ήʔϜཧ࿦#4*$ԋश
ΧʔωϧΛ‫ٻ‬ΊΔ
Χʔωϧͷఆٛͷ֬ೝ
 ަবू߹ͱΧʔωϧͷؔ܎
 લճͷ໰୊
Χʔωϧͷఆٛͷ֬ೝ
ఆٛɿఏ‫ܞ‬ ͷෆຬ


ಛੑؔ਺‫ܗ‬ήʔϜ ʹ͓͍ͯ
഑෼ ͱఏ‫ܞ‬ ΛͱΔͱ͖



Λ഑෼ ʹର͢Δఏ‫ܞ‬ ͷෆຬͱ͍͏




ਓͷϓϨΠϠʔ 
 ΛͱΓ
 ͱ͓͘




ఆٛɿ࠷େෆຬ


ਓͷϓϨΠϠʔ 
 ͱ഑෼ ʹ͍ͭͯ





Λ഑෼ ʹ͓͚ΔϓϨΠϠʔ ͷ ʹର͢Δ࠷େෆຬͱ͍͏
S
(N, v) x ∈
𝒜
(v) S ⊆ N
e(S, x) = v(S) −
∑
i∈S
xi x S
i j ∈ N Tij = {S ⊆ N|i ∈ S, j ∉ S}
i j ∈ N x ∈
𝒜
(v)
sij(x) = max
S∈Tij
e(S, x)
x i j
Χʔωϧͷఆٛͷ֬ೝ
ఆٛɿ༏Ґ


ਓͷϓϨΠϠʔ 
 ͱ഑෼ ʹ͍ͭͯ


 



ͱͳΔͱ͖
഑෼ ʹ͓͍ͯϓϨΠϠʔ ͸ ΑΓ΋༏ҐͰ͋Δͱ͍͍
 ͱॻ͘




Ͱ͋Ε͹
ϓϨΠϠʔ ͸ ʹରͯ͠རಘΛ͘Εͱ͸͍͑ͳ͍


ͳͥͳΒ ͸ఏ‫ܞ‬Λ૊ΉΠϯηϯςΟϒ͕ͳ͘ͳΔͨΊ
i j ∈ N x ∈
𝒜
(v)
sij(x)  sji(x) xj  v({j})
x i j i ≻x j
xj ≤ v({j}) i j
j
ਓͷϓϨΠϠʔͷ


࠷େෆຬΛൺֱ
Χʔωϧͷఆٛͷ֬ೝ
ఆٛɿ‫ߧۉ‬ঢ়ଶ


ਓͷϓϨΠϠʔ 
 ͱ഑෼ ʹ͍ͭͯ



Ͱ΋ͳ͘ Ͱ΋ͳ͍ͱ͖


഑෼ ʹ͓͍ͯϓϨΠϠʔ ͱ ͸‫ߧۉ‬ঢ়ଶͰ͋Δͱ͍͍
 ͱॻ͘




ఆٛɿΧʔωϧ


೚ҙͷਓͷϓϨΠϠʔ͕‫ߧۉ‬ঢ়ଶʹ͋ΔΑ͏ͳ഑෼ͷશମ


 

ΛΧʔωϧͱ͍͏
i j ∈ N x ∈
𝒜
(v)
i ≻x j j ≻x i
x i j i ∼x j
𝒦
= {x ∈
𝒜
(v)|i ∼x j ∀i, j ∈ N, i ≠ j}
Χʔωϧͷఆٛͷ֬ೝ
ఆٛɿ‫ߧۉ‬ঢ়ଶ


ਓͷϓϨΠϠʔ 
 ͱ഑෼ ʹ͍ͭͯ



Ͱ΋ͳ͘ Ͱ΋ͳ͍ͱ͖


഑෼ ʹ͓͍ͯϓϨΠϠʔ ͱ ͸‫ߧۉ‬ঢ়ଶͰ͋Δͱ͍͍
 ͱॻ͘




ͱͳΔͨΊʹ͸
 ͸഑෼ͷ‫ݸ‬ਓ߹ཧੑΑΓ
 
 ʹ஫ҙͯ͠


͔ͭ 
͢ͳΘͪ


·ͨ͸


ͳΒ͹


·ͨ͸


ͳΒ͹
i j ∈ N x ∈
𝒜
(v)
i ≻x j j ≻x i
x i j i ∼x j
i ∼x j x ∈
𝒜
(v) xi ≥ v({i}) xj ≥ v({j})
sij(x) ≥ sji(x) sij(x) ≤ sji(x) sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
ఆٛɿ༏Ґ


ਓͷϓϨΠϠʔ 
 ͱ഑෼ ʹ͍ͭͯ


 



ͱͳΔͱ͖
഑෼ ʹ͓͍ͯϓϨΠϠʔ ͸ ΑΓ΋༏ҐͰ͋Δͱ͍͍
 ͱॻ͘
i j ∈ N x ∈
𝒜
(v)
sij(x)  sji(x) xj  v({j})
x i j i ≻x j
͔ͭ
xj ≥ v({j}) xj ≤ v({j})
͔ͭ
xi ≥ v({i}) xi ≤ v({i})
ަবू߹ͱΧʔωϧͷؔ܎
ఆཧɿަবू߹ͱΧʔωϧ


ήʔϜ ͕༏Ճ๏ੑΛຬͨ͢ͱ͢Δ͜ͷͱ͖ΧʔωϧΛ 
ަবू߹Λ ͱ͢Δͱ
(N, v)
𝒦
(v) ℬ(v)
𝒦
(v) ⊆ ℬ(v)
1
2 3
x1 = 10
x2 = 3
x3 = 0
ަবू߹
Χʔωϧ






͜ͷಛੑؔ਺Λ༻͍ͯ
ΧʔωϧΛ‫ٻ‬ΊͯΈΑ͏
v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2
v({1}) = v({2}) = v({3}) = 0
C(v) = {x ∈
𝒜
(v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1}
લճͷ໰୊ ͕७ઓུD
1ʘ2 C C
B 

 


B 

 


͕७ઓུD
1ʘ2 C C
B 

 


B 

 


φογϡ‫ߧۉ‬
φογϡ‫ߧۉ‬
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ
҆ఆू߹
ަবू߹




͜ͷಛੑؔ਺Λ༻͍ͯ
ΧʔωϧΛ‫ٻ‬ΊͯΈΑ͏


ΛͱΔͱ
֤ϓϨΠϠʔͷ࠷େෆຬ͸













v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
C(v) = {x ∈
𝒜
(v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1}
x = (x1, x2, x3) ∈
𝒜
(v)
s12(x) = max(v({1,3}) − x1 − x3), v({1}) − x1) )
= max(3 − x1 − x3, 0 − x1 )
=
{
3 − x1 − x3 (0 ≤ x3 ≤ 3)
−x1 (3  x3 ≤ 6)
s13(x) = max(v({1,2}) − x1 − x2, v({1}) − x1 )
=
{
1 − x1 − x2 (0 ≤ x2 ≤ 1)
−x1 (1  x2 ≤ 6)
લճͷ໰୊
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ
҆ఆू߹
ަবू߹




