Sara Khorshidian
1395
Chapter7- Ideal Bose Systems 1
Chapter7- Ideal Bose Systems 2
The intermolecular interactions
are negligible
Particles are indistinguishable;
We have quantum statistics effects.
Chapter7- Ideal Bose Systems 3
Actually it determines the degree of degeneracy in a given system.
0
≪ 1
∼ 1
“1/n” is the
mean
interparticle
distance
“𝜆” is the
mean
thermal
wavelenght.
Classical counterparts
Quantum effects
Chapter7- Ideal Bose Systems 4
𝜀
𝐹(𝜀) = 𝐹 𝜀 𝑎 𝜀 𝑑𝜀
Most
particles are
in the
excited
states.
1/N is
negligible.
1/N
1/N
Chapter7- Ideal Bose Systems 5
is negligible.
Chapter7- Ideal Bose Systems 6
Chapter7- Ideal Bose Systems 7
N0 =
z
1−z
z =
N0
1 + N0
−
1
𝑉
𝐿𝑛(1 − 𝑧) =
𝐿𝑛(1+𝑁0)
𝑉
𝐿𝑛(1 + 𝑁)
𝑁
≪ 1
Chapter7- Ideal Bose Systems 8
𝛤 𝑛 = 𝑛 − 1 !
𝛤 5
2
=
3
2
! =
3
2
×
1
2
! =
3
2
×
𝜋
2
𝛤 3
2
=
1
2
! =
𝜋
2
Chapter7- Ideal Bose Systems 9
𝑎
𝑏
𝑢𝑑𝑣 = 𝑢𝑣 −
𝑎
𝑏
𝑣𝑑𝑢
𝐼 =
0
∞
Ln(1 − ze−x)𝑥
1
2 𝑑𝑥
𝐼 =
2
3
𝑥
3
2 𝐿𝑛 1 − 𝑧𝑒−𝑥
−
0
∞
2
3
𝑥
3
2
𝑧𝑒−𝑥
1 − 𝑧𝑒−𝑥
𝑑𝑥 = −
2
3
0
∞
𝑥
3
2
𝑧−1 𝑒 𝑥 − 1
𝑑𝑥
𝑑𝑢 =
𝑧𝑒−𝑥
1 − 𝑧𝑒−𝑥
𝑑𝑥
𝑣 =
2
3
𝑥
3
2
u dv
Chapter7- Ideal Bose Systems 10
Chapter7- Ideal Bose Systems 11
12
𝑧 ≪ 1 𝑔 𝑣 𝑧 = 𝑧
𝑁−𝑁0
𝑉
=
𝑁
𝑉
=
𝑧
𝜆3
N0 =
z
1 − z
P
KT
=
𝑧
𝜆3
𝑃𝑉 = 𝑁𝐾𝑇
Chapter7- Ideal Bose Systems 13
𝑁
𝑉
=
1
𝜆3 𝑔3
2
𝑧 𝑛𝜆3 = 𝑔3
2
𝑧 =
𝑙=1
∞
𝑧 𝑙
𝑙
3
2
𝑧 =
𝑘=1
∞
𝑏 𝑘(𝑛𝜆3) 𝑘
𝑧 =
𝑘=1
∞
𝑏 𝑘 𝑓 𝑘
= 𝑏1 𝑓 + 𝑏2 𝑓2
+ 𝑏3 𝑓3
+ ⋯
𝑓 =
𝑙=1
∞
𝑧 𝑙
𝑙
3
2
= 𝑧 +
𝑧2
23 2
+
𝑧3
33 2
+ ⋯
𝑓 =
𝑏1 𝑓 + 𝑏2 𝑓2
+ 𝑏3 𝑓3
+ ⋯ +
1
23 2
𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ +
1
33 2
𝑏1 𝑓 + 𝑏2 𝑓2
+ 𝑏3 𝑓3
+ ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2
+ 𝑏3 𝑓3
+ ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2
+ 𝑏3 𝑓3
+ ⋯ +
…
nλ3=f
Chapter7- Ideal Bose Systems 14
𝑓 = 𝑏1 𝑓 + 𝑏2 +
1
23 2
𝑏1
2
𝑓2
+ 𝑏3 +
1
23 2
2𝑏1 𝑏2 +
1
33 2
𝑏1
3
𝑓3
+ ⋯
P
KT
=
1
𝜆3
𝑔5
2
𝑧
PV
NKT
=
1
𝑛𝜆3 𝑔5
2
𝑧 =
1
𝑓
(𝑧 +
𝑧2
25 2
+
𝑧3
35 2
+ ⋯ )
PV
NKT
=
1
𝑓
𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯
+
1
25 2
𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯
+
1
35 2
𝑏1 𝑓 + 𝑏2 𝑓2
+ 𝑏3 𝑓3
+ ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2
+ 𝑏3 𝑓3
+ ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2
+ 𝑏3 𝑓3
+ ⋯
=
1
𝑓
𝑏1 𝑓 + 𝑏2 +
1
25 2
𝑏1
2
𝑓2 + 𝑏3 +
2
25 2
𝑏1 𝑏2 +
1
35 2
𝑏1
3
𝑓3 + ⋯
= 𝑎1 + 𝑎2 𝑓 + 𝑎3 𝑓2 + ⋯ =
𝑙=1
∞
𝑎𝑙 𝑓 𝑙−1 =
𝑙=1
∞
𝑎𝑙(𝑛𝜆3)𝑙−1=
𝑙=1
∞
𝑎𝑙(
𝜆3
𝑣
)𝑙−1
Chapter7- Ideal Bose Systems 15
𝜆 =
ℎ
2𝜋𝑚𝑘𝑇
Chapter7- Ideal Bose Systems 16
𝑍 → 1
Chapter7- Ideal Bose Systems 17
Chapter7- Ideal Bose Systems 18
Chapter7- Ideal Bose Systems 19
Chapter7- Ideal Bose Systems 20
2𝜋𝑚𝑘𝑇
ℎ2
3/2
𝛼
𝜐
𝜆3
Chapter7- Ideal Bose Systems 21
𝑃 𝑇 =
𝐾𝑇
𝜆3 𝑔5
2
(1)
𝑃 𝑇𝐶 = (
2𝜋𝑚𝐾
ℎ2 )
3
2× 𝑇𝐶
3
2
× 𝐾𝑇𝐶 𝜁
5
2
Chapter7- Ideal Bose Systems 22
Chapter7- Ideal Bose Systems 23
Chapter7- Ideal Bose Systems 24
𝐶 𝑉
𝑁𝐾
=
1
𝑁𝐾
𝜕𝑈
𝜕𝑇 𝑁,𝑉
=
3
2
𝜕
𝜕𝑇
𝑃𝑉
𝑁𝐾 𝑣
𝑃 𝑇 =
𝐾𝑇
𝜆3
𝜁
5
2
𝐶 𝑉
𝑁𝐾
=
3
2
[
𝜕
𝜕𝑇
𝐾𝑇
𝜆3
𝜁
5
2
×
𝑉
𝑁𝐾
] 𝑣 =
3
2
𝑉
𝑁
𝜁
5
2
×
𝑑
𝑑𝑇
𝑇
𝜆3
=
3
2
𝑣𝜁
5
2
×
𝑑
𝑑𝑇
𝑇
5
2
2𝜋𝑚𝐾
3
2
ℎ3
=
3
2
𝑣𝜁
5
2
×
5
2
×
1
𝜆3 =
15
4
𝜁
5
2
𝑣
𝜆3
Chapter7- Ideal Bose Systems 25
𝐶 𝑉(𝑇)
𝑁𝐾
=
3
2
𝜕
𝜕𝑇
(𝑇 ×
𝑔5 2(𝑧)
𝑔3 2(𝑧)
)
𝑣
=
3
2
𝑔5 2(𝑧)
𝑔3 2(𝑧)
+ 𝑇 ×
𝜕
𝜕𝑇
𝑔5 2(𝑧) × 𝑔3 2 𝑧 − 𝑔5 2(𝑧)
𝜕
𝜕𝑇
𝑔3 2(𝑧)
(𝑔3 2(𝑧))2
𝑣
𝐶 𝑉(𝑇)
𝑁𝐾
=
3
2
𝑔5 2(𝑧)
𝑔3 2(𝑧)
+ 𝑇 ×
(
𝜕𝑔5 2(𝑧)
𝜕𝑧
×
𝜕𝑧
𝜕𝑇
