prior to 802.11n) - Optimization covers a number of hops (in 802.11 it covers only one) 14 Internet gateway Internet Village with public Wi-Fi xDSL router Without multiplexer Wi-Fi Wi-Fi Wi-Fi Wi-Fi Wi-Fi W i-Fi Operator 3G femtocell Remote village 3G Operator PoP
  • 16. 26 Oct 2015 Protocol design - A separator has to include: - Length of the next packet (try to keep the number of bytes short) - Protocol ID of the next packet 16 *http://datatracker.ietf.org/doc/draft-saldana-tsvwg-simplemux/ IPv4 packet ROHC packetIPv6 packet Tunneling header Protocol= Simplemux Protocol= IP Protocol= IP Protocol= ROHC Simplemux headers/separators
  • 17. 26 Oct 2015 - First separator: - Non-first separators - Without Protocol ID field: - With Protocol ID field: Protocol design 17 0 SPB LXT LEN (6 bits) packet length < 64 bytes 1 SPB LXT LEN1 (6 bits) packet length ≥ 64 bytes < 8192 bytes (2^13) Protocol (8 bits) Protocol (8 bits) 0 LXT LEN2 (7 bits) 0 LXT LEN (7 bits) packet length < 128 bytes 1 LXT LEN1 (7 bits) packet length ≥ 128 bytes < 16384 bytes (2^14) 0 LXT LEN2 (7 bits) Protocol (8 bits) 0 LXT LEN (7 bits) packet length < 128 bytes 1 LXT LEN1 (7 bits) packet length ≥ 128 bytes < 16384 bytes (2^14) 0 LXT LEN2 (7 bits) Protocol (8 bits)
  • 19. 26 Oct 2015 Implementation details - An implementation has been built combining (TCM) - Header Compression: ROHC (https://rohc-lib.org/) - Multiplexing: Simplemux (https://github.com/TCM-TF/simplemux) - Tunneling: IPv4 (raw sockets) or UDP - An upper bound for the delay can be set - 2700 lines of code (ROHC not included) 19 Native traffic: Five IPv4/UDP/RTP VoIP packets with two samples of 10 bytes Optimized traffic (network mode): One IPv4 simplemux Packet including five RTP packets IPv4 header: 20 bytes Tunnel IP header: 20 bytes saving Native traffic headers: Optimized traffic headers: Optimized traffic (transport mode): One IPv4 simplemux Packet including five RTP packets saving
  • 20. 26 Oct 2015 Test scenario - 4 PCs with Intel i3, Debian 6 - Eth switches 100 Mbps - Wi-Fi at 5 GHz, 9 Mbps - D-ITG traffic generator 20 Eth switchEth switchEth switch End-to-end flows Optimized flows generator receivermultiplexer demultiplexer 802.11ac
  • 21. 26 Oct 2015 Generic Internet trace - iptables is used to multiplex small packets (limit 200 bytes) 21 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 packetsize[bytes] time [s] Native packets
  • 22. 26 Oct 2015 - 7,908 packets travel into 395 multiplexed ones 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 packetsize[bytes] time [s] Packets after the optimization Generic Internet trace 22
  • 23. 26 Oct 2015 - 50 % pps reduction - Only 5% bandwidth reduction Generic Internet trace 23 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 100 300 500 700 900 1100 1300 1500 Packetspersecondrelationship Size limit for sending packets to the multiplexer [bytes] Packets per second relationship when multiplexing
  • 24. 26 Oct 2015 RTP VoIP 5 VoIP calls sharing an Ethernet link (RTP with different codecs) 24 10% 15% 20% 25% 30% 35% 40% 45% 50% 20 40 60 80 100 120 140 160 180 BWsaving Multiplexing period [ms] Bandwidth Saving. 5 RTP calls GSM iLBC20ms iLBC30ms PCM-A, PCM-U
  • 25. 26 Oct 2015 Packet loss reduction in a saturated 802.11 link Link: 802.11ac. 5.56GHz. 9Mbps Offered traffic (IP level): 15,000 pps * 60 bytes = 7.2 Mbps 25 0% 10% 20% 30% 40% 50% 60% 70% 80% native 1 2 3 4 5 10 15 20 25 30 Packetlosspercentage Number of multiplexed packets Packet Loss in a Saturated 802.11 Link (60-byte packets) no ROHC ROHC