͜ͷಛੑؔ਺Λ༻͍ͯ
ΧʔωϧΛ‫ٻ‬ΊͯΈΑ͏


ΛͱΔͱ
֤ϓϨΠϠʔͷ࠷େෆຬ͸
















v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
C(v) = {x ∈
𝒜
(v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1}
x = (x1, x2, x3) ∈
𝒜
(v)
s21(x) = max(v({2,3}) − x2 − x3), v({2}) − x2) )
= max(2 − x2 − x3, 0 − x2 )
=
{
2 − x2 − x3 (0 ≤ x3 ≤ 2)
−x2 (2  x3 ≤ 6)
s23(x) = max(v({1,2}) − x1 − x2), v({2}) − x2) )
= max(1 − x1 − x2, 0 − x2 )
=
{
1 − x1 − x2 (0 ≤ x1 ≤ 1)
−x2 (1  x1 ≤ 6)
લճͷ໰୊
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ
҆ఆू߹
ަবू߹




͜ͷಛੑؔ਺Λ༻͍ͯ
ΧʔωϧΛ‫ٻ‬ΊͯΈΑ͏


ΛͱΔͱ
֤ϓϨΠϠʔͷ࠷େෆຬ͸
















v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
C(v) = {x ∈
𝒜
(v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1}
x = (x1, x2, x3) ∈
𝒜
(v)
s31(x) = max(v({2,3}) − x2 − x3), v({3}) − x3) )
= max(2 − x2 − x3, 0 − x3 )
=
{
2 − x2 − x3 (0 ≤ x2 ≤ 2)
−x3 (2  x2 ≤ 6)
s32(x) = max(v({1,3}) − x1 − x3), v({3}) − x3) )
= max(3 − x1 − x3, 0 − x3 )
=
{
3 − x1 − x3 (0 ≤ x1 ≤ 3)
−x3 (3  x1 ≤ 6)
લճͷ໰୊
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ
҆ఆू߹
ަবू߹












v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s12(x) =
{
3 − x1 − x3 (0 ≤ x3 ≤ 3)
−x1 (3  x3 ≤ 6)
s13(x) =
{
1 − x1 − x2 (0 ≤ x2 ≤ 1)
−x1 (1  x2 ≤ 6)
s21(x) =
{
2 − x2 − x3 (0 ≤ x3 ≤ 2)
−x2 (2  x3 ≤ 6)
s23(x) =
{
1 − x1 − x2 (0 ≤ x1 ≤ 1)
−x2 (1  x1 ≤ 6)
s31(x) =
{
2 − x2 − x3 (0 ≤ x2 ≤ 2)
−x3 (2  x2 ≤ 6)
s32(x) =
{
3 − x1 − x3 (0 ≤ x1 ≤ 3)
−x3 (3  x1 ≤ 6)
લճͷ໰୊
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ
҆ఆू߹
ަবू߹
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})












v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s12(x) =
{
3 − x1 − x3 (0 ≤ x3 ≤ 3)
−x1 (3  x3 ≤ 6)
s13(x) =
{
1 − x1 − x2 (0 ≤ x2 ≤ 1)
−x1 (1  x2 ≤ 6)
s21(x) =
{
2 − x2 − x3 (0 ≤ x3 ≤ 2)
−x2 (2  x3 ≤ 6)
s23(x) =
{
1 − x1 − x2 (0 ≤ x1 ≤ 1)
−x2 (1  x1 ≤ 6)
s31(x) =
{
2 − x2 − x3 (0 ≤ x2 ≤ 2)
−x3 (2  x2 ≤ 6)
s32(x) =
{
3 − x1 − x3 (0 ≤ x1 ≤ 3)
−x3 (3  x1 ≤ 6)
લճͷ໰୊
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ
҆ఆू߹
ަবू߹
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})



 



˗ ͷ৔߹
 
 Ͱ͋Γ
 ͱͳΔͨΊʹ͸


	



 Ͱ͋Ε͹



 Ͱ͋Ε͹



	
 ͳΒ͹



͔͠͠
͜ͷ৔߹ ͱͳΓ



 ͱͳΔͨΊෆద


	
 ͳΒ͹



͔͠͠
͜ͷ৔߹ ͱͳΓ
ෆద


v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s12(x) =
{
3 − x1 − x3 (0 ≤ x3 ≤ 3)
−x1 (3  x3 ≤ 6)
s21(x) =
{
2 − x2 − x3 (0 ≤ x3 ≤ 2)
−x2 (2  x3 ≤ 6)
0 ≤ x3 ≤ 2 s12(x) = 3 − x1 − x3 s21(x) = 2 − x2 − x3 1 ∼x 2
s12(x) = s21(x) ⇔ 3 − x1 − x3 = 2 − x2 − x3 ⇔ x1 = x2 + 1
x3 = 0 x1 + x2 + x3 = 6 ⇔ x2 + 1 + x2 + 0 = 6 ⇔ x2 =
5
2
x3 = 2 x1 + x2 + x3 = 6 ⇔ x2 + 1 + x2 + 2 = 6 ⇔ x2 =
3
2
s12(x)  s21(x) ⇔ 3 − x1 − x3  2 − x2 − x3 ⇔ x1  x2 + 1 x2 = v({2}) = 0
x1  x2 + 1 = 0 + 1
x1 + x2 + x3  1 + 0 + 2 = 3  6
s12(x)  s21(x) ⇔ 3 − x1 − x3  2 − x2 − x3 ⇔ x1  x2 + 1 x1 = v({1}) = 0
0 = x1  x2 + 1 ≥ 1
લճͷ໰୊
1
2 3
x1 = 4
x3 = 5
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
(
7
2
,
5
2
,0
)
x3 = 2
(
5
2
,
3
2
,2
)



 



˗ ͷ৔߹
 
 Ͱ͋Γ
 ͱͳΔͨΊʹ͸


	
 	഑෼ͷશମ߹ཧੑΛར༻



	
 ͳΒ͹
 
ෆద


	
 ͳΒ͹



͔͠͠
͜ͷ৔߹ ͱͳΔͨΊෆద


v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s12(x) =
{
3 − x1 − x3 (0 ≤ x3 ≤ 3)
−x1 (3  x3 ≤ 6)
s21(x) =
{
2 − x2 − x3 (0 ≤ x3 ≤ 2)
−x2 (2  x3 ≤ 6)
2  x3 ≤ 3 s12(x) = 3 − x1 − x3 s21(x) = − x2 1 ∼x 2
s12(x) = s21(x) ⇔ 3 − x1 − x3 = − x2 ⇔ x2 =
3
2
s12(x)  s21(x) ⇔ 3 − x1 − x3  − x2 ⇔ x2 
3
2
x2 = v({2}) = 0
s12(x)  s21(x) ⇔ 3 − x1 − x3  − x2 ⇔ x2 
3
2
x1 = v({1}) = 0
x1 + x2 + x3  0 +
3
2
+ 3  6
લճͷ໰୊
1
2 3
x1 = 4
x2 = 3
x3 = 5
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
x3 = 2
(
7
2
,
5
2
,0
)
(
5
2
,
3
2
,2
)
x3 = 3
(
3
2
,
3
2
,3
)



 



˗ ͷ৔߹
 
 Ͱ͋Γ
 ͱͳΔͨΊʹ͸


	
 