) × 𝑔3 2 𝑧 − 𝑔5 2(𝑧)(
𝜕𝑔3 2(𝑧)
𝜕𝑧
×
𝜕𝑧
𝜕𝑇
)
(𝑔3 2(𝑧))2
𝑣
Chapter7- Ideal Bose Systems 26
𝜕𝑧
𝜕𝑇
=
𝜕𝑧
𝜕𝑔3 2 𝑧
𝜕𝑔3 2 𝑧
𝜕𝑇
=
1
𝜕𝑧
𝜕𝑔3 2 𝑧
𝜕𝑔3 2 𝑧
𝜕𝑇
=
𝑧
𝑔1 2 𝑧
× −
3
2𝑇
𝑔3 2 𝑧
=
3
2
𝑔5 2(𝑧)
𝑔3 2(𝑧)
+
3
2
−
3
2𝑇
𝑔3 2 𝑧
𝑔1 2 𝑧
−
𝑔5 2 𝑧
𝑔3 2 𝑧
=
3
2
𝑔5 2(𝑧)
𝑔3 2(𝑧)
−
9
4
𝑔3 2 𝑧
𝑔1 2 𝑧
+
9
4
𝑔5 2 𝑧
𝑔3 2 𝑧
𝐶 𝑉(𝑇)
𝑁𝐾
=
3
2
𝑔5 2(𝑧)
𝑔3 2(𝑧)
+ 𝑇 ×
(
𝜕𝑔5 2(𝑧)
𝜕𝑧
×
𝜕𝑧
𝜕𝑇
) × 𝑔3 2 𝑧 − 𝑔5 2(𝑧)(
𝜕𝑔3 2(𝑧)
𝜕𝑧
×
𝜕𝑧
𝜕𝑇
)
(𝑔3 2(𝑧))2
𝑣
Chapter7- Ideal Bose Systems 27
𝑇 = 𝑇𝐶 , 𝑧 → 1 ⟹ 𝑔1
2
𝑧 ⟶ ∞
𝑔 𝑣 𝑧 ≅ 𝑧
Chapter7- Ideal Bose Systems 28
Chapter7- Ideal Bose Systems 29
𝑃0 ∝ 𝑣𝑐
−
2
3
5 2
Chapter7- Ideal Bose Systems 30
𝜇
𝐾𝑇
= 𝐿𝑛𝑧𝑈 =
3
2
𝑃𝑉
𝑃
𝐾𝑇
=
1
𝜆3
𝜁
5
2
Chapter7- Ideal Bose Systems 31
𝑇 ≤ 𝑇𝐶
𝑆
𝑁𝐾
=
𝑈 + 𝑃𝑉
𝑁𝐾𝑇
− 𝐿𝑛𝑧 =
3
2
𝑃𝑉 + 𝑃𝑉
𝑁𝐾𝑇
− 𝐿𝑛1 =
5
2
𝑃𝑉
𝑁𝐾𝑇
=
5
2
𝑉
𝑁𝐾𝑇
×
𝐾𝑇
𝜆3
𝜁
5
2
=
5
2
𝑣
𝜆3
𝜁
5
2
𝑇 > 𝑇𝐶
𝑆
𝑁𝐾
=
5
2
𝑃𝑉
𝑁𝐾𝑇
− 𝐿𝑛𝑧 =
5
2
𝑔5 2 𝑧
𝑔3 2 𝑧
− 𝐿𝑛𝑧
𝑁0 ≅ 0
Chapter7- Ideal Bose Systems 32
Chapter7- Ideal Bose Systems 33
Chapter7- Ideal Bose Systems 34
𝑈 =
0
∞
𝑢 𝜔 𝑑𝜔
Chapter7- Ideal Bose Systems 35
Chapter7- Ideal Bose Systems 36
Chapter7- Ideal Bose Systems 37
Chapter7- Ideal Bose Systems 38
Chapter7- Ideal Bose Systems 39
Ln𝒬 V, T ≡
PV
KT
= −
8𝜋𝑉
h3 𝑐3 𝜀2
Ln(1 − e−βε
)𝑑𝜀
8𝜋𝑉
h3 𝑐3
1
𝐾𝑇
0
∞
𝜀3 𝑑𝜀
𝑒
𝜀
𝐾𝑇 − 1
vdu
Chapter7- Ideal Bose Systems 40
𝑉𝑇3 = 𝑐𝑜𝑛𝑠𝑡 ⟹ 𝑉
4
3 𝑇4 = 𝑐𝑜𝑛𝑠𝑡
𝑃 ∝ 𝑇4 ⟹ 𝑃𝑇−4 = 𝑐𝑜𝑛𝑠𝑡
𝑃𝑉
4
3 = 𝑐𝑜𝑛𝑠𝑡
Chapter7- Ideal Bose Systems 41
Chapter7- Ideal Bose Systems 42
0
0
Chapter7- Ideal Bose Systems 43
Chapter7- Ideal Bose Systems 44
Chapter7- Ideal Bose Systems 45
)
21
(
2
)( 332
2
Tl cc
v
g 



Chapter7- Ideal Bose Systems 46
Chapter7- Ideal Bose Systems 47