  • 27. 26 Oct 2015 Conclusions Main idea of Simplemux  Join small packets into bigger ones  Reduce the amount of packets  Amortize the tunnel overhead between a higher number of payloads  Eventually compress packets (e.g. with header compression) Traffic optimization may provide  Bandwidth savings (and airtime in wireless networks) for small-packet flows  pps reduction, even for generic Internet traffic  Energy savings  Flexibility: optimization can be activated when required. Avoid dimensioning the network for the worst case At what cost?  CPU  I can multiplex packets already in the buffer, but additional buffering delay may be used for increasing the multiplexing rate 27
  • 28. Thanks a lot! Jose Saldana, Ignacio Forcén, Julián Fernández-Navajas, José Ruiz-Mas University of Zaragoza IEEE CIT-2015 26 October 2015, Liverpool, UK jsaldana@unizar.es 28 This work has been partially financed by the EU H2020 Wi-5 project, http://www.wi5.eu/ (Grant Agreement no: 644262)
  • 30. 26 Oct 2015 Overhead in wired networks (Ethernet) 30 0 100 200 300 400 500 600 700 800 900 1,000 64 264 464 664 864 1064 1264 1464 MaximumThroughput[Mbps] Frame size [bytes] Maximum Ethernet Throughput (link speed 1Gbps) TCP Payload efficiency Eth payload efficiency Source: Small Packet Traffic Performance Optimization for 8255x and 8254x Ethernet Controllers, http://www.intel.com/content/dam/doc/application-note/8255x-8254x-ethernet-controllers-small-packet-traffic-performance-appl-note.pdf Average: 782 bytes
  • 31. 26 Oct 2015 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 Efficiency(datarate/PHYrate) Packet size [bytes] Efficiency (PHY rate=54 Mbps) 1 MPDU, UDP 1 MPDU, TCP Overhead in 802.11 networks 31 Average: 782 bytes Source: Model developed by Ginzburg, B.; Kesselman, A., "Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n," Sarnoff Symposium, 2007 IEEE , vol., no., pp.1,5, April 30 2007-May 2 2007
  • 32. 26 Oct 2015 Frame grouping in 802.11 networks New versions of Wi-Fi (from 802.11n) include mechanisms for frame grouping: A-MPDU and A-MSDU.  A-MPDU: a number of MPDU delimiters each followed by an MPDU.  A-MSDU: multiple payload frames share not just the same PHY, but also the same MAC header. In 802.11ac all the frames have an A-MPDU format, even with 1 sub-frame 21/10/2015 32 DA SA len MSDU padding Subframe 1 Subframe 2 Subframe N... Subframe hdr 6 6 2 0-2304 0-3 PHYHDR MACHDR A-MSDU FCS PSDU Size (bytes): MPDU len CRC signat ure MPDU padding Subframe 1 Subframe 2 Subframe N... MPDU delimiter (4) variable 0-3 PHYHDR A-MPDU PSDU Size (bytes): reserved A-MSDU aggregation A-MPDU aggregation
  • 33. 26 Oct 2015 Additional scenario: Machine to machine 33 Internet Satellite link Data Center 3 IP sensors Data Center 2 Data Center 1 Satellite Terminal Gateway Satellite Terminal Satellite Terminal
  • 34. 26 Oct 2015 Implementation details - Processing delay: - Commodity PC (i3): 0.25 ms (N=10 packets) - Low-cost wireless AP (OpenWRT): 3.5 ms (N=10packets) 34 Native traffic: Five IPv4/UDP/RTP VoIP packets with two samples of 10 bytes Optimized traffic (network mode): One IPv4 simplemux Packet including five RTP packets IPv4 header: 20 bytes Tunnel IP header: 20 bytes UDP header: 8 bytes RTP header: 12 bytes Tunnel UDP header: 8 bytes Simplemux separator: 1-3 bytes ROHC Compressed header (IP/UDP/RTP)Payload saving Native traffic headers: Optimized traffic headers: Optimized traffic (transport mode): One IPv4 simplemux Packet including five RTP packets saving
  • 35. 26 Oct 2015 Delay limits - Multiplexing must be carefully done, taking into account the available delay budget - It adds no delay if a number of packets are waiting in the buffer (it may occur in congested links) - Limit the additional buffering delays caused by packet grouping - VoIP (150 ms) - Online games (100 to 1000 ms) - Remote desktop (200 ms) - IoT samples (Constrained network scenarios, core) - A draft surveying these limits is available* 35 * Delay Limits and Multiplexing Policies to be employed with Tunneling Compressing and Multiplexing Traffic Flows http://datatracker.ietf.org/doc/draft-suznjevic-tsvwg-mtd-tcmtf/