	
 ͳΒ͹
  ͱͳΔͨΊෆద


	
 ͳΒ͹
  ͱͳΔͨΊෆద




v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s12(x) =
{
3 − x1 − x3 (0 ≤ x3 ≤ 3)
−x1 (3  x3 ≤ 6)
s21(x) =
{
2 − x2 − x3 (0 ≤ x3 ≤ 2)
−x2 (2  x3 ≤ 6)
3  x3 ≤ 6 s12(x) = − x1 s21(x) = − x2 1 ∼x 2
s12(x) = s21(x) ⇔ − x1 = − x2 ⇔ x1 = x2
s12(x)  s21(x) ⇔ − x1  − x2 ⇔ x1  x2 x2 = v({2}) = 0 x1  0
s12(x)  s21(x) ⇔ − x1  − x2 ⇔ x1  x2 x1 = v({1}) = 0 x2  0
લճͷ໰୊
1
2 3
x1 = 4
x2 = 3
x3 = 5
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
x3 = 2
(
7
2
,
5
2
,0
)
(
5
2
,
3
2
,2
)
x3 = 3
(
3
2
,
3
2
,3
)












v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s12(x) =
{
3 − x1 − x3 (0 ≤ x3 ≤ 3)
−x1 (3  x3 ≤ 6)
s13(x) =
{
1 − x1 − x2 (0 ≤ x2 ≤ 1)
−x1 (1  x2 ≤ 6)
s21(x) =
{
2 − x2 − x3 (0 ≤ x3 ≤ 2)
−x2 (2  x3 ≤ 6)
s23(x) =
{
1 − x1 − x2 (0 ≤ x1 ≤ 1)
−x2 (1  x1 ≤ 6)
s31(x) =
{
2 − x2 − x3 (0 ≤ x2 ≤ 2)
−x3 (2  x2 ≤ 6)
s32(x) =
{
3 − x1 − x3 (0 ≤ x1 ≤ 3)
−x3 (3  x1 ≤ 6)
લճͷ໰୊
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
1
2 3
x1 = 4
x2 = 3
x3 = 5
(
7
2
,
5
2
,0
)
(
5
2
,
3
2
,2
)
(
3
2
,
3
2
,3
)



 



˗ ͷ৔߹
 
 Ͱ͋Γ
 ͱͳΔͨΊʹ͸


	



	
 ͳΒ͹



͔͠͠
͜ͷ৔߹ ͱͳΔͨΊෆద


	
 ͳΒ͹



͔͠͠
͜ͷ৔߹ ͱͳΓ


 ͱͳΔͨΊෆద


v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s13(x) =
{
1 − x1 − x2 (0 ≤ x2 ≤ 1)
−x1 (1  x2 ≤ 6)
s31(x) =
{
2 − x2 − x3 (0 ≤ x2 ≤ 2)
−x3 (2  x2 ≤ 6)
0 ≤ x2 ≤ 1 s13(x) = 1 − x1 − x2 s31(x) = 2 − x2 − x3 1 ∼x 3
s13(x) = s31(x) ⇔ 1 − x1 − x2 = 2 − x2 − x3 ⇔ x3 = x1 + 1
s13(x)  s31(x) ⇔ 1 − x1 − x2  2 − x2 − x3 ⇔ x3  x1 + 1 x3 = v({3}) = 0
0 = x3  x1 + 1 ≥ 1
s13(x)  s31(x) ⇔ 1 − x1 − x2  2 − x2 − x3 ⇔ x3  x1 + 1 x1 = v({1}) = 0
x3  x1 + 1 = 0 + 1
x1 + x2 + x3  0 + 1 + 1 = 2  6
લճͷ໰୊
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
1
2 3
x1 = 4
x2 = 3
x3 = 5
(
7
2
,
5
2
,0
)
(
5
2
,0,
7
2 )
x2 = 1
(2,1,3)



 



˗ ͷ৔߹
 
 Ͱ͋Γ
 ͱͳΔͨΊʹ͸


	



	
 ͳΒ͹



͔͠͠
͜ͷ৔߹ ͱͳΔͨΊෆద


	
 ͳΒ͹
 ෆద


v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s13(x) =
{
1 − x1 − x2 (0 ≤ x2 ≤ 1)
−x1 (1  x2 ≤ 6)
s31(x) =
{
2 − x2 − x3 (0 ≤ x2 ≤ 2)
−x3 (2  x2 ≤ 6)
1  x2 ≤ 2 s13(x) = − x1 s31(x) = 2 − x2 − x3 1 ∼x 3
s13(x) = s31(x) ⇔ − x1 = 2 − x2 − x3 ⇔ x1 = 2
s13(x)  s31(x) ⇔ − x1  2 − x2 − x3 ⇔ x1  2 x3 = v({3}) = 0
x1 + x2 + x3  2 + 2 + 0 = 4  6
s13(x)  s31(x) ⇔ − x1  2 − x2 − x3 ⇔ x1  2 x1 = v({1}) = 0
લճͷ໰୊
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
1
2 3
x1 = 4
x2 = 3
x3 = 5
(
7
2
,
5
2
,0
)
(
5
2
,0,
7
2 )
x2 = 1
(2,1,3)
(
5
2
,
3
2
,2
)
x2 = 2
(2,2,2)



 



˗ ͷ৔߹
 
 Ͱ͋Γ
 ͱͳΔͨΊʹ͸


	



	
 ͳΒ͹



͔͠͠
͜ͷ৔߹ ͱͳΔͨΊෆద


	
 ͳΒ͹
 


͔͠͠
͜ͷ৔߹ ͱͳΔͨΊෆద


v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s13(x) =
{
1 − x1 − x2 (0 ≤ x2 ≤ 1)
−x1 (1  x2 ≤ 6)
s31(x) =
{
2 − x2 − x3 (0 ≤ x2 ≤ 2)
−x3 (2  x2 ≤ 6)
2  x2 ≤ 6 s13(x) = − x1 s31(x) = − x3 1 ∼x 3
s13(x) = s31(x) ⇔ − x1 = − x3 ⇔ x1 = x3
s13(x)  s31(x) ⇔ − x1  − x3 ⇔ x1  x3 x3 = v({3}) = 0
x1  x3 = 0
s13(x)  s31(x) ⇔ − x1  − x3 ⇔ x1  x3 x1 = v({1}) = 0
x1 = 0  x3
લճͷ໰୊
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
1
2 3
x1 = 4
x2 = 3
x3 = 5
(
7
2
,
5
2
,0
)
(
5
2
,0,
7
2 )
x2 = 1
(2,1,3)
(
5
2
,
3
2
,2
)
x2 = 2
(2,2,2)












v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s12(x) =
{
3 − x1 − x3 (0 ≤ x3 ≤ 3)
−x1 (3  x3 ≤ 6)
s13(x) =
{
1 − x1 − x2 (0 ≤ x2 ≤ 1)
−x1 (1  x2 ≤ 6)
s21(x) =
{
2 − x2 − x3 (0 ≤ x3 ≤ 2)
−x2 (2  x3 ≤ 6)
s23(x) =
{
1 − x1 − x2 (0 ≤ x1 ≤ 1)
−x2 (1  x1 ≤ 6)
s31(x) =
{
2 − x2 − x3 (0 ≤ x2 ≤ 2)
−x3 (2  x2 ≤ 6)
s32(x) =
{
3 − x1 − x3 (0 ≤ x1 ≤ 3)
−x3 (3  x1 ≤ 6)
લճͷ໰୊
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
1
2 3
x1 = 4
x2 = 3
x3 = 5
(
7
2
,
5
2
,0
)
(
5
2
,0,
7
2 )
(2,1,3)
(
5
2
,
3
2
,2
)
(2,2,2)
(
3
2
,
3
2
,3
)