Chapter7- Ideal Bose Systems 48
4 3
2
4
1
( 1) 1
x
x x
u x du x dx
e
dv dx v
e e
   

 
    
0 0
0
0
0
0
4 3
0 3
0 00
4 3
0
3
0 0
3
0
3
0 0
3 4
( )
1 1
3
4
1 1
3 12
1 1
x x
x x
x
x x
x
x x
x x dx
D x
x e e
x x dx
x e e
x x dx
e x e
   
  
   
  
  
   

 
 



Chapter7- Ideal Bose Systems 49
𝑥
𝑒 𝑥 − 1
=
𝑛=0
∞
𝐵 𝑛 𝑥 𝑛
𝑛!
⟹ 𝐵0 = 1 , 𝐵1 =
−1
2
, 𝐵2 =
1
6
, …
0
∞
𝑥 𝑛
𝑑𝑥
𝑒 𝑥 − 1
= 𝑥 𝑛
1
𝑛
−
𝑥
2(𝑛 + 1)
+
𝑘=1
∞
𝐵2𝑘 𝑥2𝑘
2𝑘 + 𝑛 2𝑘 !
⇒ 𝐷 𝑥0 = −3
𝑛=0
∞
𝐵 𝑛 𝑥0
𝑛
𝑛!
+
12
𝑥0
3
𝑥0
3
1
3
−
𝑥0
2 × 4
+
𝐵2 𝑥0
2
5 × 2
+
𝐵4 𝑥0
4
7 × 4!
+ ⋯
= −3 𝐵0 + 𝐵1 𝑥0 + 𝐵2
𝑥0
2
2
+ ⋯ + 4 −
3
2
𝑥0 +
6
5
𝐵2 𝑥0
2
+
𝐵4
7 × 2
𝑥0
4
+ ⋯
= −3𝐵0 + 4 + −3𝐵1 −
3
2
𝑥0 + −
3
2
𝐵2 +
6
5
𝐵2 𝑥0
2
+ ⋯ = 1 + 0 −
1
20
𝑥0
2
+ ⋯ = 1 −
1
20
𝑥0
2
+ ⋯
Chapter7- Ideal Bose Systems 50
Chapter7- Ideal Bose Systems 51
Chapter7- Ideal Bose Systems 52
Thanks for your attention
Chapter7- Ideal Bose Systems 53

Ideal Bose Systems

  • 1.
  • 2.
    Chapter7- Ideal BoseSystems 2 The intermolecular interactions are negligible Particles are indistinguishable; We have quantum statistics effects.
  • 3.
    Chapter7- Ideal BoseSystems 3 Actually it determines the degree of degeneracy in a given system. 0 ≪ 1 ∼ 1 “1/n” is the mean interparticle distance “𝜆” is the mean thermal wavelenght. Classical counterparts Quantum effects
  • 4.
    Chapter7- Ideal BoseSystems 4 𝜀 𝐹(𝜀) = 𝐹 𝜀 𝑎 𝜀 𝑑𝜀
  • 5.
    Most particles are in the excited states. 1/Nis negligible. 1/N 1/N Chapter7- Ideal Bose Systems 5
  • 6.
  • 7.
    Chapter7- Ideal BoseSystems 7 N0 = z 1−z z = N0 1 + N0 − 1 𝑉 𝐿𝑛(1 − 𝑧) = 𝐿𝑛(1+𝑁0) 𝑉 𝐿𝑛(1 + 𝑁) 𝑁 ≪ 1
  • 8.
  • 9.