 



˗ ͷ৔߹
 
 Ͱ͋Γ
 ͱͳΔͨΊʹ͸


	



	
 ͳΒ͹



͔͠͠
͜ͷ৔߹ ͱͳΔͨΊෆద


	
 ͳΒ͹



͔͠͠
͜ͷ৔߹ ͱͳΓ


 ͱͳΔͨΊෆద


v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s23(x) =
{
1 − x1 − x2 (0 ≤ x1 ≤ 1)
−x2 (1  x1 ≤ 6)
s32(x) =
{
3 − x1 − x3 (0 ≤ x1 ≤ 3)
−x3 (3  x1 ≤ 6)
0 ≤ x1 ≤ 1 s23(x) = 1 − x1 − x2 s32(x) = 3 − x1 − x3 2 ∼x 3
s23(x) = s32(x) ⇔ 1 − x1 − x2 = 3 − x1 − x3 ⇔ x3 = x2 + 2
s23(x)  s32(x) ⇔ 1 − x1 − x2  3 − x1 − x3 ⇔ x3  x2 + 2 x3 = v({3}) = 0
0 = x3  x2 + 1
s23(x)  s32(x) ⇔ 1 − x1 − x2  3 − x1 − x3 ⇔ x3  x2 + 2 x2 = v({2}) = 0
x3  x2 + 2 = 0 + 2
x1 + x2 + x3  1 + 0 + 2 = 3  6
લճͷ໰୊
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
1
2 3
x1 = 4
x2 = 3
x3 = 5
(
7
2
,
5
2
,0
)
(
5
2
,0,
7
2 )
x1 = 1
(2,1,3)
(0,2,4)
(
1,
3
2
,
7
2)



 



˗ ͷ৔߹
 
 Ͱ͋Γ
 ͱͳΔͨΊʹ͸


	



	
 ͳΒ͹



͔͠͠
 ͱͳΔͨΊෆద


	
 ͳΒ͹



ෆద


v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s23(x) =
{
1 − x1 − x2 (0 ≤ x1 ≤ 1)
−x2 (1  x1 ≤ 6)
s32(x) =
{
3 − x1 − x3 (0 ≤ x1 ≤ 3)
−x3 (3  x1 ≤ 6)
1  x1 ≤ 3 s23(x) = − x2 s32(x) = 3 − x1 − x3 2 ∼x 3
s23(x) = s32(x) ⇔ − x2 = 3 − x1 − x3 ⇔ x2 =
3
2
s23(x)  s32(x) ⇔ − x2  3 − x1 − x3 ⇔ x2 
3
2
x3 = v({3}) = 0
x1 + x2 + x3  3 +
3
2
+ 0  6
s23(x)  s32(x) ⇔ − x2  3 − x1 − x3 ⇔ x2 
3
2
x2 = v({2}) = 0
લճͷ໰୊
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
1
2 3
x1 = 4
x3 = 5
(
7
2
,
5
2
,0
)
(
5
2
,0,
7
2 )
x1 = 1
(0,2,4)
x1 = 3
(
1,
3
2
,
7
2)
(
3,
3
2
,
3
2)



 



˗ ͷ৔߹
 
 Ͱ͋Γ
 ͱͳΔͨΊʹ͸


	



	
 ͳΒ͹



 ͱͳΓෆద


	
 ͳΒ͹



 ͱͳΓෆద


v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s23(x) =
{
1 − x1 − x2 (0 ≤ x1 ≤ 1)
−x2 (1  x1 ≤ 6)
s32(x) =
{
3 − x1 − x3 (0 ≤ x1 ≤ 3)
−x3 (3  x1 ≤ 6)
3  x1 ≤ 6 s23(x) = − x2 s32(x) = − x3 2 ∼x 3
s23(x) = s32(x) ⇔ − x2 = − x3 ⇔ x2 = x3
s23(x)  s32(x) ⇔ − x2  − x3 ⇔ x2  x3 x3 = v({3}) = 0
x2  x3 = 0
s23(x)  s32(x) ⇔ − x2  − x3 ⇔ x2  x3 x2 = v({2}) = 0
x3  x2 = 0
લճͷ໰୊
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
1
2 3
x1 = 4
x3 = 5
(
7
2
,
5
2
,0
)
(
5
2
,0,
7
2 )
x1 = 1
(0,2,4)
(
1,
3
2
,
7
2)
x1 = 3
(
3,
3
2
,
3
2)
















͔ͭ ͔ͭ Λຬͨ͢഑෼͸ 


͜ͷ഑෼ͷΈ͕Χʔωϧʹ‫·ؚ‬ΕΔ഑෼Ͱ͋Δ


v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0
s12(x) =
{
3 − x1 − x3 (0 ≤ x3 ≤ 3)
−x1 (3  x3 ≤ 6)
s13(x) =
{
1 − x1 − x2 (0 ≤ x2 ≤ 1)
−x1 (1  x2 ≤ 6)
s21(x) =
{
2 − x2 − x3 (0 ≤ x3 ≤ 2)
−x2 (2  x3 ≤ 6)
s23(x) =
{
1 − x1 − x2 (0 ≤ x1 ≤ 1)
−x2 (1  x1 ≤ 6)
s31(x) =
{
2 − x2 − x3 (0 ≤ x2 ≤ 2)
−x3 (2  x2 ≤ 6)
s32(x) =
{
3 − x1 − x3 (0 ≤ x1 ≤ 3)
−x3 (3  x1 ≤ 6)
1 ∼x 2 1 ∼x 3 2 ∼x 3
(
2,
3
2
,
5
2)
લճͷ໰୊
ͱͳΔͨΊʹ͸


	



·ͨ͸


	
 ͳΒ͹


·ͨ͸


	
 ͳΒ͹
i ∼x j
sij(x) = sji(x)
sij(x)  sji(x) xj = v({j})
sij(x)  sji(x) xi = v({i})
1
2 3
x1 = 4
x3 = 5
(
7
2
,
5
2
,0
)
(
5
2
,0,
7
2 )
(
2,
3
2
,
5
2)
(0,2,4)
x2 = 3
ήʔϜཧ࿦#4*$ԋश
ΧʔωϧΛ‫ٻ‬ΊΔ
࣍ճɿԋश

ゲーム理論BASIC 演習5 -カーネルを求める-

  • 1.
  • 2.
  • 3.
    Χʔωϧͷఆٛͷ֬ೝ ఆٛɿఏ‫ܞ‬ ͷෆຬ 
 ಛੑؔ਺‫ܗ‬ήʔϜ ʹ͓͍ͯ ഑෼ͱఏ‫ܞ‬ ΛͱΔͱ͖ 
 Λ഑෼ ʹର͢Δఏ‫ܞ‬ ͷෆຬͱ͍͏ 
 
 ਓͷϓϨΠϠʔ ΛͱΓ ͱ͓͘ 
 
 ఆٛɿ࠷େෆຬ 
 ਓͷϓϨΠϠʔ ͱ഑෼ ʹ͍ͭͯ 
 
 Λ഑෼ ʹ͓͚ΔϓϨΠϠʔ ͷ ʹର͢Δ࠷େෆຬͱ͍͏ S (N, v) x ∈ 𝒜 (v) S ⊆ N e(S, x) = v(S) − ∑ i∈S xi x S i j ∈ N Tij = {S ⊆ N|i ∈ S, j ∉ S} i j ∈ N x ∈ 𝒜 (v) sij(x) = max S∈Tij e(S, x) x i j
  • 4.
    Χʔωϧͷఆٛͷ֬ೝ ఆٛɿ༏Ґ 
 ਓͷϓϨΠϠʔ ͱ഑෼ʹ͍ͭͯ 
 
 ͱͳΔͱ͖ ഑෼ ʹ͓͍ͯϓϨΠϠʔ ͸ ΑΓ΋༏ҐͰ͋Δͱ͍͍ ͱॻ͘ 
 
 Ͱ͋Ε͹ ϓϨΠϠʔ ͸ ʹରͯ͠རಘΛ͘Εͱ͸͍͑ͳ͍ 
 ͳͥͳΒ ͸ఏ‫ܞ‬Λ૊ΉΠϯηϯςΟϒ͕ͳ͘ͳΔͨΊ i j ∈ N x ∈ 𝒜 (v) sij(x) sji(x) xj v({j}) x i j i ≻x j xj ≤ v({j}) i j j ਓͷϓϨΠϠʔͷ 
 ࠷େෆຬΛൺֱ
  • 5.
    Χʔωϧͷఆٛͷ֬ೝ ఆٛɿ‫ߧۉ‬ঢ়ଶ 
 ਓͷϓϨΠϠʔ ͱ഑෼ʹ͍ͭͯ 
 Ͱ΋ͳ͘ Ͱ΋ͳ͍ͱ͖ 
 ഑෼ ʹ͓͍ͯϓϨΠϠʔ ͱ ͸‫ߧۉ‬ঢ়ଶͰ͋Δͱ͍͍ ͱॻ͘ 
 
 ఆٛɿΧʔωϧ 
 ೚ҙͷਓͷϓϨΠϠʔ͕‫ߧۉ‬ঢ়ଶʹ͋ΔΑ͏ͳ഑෼ͷશମ 
 
 ΛΧʔωϧͱ͍͏ i j ∈ N x ∈ 𝒜 (v) i ≻x j j ≻x i x i j i ∼x j 𝒦 = {x ∈ 𝒜 (v)|i ∼x j ∀i, j ∈ N, i ≠ j}
  • 6.
    Χʔωϧͷఆٛͷ֬ೝ ఆٛɿ‫ߧۉ‬ঢ়ଶ 
 ਓͷϓϨΠϠʔ ͱ഑෼ʹ͍ͭͯ 
 Ͱ΋ͳ͘ Ͱ΋ͳ͍ͱ͖ 
 ഑෼ ʹ͓͍ͯϓϨΠϠʔ ͱ ͸‫ߧۉ‬ঢ়ଶͰ͋Δͱ͍͍ ͱॻ͘ 
 
 ͱͳΔͨΊʹ͸ ͸഑෼ͷ‫ݸ‬ਓ߹ཧੑΑΓ ʹ஫ҙͯ͠ 
 ͔ͭ ͢ͳΘͪ 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i j ∈ N x ∈ 𝒜 (v) i ≻x j j ≻x i x i j i ∼x j i ∼x j x ∈ 𝒜 (v) xi ≥ v({i}) xj ≥ v({j}) sij(x) ≥ sji(x) sij(x) ≤ sji(x) sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) ఆٛɿ༏Ґ 
 ਓͷϓϨΠϠʔ ͱ഑෼ ʹ͍ͭͯ 
 
 ͱͳΔͱ͖ ഑෼ ʹ͓͍ͯϓϨΠϠʔ ͸ ΑΓ΋༏ҐͰ͋Δͱ͍͍ ͱॻ͘ i j ∈ N x ∈ 𝒜 (v) sij(x) sji(x) xj v({j}) x i j i ≻x j ͔ͭ xj ≥ v({j}) xj ≤ v({j}) ͔ͭ xi ≥ v({i}) xi ≤ v({i})
  • 7.
    ަবू߹ͱΧʔωϧͷؔ܎ ఆཧɿަবू߹ͱΧʔωϧ 
 ήʔϜ ͕༏Ճ๏ੑΛຬͨ͢ͱ͢Δ͜ͷͱ͖ΧʔωϧΛ ަবू߹Λͱ͢Δͱ (N, v) 𝒦 (v) ℬ(v) 𝒦 (v) ⊆ ℬ(v) 1 2 3 x1 = 10 x2 = 3 x3 = 0 ަবू߹ Χʔωϧ
  • 8.
    
 
 
 ͜ͷಛੑؔ਺Λ༻͍ͯ ΧʔωϧΛ‫ٻ‬ΊͯΈΑ͏ v({1,2,3}) = 6v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 C(v) = {x ∈ 𝒜 (v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1} લճͷ໰୊ ͕७ઓུD 1ʘ2 C C B B ͕७ઓུD 1ʘ2 C C B B φογϡ‫ߧۉ‬ φογϡ‫ߧۉ‬ 1 2 3 x1 ≤ 4 x2 ≤ 3 x3 ≤ 5 ίΞ ҆ఆू߹ ަবू߹
  • 9.
    
 
 ͜ͷಛੑؔ਺Λ༻͍ͯ ΧʔωϧΛ‫ٻ‬ΊͯΈΑ͏ 
 ΛͱΔͱ ֤ϓϨΠϠʔͷ࠷େෆຬ͸ 
 
 
 
 
 v({1,2,3}) = 6v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 C(v) = {x ∈ 𝒜 (v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1} x = (x1, x2, x3) ∈ 𝒜 (v) s12(x) = max(v({1,3}) − x1 − x3), v({1}) − x1) ) = max(3 − x1 − x3, 0 − x1 ) = { 3 − x1 − x3 (0 ≤ x3 ≤ 3) −x1 (3 x3 ≤ 6) s13(x) = max(v({1,2}) − x1 − x2, v({1}) − x1 ) = { 1 − x1 − x2 (0 ≤ x2 ≤ 1) −x1 (1 x2 ≤ 6) લճͷ໰୊ 1 2 3 x1 ≤ 4 x2 ≤ 3 x3 ≤ 5 ίΞ ҆ఆू߹ ަবू߹
  • 10.
    