    𝛤 𝑛 =𝑛 − 1 ! 𝛤 5 2 = 3 2 ! = 3 2 × 1 2 ! = 3 2 × 𝜋 2 𝛤 3 2 = 1 2 ! = 𝜋 2 Chapter7- Ideal Bose Systems 9 𝑎 𝑏 𝑢𝑑𝑣 = 𝑢𝑣 − 𝑎 𝑏 𝑣𝑑𝑢 𝐼 = 0 ∞ Ln(1 − ze−x)𝑥 1 2 𝑑𝑥 𝐼 = 2 3 𝑥 3 2 𝐿𝑛 1 − 𝑧𝑒−𝑥 − 0 ∞ 2 3 𝑥 3 2 𝑧𝑒−𝑥 1 − 𝑧𝑒−𝑥 𝑑𝑥 = − 2 3 0 ∞ 𝑥 3 2 𝑧−1 𝑒 𝑥 − 1 𝑑𝑥 𝑑𝑢 = 𝑧𝑒−𝑥 1 − 𝑧𝑒−𝑥 𝑑𝑥 𝑣 = 2 3 𝑥 3 2 u dv
  • 10.
  • 11.
  • 12.
    12 𝑧 ≪ 1𝑔 𝑣 𝑧 = 𝑧 𝑁−𝑁0 𝑉 = 𝑁 𝑉 = 𝑧 𝜆3 N0 = z 1 − z P KT = 𝑧 𝜆3 𝑃𝑉 = 𝑁𝐾𝑇
  • 13.
    Chapter7- Ideal BoseSystems 13 𝑁 𝑉 = 1 𝜆3 𝑔3 2 𝑧 𝑛𝜆3 = 𝑔3 2 𝑧 = 𝑙=1 ∞ 𝑧 𝑙 𝑙 3 2 𝑧 = 𝑘=1 ∞ 𝑏 𝑘(𝑛𝜆3) 𝑘 𝑧 = 𝑘=1 ∞ 𝑏 𝑘 𝑓 𝑘 = 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ 𝑓 = 𝑙=1 ∞ 𝑧 𝑙 𝑙 3 2 = 𝑧 + 𝑧2 23 2 + 𝑧3 33 2 + ⋯ 𝑓 = 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ + 1 23 2 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ + 1 33 2 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ + … nλ3=f
  • 14.
    Chapter7- Ideal BoseSystems 14 𝑓 = 𝑏1 𝑓 + 𝑏2 + 1 23 2 𝑏1 2 𝑓2 + 𝑏3 + 1 23 2 2𝑏1 𝑏2 + 1 33 2 𝑏1 3 𝑓3 + ⋯ P KT = 1 𝜆3 𝑔5 2 𝑧 PV NKT = 1 𝑛𝜆3 𝑔5 2 𝑧 = 1 𝑓 (𝑧 + 𝑧2 25 2 + 𝑧3 35 2 + ⋯ ) PV NKT = 1 𝑓 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ + 1 25 2 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ + 1 35 2 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ 𝑏1 𝑓 + 𝑏2 𝑓2 + 𝑏3 𝑓3 + ⋯ = 1 𝑓 𝑏1 𝑓 + 𝑏2 + 1 25 2 𝑏1 2 𝑓2 + 𝑏3 + 2 25 2 𝑏1 𝑏2 + 1 35 2 𝑏1 3 𝑓3 + ⋯ = 𝑎1 + 𝑎2 𝑓 + 𝑎3 𝑓2 + ⋯ = 𝑙=1 ∞ 𝑎𝑙 𝑓 𝑙−1 = 𝑙=1 ∞ 𝑎𝑙(𝑛𝜆3)𝑙−1= 𝑙=1 ∞ 𝑎𝑙( 𝜆3 𝑣 )𝑙−1
  • 15.
    Chapter7- Ideal BoseSystems 15 𝜆 = ℎ 2𝜋𝑚𝑘𝑇
  • 16.
    Chapter7- Ideal BoseSystems 16 𝑍 → 1
  • 17.
  • 18.
  • 19.
  • 20.
    Chapter7- Ideal BoseSystems 20 2𝜋𝑚𝑘𝑇 ℎ2 3/2 𝛼 𝜐 𝜆3
  • 21.
    Chapter7- Ideal BoseSystems 21 𝑃 𝑇 = 𝐾𝑇 𝜆3 𝑔5 2 (1) 𝑃 𝑇𝐶 = ( 2𝜋𝑚𝐾 ℎ2 ) 3 2× 𝑇𝐶 3 2 × 𝐾𝑇𝐶 𝜁 5 2
  • 22.