 
 ͜ͷಛੑؔ਺Λ༻͍ͯ ΧʔωϧΛ‫ٻ‬ΊͯΈΑ͏ 
 ΛͱΔͱ ֤ϓϨΠϠʔͷ࠷େෆຬ͸ 
 
 
 
 
 
 v({1,2,3}) = 6v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 C(v) = {x ∈ 𝒜 (v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1} x = (x1, x2, x3) ∈ 𝒜 (v) s21(x) = max(v({2,3}) − x2 − x3), v({2}) − x2) ) = max(2 − x2 − x3, 0 − x2 ) = { 2 − x2 − x3 (0 ≤ x3 ≤ 2) −x2 (2 x3 ≤ 6) s23(x) = max(v({1,2}) − x1 − x2), v({2}) − x2) ) = max(1 − x1 − x2, 0 − x2 ) = { 1 − x1 − x2 (0 ≤ x1 ≤ 1) −x2 (1 x1 ≤ 6) લճͷ໰୊ 1 2 3 x1 ≤ 4 x2 ≤ 3 x3 ≤ 5 ίΞ ҆ఆू߹ ަবू߹
  • 11.
    
 
 ͜ͷಛੑؔ਺Λ༻͍ͯ ΧʔωϧΛ‫ٻ‬ΊͯΈΑ͏ 
 ΛͱΔͱ ֤ϓϨΠϠʔͷ࠷େෆຬ͸ 
 
 
 
 
 
 v({1,2,3}) = 6v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 C(v) = {x ∈ 𝒜 (v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1} x = (x1, x2, x3) ∈ 𝒜 (v) s31(x) = max(v({2,3}) − x2 − x3), v({3}) − x3) ) = max(2 − x2 − x3, 0 − x3 ) = { 2 − x2 − x3 (0 ≤ x2 ≤ 2) −x3 (2 x2 ≤ 6) s32(x) = max(v({1,3}) − x1 − x3), v({3}) − x3) ) = max(3 − x1 − x3, 0 − x3 ) = { 3 − x1 − x3 (0 ≤ x1 ≤ 3) −x3 (3 x1 ≤ 6) લճͷ໰୊ 1 2 3 x1 ≤ 4 x2 ≤ 3 x3 ≤ 5 ίΞ ҆ఆू߹ ަবू߹
  • 12.
    
 
 
 v({1,2,3}) = 6v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s12(x) = { 3 − x1 − x3 (0 ≤ x3 ≤ 3) −x1 (3 x3 ≤ 6) s13(x) = { 1 − x1 − x2 (0 ≤ x2 ≤ 1) −x1 (1 x2 ≤ 6) s21(x) = { 2 − x2 − x3 (0 ≤ x3 ≤ 2) −x2 (2 x3 ≤ 6) s23(x) = { 1 − x1 − x2 (0 ≤ x1 ≤ 1) −x2 (1 x1 ≤ 6) s31(x) = { 2 − x2 − x3 (0 ≤ x2 ≤ 2) −x3 (2 x2 ≤ 6) s32(x) = { 3 − x1 − x3 (0 ≤ x1 ≤ 3) −x3 (3 x1 ≤ 6) લճͷ໰୊ 1 2 3 x1 ≤ 4 x2 ≤ 3 x3 ≤ 5 ίΞ ҆ఆू߹ ަবू߹ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i})
  • 13.
    
 
 
 v({1,2,3}) = 6v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s12(x) = { 3 − x1 − x3 (0 ≤ x3 ≤ 3) −x1 (3 x3 ≤ 6) s13(x) = { 1 − x1 − x2 (0 ≤ x2 ≤ 1) −x1 (1 x2 ≤ 6) s21(x) = { 2 − x2 − x3 (0 ≤ x3 ≤ 2) −x2 (2 x3 ≤ 6) s23(x) = { 1 − x1 − x2 (0 ≤ x1 ≤ 1) −x2 (1 x1 ≤ 6) s31(x) = { 2 − x2 − x3 (0 ≤ x2 ≤ 2) −x3 (2 x2 ≤ 6) s32(x) = { 3 − x1 − x3 (0 ≤ x1 ≤ 3) −x3 (3 x1 ≤ 6) લճͷ໰୊ 1 2 3 x1 ≤ 4 x2 ≤ 3 x3 ≤ 5 ίΞ ҆ఆू߹ ަবू߹ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i})
  • 14.
    
 
 ˗ ͷ৔߹ Ͱ͋Γ ͱͳΔͨΊʹ͸ 
 
 Ͱ͋Ε͹ 
 Ͱ͋Ε͹ 
 ͳΒ͹ 
 ͔͠͠ ͜ͷ৔߹ ͱͳΓ 
 ͱͳΔͨΊෆద 
 ͳΒ͹ 
 ͔͠͠ ͜ͷ৔߹ ͱͳΓ ෆద 
 v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s12(x) = { 3 − x1 − x3 (0 ≤ x3 ≤ 3) −x1 (3 x3 ≤ 6) s21(x) = { 2 − x2 − x3 (0 ≤ x3 ≤ 2) −x2 (2 x3 ≤ 6) 0 ≤ x3 ≤ 2 s12(x) = 3 − x1 − x3 s21(x) = 2 − x2 − x3 1 ∼x 2 s12(x) = s21(x) ⇔ 3 − x1 − x3 = 2 − x2 − x3 ⇔ x1 = x2 + 1 x3 = 0 x1 + x2 + x3 = 6 ⇔ x2 + 1 + x2 + 0 = 6 ⇔ x2 = 5 2 x3 = 2 x1 + x2 + x3 = 6 ⇔ x2 + 1 + x2 + 2 = 6 ⇔ x2 = 3 2 s12(x) s21(x) ⇔ 3 − x1 − x3 2 − x2 − x3 ⇔ x1 x2 + 1 x2 = v({2}) = 0 x1 x2 + 1 = 0 + 1 x1 + x2 + x3 1 + 0 + 2 = 3 6 s12(x) s21(x) ⇔ 3 − x1 − x3 2 − x2 − x3 ⇔ x1 x2 + 1 x1 = v({1}) = 0 0 = x1 x2 + 1 ≥ 1 લճͷ໰୊ 1 2 3 x1 = 4 x3 = 5 ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) ( 7 2 , 5 2 ,0 ) x3 = 2 ( 5 2 , 3 2 ,2 )
  • 15.
    
 
 ˗ ͷ৔߹ Ͱ͋Γ ͱͳΔͨΊʹ͸ 
 ഑෼ͷશମ߹ཧੑΛར༻ 
 ͳΒ͹ ෆద 
 ͳΒ͹ 
 ͔͠͠ ͜ͷ৔߹ ͱͳΔͨΊෆద 
 v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s12(x) = { 3 − x1 − x3 (0 ≤ x3 ≤ 3) −x1 (3 x3 ≤ 6) s21(x) = { 2 − x2 − x3 (0 ≤ x3 ≤ 2) −x2 (2 x3 ≤ 6) 2 x3 ≤ 3 s12(x) = 3 − x1 − x3 s21(x) = − x2 1 ∼x 2 s12(x) = s21(x) ⇔ 3 − x1 − x3 = − x2 ⇔ x2 = 3 2 s12(x) s21(x) ⇔ 3 − x1 − x3 − x2 ⇔ x2 3 2 x2 = v({2}) = 0 s12(x) s21(x) ⇔ 3 − x1 − x3 − x2 ⇔ x2 3 2 x1 = v({1}) = 0 x1 + x2 + x3 0 + 3 2 + 3 6 લճͷ໰୊ 1 2 3 x1 = 4 x2 = 3 x3 = 5 ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) x3 = 2 ( 7 2 , 5 2 ,0 ) ( 5 2 , 3 2 ,2 ) x3 = 3 ( 3 2 , 3 2 ,3 )
  • 16.
    
 
 ˗ ͷ৔߹ Ͱ͋Γ ͱͳΔͨΊʹ͸ 
 
 ͳΒ͹ ͱͳΔͨΊෆద 
 ͳΒ͹ ͱͳΔͨΊෆద 
 
 v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s12(x) = { 3 − x1 − x3 (0 ≤ x3 ≤ 3) −x1 (3 x3 ≤ 6) s21(x) = { 2 − x2 − x3 (0 ≤ x3 ≤ 2) −x2 (2 x3 ≤ 6) 3 x3 ≤ 6 s12(x) = − x1 s21(x) = − x2 1 ∼x 2 s12(x) = s21(x) ⇔ − x1 = − x2 ⇔ x1 = x2 s12(x) s21(x) ⇔ − x1 − x2 ⇔ x1 x2 x2 = v({2}) = 0 x1 0 s12(x) s21(x) ⇔ − x1 − x2 ⇔ x1 x2 x1 = v({1}) = 0 x2 0 લճͷ໰୊ 1 2 3 x1 = 4 x2 = 3 x3 = 5 ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) x3 = 2 ( 7 2 , 5 2 ,0 ) ( 5 2 , 3 2 ,2 ) x3 = 3 ( 3 2 , 3 2 ,3 )
  • 17.
    
 
 
 v({1,2,3}) = 6v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s12(x) = { 3 − x1 − x3 (0 ≤ x3 ≤ 3) −x1 (3 x3 ≤ 6) s13(x) = { 1 − x1 − x2 (0 ≤ x2 ≤ 1) −x1 (1 x2 ≤ 6) s21(x) = { 2 − x2 − x3 (0 ≤ x3 ≤ 2) −x2 (2 x3 ≤ 6) s23(x) = { 1 − x1 − x2 (0 ≤ x1 ≤ 1) −x2 (1 x1 ≤ 6) s31(x) = { 2 − x2 − x3 (0 ≤ x2 ≤ 2) −x3 (2 x2 ≤ 6) s32(x) = { 3 − x1 − x3 (0 ≤ x1 ≤ 3) −x3 (3 x1 ≤ 6) લճͷ໰୊ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) 1 2 3 x1 = 4 x2 = 3 x3 = 5 ( 7 2 , 5 2 ,0 ) ( 5 2 , 3 2 ,2 ) ( 3 2 , 3 2 ,3 )
  • 18.
    
 
 ˗ ͷ৔߹ Ͱ͋Γ ͱͳΔͨΊʹ͸ 
 
 ͳΒ͹ 
 ͔͠͠ ͜ͷ৔߹ ͱͳΔͨΊෆద 
 ͳΒ͹ 
 ͔͠͠ ͜ͷ৔߹ ͱͳΓ 
 ͱͳΔͨΊෆద 
 v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s13(x) = { 1 − x1 − x2 (0 ≤ x2 ≤ 1) −x1 (1 x2 ≤ 6) s31(x) = { 2 − x2 − x3 (0 ≤ x2 ≤ 2) −x3 (2 x2 ≤ 6) 0 ≤ x2 ≤ 1 s13(x) = 1 − x1 − x2 s31(x) = 2 − x2 − x3 1 ∼x 3 s13(x) = s31(x) ⇔ 1 − x1 − x2 = 2 − x2 − x3 ⇔ x3 = x1 + 1 s13(x) s31(x) ⇔ 1 − x1 − x2 2 − x2 − x3 ⇔ x3 x1 + 1 x3 = v({3}) = 0 0 = x3 x1 + 1 ≥ 1 s13(x) s31(x) ⇔ 1 − x1 − x2 2 − x2 − x3 ⇔ x3 x1 + 1 x1 = v({1}) = 0 x3 x1 + 1 = 0 + 1 x1 + x2 + x3 0 + 1 + 1 = 2 6 લճͷ໰୊ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) 1 2 3 x1 = 4 x2 = 3 x3 = 5 ( 7 2 , 5 2 ,0 ) ( 5 2 ,0, 7 2 ) x2 = 1 (2,1,3)
  • 19.
    
 
 ˗ ͷ৔߹ Ͱ͋Γ ͱͳΔͨΊʹ͸ 
 
 ͳΒ͹ 
 ͔͠͠ ͜ͷ৔߹ ͱͳΔͨΊෆద 
 ͳΒ͹ ෆద 
 v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s13(x) = { 1 − x1 − x2 (0 ≤ x2 ≤ 1) −x1 (1 x2 ≤ 6) s31(x) = { 2 − x2 − x3 (0 ≤ x2 ≤ 2) −x3 (2 x2 ≤ 6) 1 x2 ≤ 2 s13(x) = − x1 s31(x) = 2 − x2 − x3 1 ∼x 3 s13(x) = s31(x) ⇔ − x1 = 2 − x2 − x3 ⇔ x1 = 2 s13(x) s31(x) ⇔ − x1 2 − x2 − x3 ⇔ x1 2 x3 = v({3}) = 0 x1 + x2 + x3 2 + 2 + 0 = 4 6 s13(x) s31(x) ⇔ − x1 2 − x2 − x3 ⇔ x1 2 x1 = v({1}) = 0 લճͷ໰୊ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) 1 2 3 x1 = 4 x2 = 3 x3 = 5 ( 7 2 , 5 2 ,0 ) ( 5 2 ,0, 7 2 ) x2 = 1 (2,1,3) ( 5 2 , 3 2 ,2 ) x2 = 2 (2,2,2)
  • 20.
    
 
 ˗ ͷ৔߹ Ͱ͋Γ ͱͳΔͨΊʹ͸ 
 
 ͳΒ͹ 
 ͔͠͠ ͜ͷ৔߹ ͱͳΔͨΊෆద 
 ͳΒ͹ 
 ͔͠͠ ͜ͷ৔߹ ͱͳΔͨΊෆద 
 v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s13(x) = { 1 − x1 − x2 (0 ≤ x2 ≤ 1) −x1 (1 x2 ≤ 6) s31(x) = { 2 − x2 − x3 (0 ≤ x2 ≤ 2) −x3 (2 x2 ≤ 6) 2 x2 ≤ 6 s13(x) = − x1 s31(x) = − x3 1 ∼x 3 s13(x) = s31(x) ⇔ − x1 = − x3 ⇔ x1 = x3 s13(x) s31(x) ⇔ − x1 − x3 ⇔ x1 x3 x3 = v({3}) = 0 x1 x3 = 0 s13(x) s31(x) ⇔ − x1 − x3 ⇔ x1 x3 x1 = v({1}) = 0 x1 = 0 x3 લճͷ໰୊ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) 1 2 3 x1 = 4 x2 = 3 x3 = 5 ( 7 2 , 5 2 ,0 ) ( 5 2 ,0, 7 2 ) x2 = 1 (2,1,3) ( 5 2 , 3 2 ,2 ) x2 = 2 (2,2,2)
  • 21.
    