  • 23.
  • 24.
    Chapter7- Ideal BoseSystems 24 𝐶 𝑉 𝑁𝐾 = 1 𝑁𝐾 𝜕𝑈 𝜕𝑇 𝑁,𝑉 = 3 2 𝜕 𝜕𝑇 𝑃𝑉 𝑁𝐾 𝑣 𝑃 𝑇 = 𝐾𝑇 𝜆3 𝜁 5 2 𝐶 𝑉 𝑁𝐾 = 3 2 [ 𝜕 𝜕𝑇 𝐾𝑇 𝜆3 𝜁 5 2 × 𝑉 𝑁𝐾 ] 𝑣 = 3 2 𝑉 𝑁 𝜁 5 2 × 𝑑 𝑑𝑇 𝑇 𝜆3 = 3 2 𝑣𝜁 5 2 × 𝑑 𝑑𝑇 𝑇 5 2 2𝜋𝑚𝐾 3 2 ℎ3 = 3 2 𝑣𝜁 5 2 × 5 2 × 1 𝜆3 = 15 4 𝜁 5 2 𝑣 𝜆3
  • 25.
    Chapter7- Ideal BoseSystems 25 𝐶 𝑉(𝑇) 𝑁𝐾 = 3 2 𝜕 𝜕𝑇 (𝑇 × 𝑔5 2(𝑧) 𝑔3 2(𝑧) ) 𝑣 = 3 2 𝑔5 2(𝑧) 𝑔3 2(𝑧) + 𝑇 × 𝜕 𝜕𝑇 𝑔5 2(𝑧) × 𝑔3 2 𝑧 − 𝑔5 2(𝑧) 𝜕 𝜕𝑇 𝑔3 2(𝑧) (𝑔3 2(𝑧))2 𝑣 𝐶 𝑉(𝑇) 𝑁𝐾 = 3 2 𝑔5 2(𝑧) 𝑔3 2(𝑧) + 𝑇 × ( 𝜕𝑔5 2(𝑧) 𝜕𝑧 × 𝜕𝑧 𝜕𝑇 ) × 𝑔3 2 𝑧 − 𝑔5 2(𝑧)( 𝜕𝑔3 2(𝑧) 𝜕𝑧 × 𝜕𝑧 𝜕𝑇 ) (𝑔3 2(𝑧))2 𝑣
  • 26.
    Chapter7- Ideal BoseSystems 26 𝜕𝑧 𝜕𝑇 = 𝜕𝑧 𝜕𝑔3 2 𝑧 𝜕𝑔3 2 𝑧 𝜕𝑇 = 1 𝜕𝑧 𝜕𝑔3 2 𝑧 𝜕𝑔3 2 𝑧 𝜕𝑇 = 𝑧 𝑔1 2 𝑧 × − 3 2𝑇 𝑔3 2 𝑧 = 3 2 𝑔5 2(𝑧) 𝑔3 2(𝑧) + 3 2 − 3 2𝑇 𝑔3 2 𝑧 𝑔1 2 𝑧 − 𝑔5 2 𝑧 𝑔3 2 𝑧 = 3 2 𝑔5 2(𝑧) 𝑔3 2(𝑧) − 9 4 𝑔3 2 𝑧 𝑔1 2 𝑧 + 9 4 𝑔5 2 𝑧 𝑔3 2 𝑧 𝐶 𝑉(𝑇) 𝑁𝐾 = 3 2 𝑔5 2(𝑧) 𝑔3 2(𝑧) + 𝑇 × ( 𝜕𝑔5 2(𝑧) 𝜕𝑧 × 𝜕𝑧 𝜕𝑇 ) × 𝑔3 2 𝑧 − 𝑔5 2(𝑧)( 𝜕𝑔3 2(𝑧) 𝜕𝑧 × 𝜕𝑧 𝜕𝑇 ) (𝑔3 2(𝑧))2 𝑣
  • 27.
    Chapter7- Ideal BoseSystems 27 𝑇 = 𝑇𝐶 , 𝑧 → 1 ⟹ 𝑔1 2 𝑧 ⟶ ∞ 𝑔 𝑣 𝑧 ≅ 𝑧
  • 28.
  • 29.
    Chapter7- Ideal BoseSystems 29 𝑃0 ∝ 𝑣𝑐 − 2 3 5 2
  • 30.
    Chapter7- Ideal BoseSystems 30 𝜇 𝐾𝑇 = 𝐿𝑛𝑧𝑈 = 3 2 𝑃𝑉 𝑃 𝐾𝑇 = 1 𝜆3 𝜁 5 2
  • 31.
    Chapter7- Ideal BoseSystems 31 𝑇 ≤ 𝑇𝐶 𝑆 𝑁𝐾 = 𝑈 + 𝑃𝑉 𝑁𝐾𝑇 − 𝐿𝑛𝑧 = 3 2 𝑃𝑉 + 𝑃𝑉 𝑁𝐾𝑇 − 𝐿𝑛1 = 5 2 𝑃𝑉 𝑁𝐾𝑇 = 5 2 𝑉 𝑁𝐾𝑇 × 𝐾𝑇 𝜆3 𝜁 5 2 = 5 2 𝑣 𝜆3 𝜁 5 2 𝑇 > 𝑇𝐶 𝑆 𝑁𝐾 = 5 2 𝑃𝑉 𝑁𝐾𝑇 − 𝐿𝑛𝑧 = 5 2 𝑔5 2 𝑧 𝑔3 2 𝑧 − 𝐿𝑛𝑧 𝑁0 ≅ 0
  • 32.
  • 33.
  • 34.
    Chapter7- Ideal BoseSystems 34 𝑈 = 0 ∞ 𝑢 𝜔 𝑑𝜔
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
    Chapter7- Ideal BoseSystems 39 Ln𝒬 V, T ≡ PV KT = − 8𝜋𝑉 h3 𝑐3 𝜀2 Ln(1 − e−βε )𝑑𝜀 8𝜋𝑉 h3 𝑐3 1 𝐾𝑇 0 ∞ 𝜀3 𝑑𝜀 𝑒 𝜀 𝐾𝑇 − 1 vdu
  • 40.
    Chapter7- Ideal BoseSystems 40 𝑉𝑇3 = 𝑐𝑜𝑛𝑠𝑡 ⟹ 𝑉 4 3 𝑇4 = 𝑐𝑜𝑛𝑠𝑡 𝑃 ∝ 𝑇4 ⟹ 𝑃𝑇−4 = 𝑐𝑜𝑛𝑠𝑡 𝑃𝑉 4 3 = 𝑐𝑜𝑛𝑠𝑡
  • 41.
  • 42.
    Chapter7- Ideal BoseSystems 42 0 0
  • 43.
  • 44.
  • 45.
    Chapter7- Ideal BoseSystems 45 ) 21 ( 2 )( 332 2 Tl cc v g    
  • 46.
  • 47.
  • 48.
    Chapter7- Ideal BoseSystems 48 4 3 2 4 1 ( 1) 1 x x x u x du x dx e dv dx v e e             0 0 0 0 0 0 4 3 0 3 0 00 4 3 0 3 0 0 3 0 3 0 0 3 4 ( ) 1 1 3 4 1 1 3 12 1 1 x x x x x x x x x x x x dx D x x e e x x dx x e e x x dx e x e                             
  • 49.
    Chapter7- Ideal BoseSystems 49 𝑥 𝑒 𝑥 − 1 = 𝑛=0 ∞ 𝐵 𝑛 𝑥 𝑛 𝑛! ⟹ 𝐵0 = 1 , 𝐵1 = −1 2 , 𝐵2 = 1 6 , … 0 ∞ 𝑥 𝑛 𝑑𝑥 𝑒 𝑥 − 1 = 𝑥 𝑛 1 𝑛 − 𝑥 2(𝑛 + 1) + 𝑘=1 ∞ 𝐵2𝑘 𝑥2𝑘 2𝑘 + 𝑛 2𝑘 ! ⇒ 𝐷 𝑥0 = −3 𝑛=0 ∞ 𝐵 𝑛 𝑥0 𝑛 𝑛! + 12 𝑥0 3 𝑥0 3 1 3 − 𝑥0 2 × 4 + 𝐵2 𝑥0 2 5 × 2 + 𝐵4 𝑥0 4 7 × 4! + ⋯ = −3 𝐵0 + 𝐵1 𝑥0 + 𝐵2 𝑥0 2 2 + ⋯ + 4 − 3 2 𝑥0 + 6 5 𝐵2 𝑥0 2 + 𝐵4 7 × 2 𝑥0 4 + ⋯ = −3𝐵0 + 4 + −3𝐵1 − 3 2 𝑥0 + − 3 2 𝐵2 + 6 5 𝐵2 𝑥0 2 + ⋯ = 1 + 0 − 1 20 𝑥0 2 + ⋯ = 1 − 1 20 𝑥0 2 + ⋯
  • 50.