 
 
 v({1,2,3}) = 6v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s12(x) = { 3 − x1 − x3 (0 ≤ x3 ≤ 3) −x1 (3 x3 ≤ 6) s13(x) = { 1 − x1 − x2 (0 ≤ x2 ≤ 1) −x1 (1 x2 ≤ 6) s21(x) = { 2 − x2 − x3 (0 ≤ x3 ≤ 2) −x2 (2 x3 ≤ 6) s23(x) = { 1 − x1 − x2 (0 ≤ x1 ≤ 1) −x2 (1 x1 ≤ 6) s31(x) = { 2 − x2 − x3 (0 ≤ x2 ≤ 2) −x3 (2 x2 ≤ 6) s32(x) = { 3 − x1 − x3 (0 ≤ x1 ≤ 3) −x3 (3 x1 ≤ 6) લճͷ໰୊ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) 1 2 3 x1 = 4 x2 = 3 x3 = 5 ( 7 2 , 5 2 ,0 ) ( 5 2 ,0, 7 2 ) (2,1,3) ( 5 2 , 3 2 ,2 ) (2,2,2) ( 3 2 , 3 2 ,3 )
  • 22.
    
 
 ˗ ͷ৔߹ Ͱ͋Γ ͱͳΔͨΊʹ͸ 
 
 ͳΒ͹ 
 ͔͠͠ ͜ͷ৔߹ ͱͳΔͨΊෆద 
 ͳΒ͹ 
 ͔͠͠ ͜ͷ৔߹ ͱͳΓ 
 ͱͳΔͨΊෆద 
 v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s23(x) = { 1 − x1 − x2 (0 ≤ x1 ≤ 1) −x2 (1 x1 ≤ 6) s32(x) = { 3 − x1 − x3 (0 ≤ x1 ≤ 3) −x3 (3 x1 ≤ 6) 0 ≤ x1 ≤ 1 s23(x) = 1 − x1 − x2 s32(x) = 3 − x1 − x3 2 ∼x 3 s23(x) = s32(x) ⇔ 1 − x1 − x2 = 3 − x1 − x3 ⇔ x3 = x2 + 2 s23(x) s32(x) ⇔ 1 − x1 − x2 3 − x1 − x3 ⇔ x3 x2 + 2 x3 = v({3}) = 0 0 = x3 x2 + 1 s23(x) s32(x) ⇔ 1 − x1 − x2 3 − x1 − x3 ⇔ x3 x2 + 2 x2 = v({2}) = 0 x3 x2 + 2 = 0 + 2 x1 + x2 + x3 1 + 0 + 2 = 3 6 લճͷ໰୊ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) 1 2 3 x1 = 4 x2 = 3 x3 = 5 ( 7 2 , 5 2 ,0 ) ( 5 2 ,0, 7 2 ) x1 = 1 (2,1,3) (0,2,4) ( 1, 3 2 , 7 2)
  • 23.
    
 
 ˗ ͷ৔߹ Ͱ͋Γ ͱͳΔͨΊʹ͸ 
 
 ͳΒ͹ 
 ͔͠͠ ͱͳΔͨΊෆద 
 ͳΒ͹ 
 ෆద 
 v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s23(x) = { 1 − x1 − x2 (0 ≤ x1 ≤ 1) −x2 (1 x1 ≤ 6) s32(x) = { 3 − x1 − x3 (0 ≤ x1 ≤ 3) −x3 (3 x1 ≤ 6) 1 x1 ≤ 3 s23(x) = − x2 s32(x) = 3 − x1 − x3 2 ∼x 3 s23(x) = s32(x) ⇔ − x2 = 3 − x1 − x3 ⇔ x2 = 3 2 s23(x) s32(x) ⇔ − x2 3 − x1 − x3 ⇔ x2 3 2 x3 = v({3}) = 0 x1 + x2 + x3 3 + 3 2 + 0 6 s23(x) s32(x) ⇔ − x2 3 − x1 − x3 ⇔ x2 3 2 x2 = v({2}) = 0 લճͷ໰୊ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) 1 2 3 x1 = 4 x3 = 5 ( 7 2 , 5 2 ,0 ) ( 5 2 ,0, 7 2 ) x1 = 1 (0,2,4) x1 = 3 ( 1, 3 2 , 7 2) ( 3, 3 2 , 3 2)
  • 24.
    
 
 ˗ ͷ৔߹ Ͱ͋Γ ͱͳΔͨΊʹ͸ 
 
 ͳΒ͹ 
 ͱͳΓෆద 
 ͳΒ͹ 
 ͱͳΓෆద 
 v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s23(x) = { 1 − x1 − x2 (0 ≤ x1 ≤ 1) −x2 (1 x1 ≤ 6) s32(x) = { 3 − x1 − x3 (0 ≤ x1 ≤ 3) −x3 (3 x1 ≤ 6) 3 x1 ≤ 6 s23(x) = − x2 s32(x) = − x3 2 ∼x 3 s23(x) = s32(x) ⇔ − x2 = − x3 ⇔ x2 = x3 s23(x) s32(x) ⇔ − x2 − x3 ⇔ x2 x3 x3 = v({3}) = 0 x2 x3 = 0 s23(x) s32(x) ⇔ − x2 − x3 ⇔ x2 x3 x2 = v({2}) = 0 x3 x2 = 0 લճͷ໰୊ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) 1 2 3 x1 = 4 x3 = 5 ( 7 2 , 5 2 ,0 ) ( 5 2 ,0, 7 2 ) x1 = 1 (0,2,4) ( 1, 3 2 , 7 2) x1 = 3 ( 3, 3 2 , 3 2)
  • 25.
    
 
 
 
 
 ͔ͭ ͔ͭ Λຬͨ͢഑෼͸ 
 ͜ͷ഑෼ͷΈ͕Χʔωϧʹ‫·ؚ‬ΕΔ഑෼Ͱ͋Δ 
 v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2 v({1}) = v({2}) = v({3}) = 0 s12(x) = { 3 − x1 − x3 (0 ≤ x3 ≤ 3) −x1 (3 x3 ≤ 6) s13(x) = { 1 − x1 − x2 (0 ≤ x2 ≤ 1) −x1 (1 x2 ≤ 6) s21(x) = { 2 − x2 − x3 (0 ≤ x3 ≤ 2) −x2 (2 x3 ≤ 6) s23(x) = { 1 − x1 − x2 (0 ≤ x1 ≤ 1) −x2 (1 x1 ≤ 6) s31(x) = { 2 − x2 − x3 (0 ≤ x2 ≤ 2) −x3 (2 x2 ≤ 6) s32(x) = { 3 − x1 − x3 (0 ≤ x1 ≤ 3) −x3 (3 x1 ≤ 6) 1 ∼x 2 1 ∼x 3 2 ∼x 3 ( 2, 3 2 , 5 2) લճͷ໰୊ ͱͳΔͨΊʹ͸ 
 
 ·ͨ͸ 
 ͳΒ͹ 
 ·ͨ͸ 
 ͳΒ͹ i ∼x j sij(x) = sji(x) sij(x) sji(x) xj = v({j}) sij(x) sji(x) xi = v({i}) 1 2 3 x1 = 4 x3 = 5 ( 7 2 , 5 2 ,0 ) ( 5 2 ,0, 7 2 ) ( 2, 3 2 , 5 2) (0,2,4) x2 = 3
  • 26.