  • 51.
  • 52.
  • 53.
    Thanks for yourattention Chapter7- Ideal Bose Systems 53

Editor's Notes

  • #2 In a world where Einstein’s relativity is true, space has three dimensions, and there is quantum mechanics, all particles must be either fermions (named after Italian physicist Enrico Fermi) or bosons (named after Indian physicist Satyendra Nath Bose). This statement is a mathematical theorem, not an observation from data. But data over the past 100 years seems to bear it out; every known particle in the Standard Model is either a fermion or a boson. An example of a boson is a photon.  Two or more bosons (if they are of the same particle type) are allowed to do the same exact thing. For example, a laser is a machine for making large numbers of photons do exactly the same thing, giving a very bright light with a very precise color heading in a very definite direction. All the photons in that beam are in lockstep. Something else you can do with boson particles is form a Bose-Einstein condensate, a phenomenon predicted by Einstein back in the 1920’s but only produced in a definitive way in the 1990’s, in Nobel-Prize winning experiments described in the link above. What these experiments do in making this condensate is cause large numbers of identical boson atoms to all sit as still as a quantum mechanical object possibly can. In principle you could make something similar to a laser out of any boson.  This has been done for atoms too.  And even more recently, a Bose-Einstein condensate has been made out of photons.
  • #5 با در نظر گرفتن اینکه برای V بزرگ طیف حالت های تک ذره 𝜀 𝑝 سیستم تقریباً پیوسته است، جمع های طرف راست روابط بالا را باید با انتگرال جایگزین کرد.اما می دانیم اگر بخواهیم ∑ را به ∫ تبدیل کنیم باید در یک چگالی 𝑎(𝜀) ضرب شود که a(ε) تعداد حالت های مجاز در واحد گستره انرژی درهمسایگی مقدار انرژی مفروض 𝜀 است. چون a(ε) در ε=0، صفر است در تبدیل ∑به ∫ سهم تراز صفر را از دست داده ایم برای رفع این مشکل، قبل از تبدیل ∑به ∫ رابطه ∑ را بصورت زیر می نویسیم؛
  • #13 1. طبق بسط روبرو برای z<<1 تابع g𝑣 (z) برای همه 𝑣ها مثل خود z رفتار می کند. 2. همان معادله گاز ایده آل کلاسیکی است، که با پیش بینی ما سازگار است. زیرا z<<1 یعنی دمای بالا یا حد کلاسیکی
  • #14 اما اگر معادله حالت گاز را در حالتی کلی برای z های کوچک بخواهیم بدست بیاوریم باید z را بین دو رابطه (III) و (IV) حذف کنیم. برای این کار اول از رابطه (IV) بسطی برای z بر حسب توان های nλ3 بدست می آوریم . بعد این بسط را در رابطه (III) جیگذاری می کنیم تا معادله حالت گاز بدست آید.
  • #15  ضریب های al را ضریب های ویریال سیستم می گویند، این ضرایب میزان انحراف از گاز کامل را به ما می دهند.
  • #18 حال اگر تعداد واقعی ذرات از این حد بیشتر شوند آنگاه طبیعی است که حالت های برانگیخته به اندازه ایی که می توانند ذره نگه دارند، ذره دریافت می کنند، در حالی که بقیه ذرات به حالت پایه حل داده می شوند (که عملاً گنجایشش نامحدود است):
  • #24 The transition line in the figure portrays equation (27). The actual .P,T/-curve follows this line from T D 0 up to T D Tc and thereafter departs, tending asymptotically to the classical limit. It may be pointed out that the region to the right of the transition line belongs to the normal phase alone, the line itself belongs to the mixed phase, while the region to the left is inaccessible to the system. منحنی P-T از T=0 تا T=TC از خط گذار پیروی می کند و از آن به بعد از آن جدا می شود و بطور مجانبی به حد کلاسیکی میل می کند. در T=TC یک نقطه عطف داریم، چون تغییر شیب داریم.