ήʔϜཧ࿦#4*$ԋश
҆ఆू߹Λ‫ٻ‬ΊΔ
҆ఆू߹ͷఆٛͷ֬ೝ
 ίΞͱ҆ఆू߹
 ਓήʔϜʹ͓͚Δ҆ఆू߹ͷύλʔϯ
 લճͷ໰୊
҆ఆू߹ͷఆٛͷ֬ೝ
ఆٛɿ഑෼ͷࢧ഑


̎ͭͷ഑෼ ͱఏ‫ܞ‬ ΛͱΔ࣍ͷ̎৚͕݅ຬͨ͞ΕΔͱ͖



͸ Λ Λ௨ͯ͠ࢧ഑͢Δͱ͍͍
 ͱॻ͘


	



	
 
̎ͭͷ഑෼ ʹରͯ͠
͋Δఏ‫ܞ‬ ͕ଘࡏͯ͠ ͕੒Γཱͭͱ͖


୯ʹ ͸ Λࢧ഑͢Δͱ͍͍
 ͱॻ͘
x, y S ⊆ N
x y S x domS y
v(S) ≥
∑
i∈S
xi
xi  yi, ∀i ∈ S
x, y S x domS y
x y x dom y
഑෼ ͕ఏ‫ܞ‬ Ͱ࿫͑Δ
x S
ఏ‫ܞ‬ ʹ‫·ؚ‬ΕΔϓϨΠϠʔʹͱͬͯ


഑෼ ͕ΑΓ๬·͍͠
S
x
҆ఆू߹ͷఆٛͷ֬ೝ
ఆٛ


ಛੑؔ਺‫ܗ‬ήʔϜ ʹ͓͍ͯ
഑෼ͷू߹ ͕҆ఆू߹Ͱ͋Δͱ͸



ҎԼΛຬͨ͢ͱ͖Λ͍͏


	֎෦҆ఆੑ
 ʹଐ͞ͳ͍͢΂ͯͷ഑෼ ʹؔͯ͠



͋Δ ಺ͷ഑෼ ͕ଘࡏͯ͠
 ͕ Λࢧ഑͢Δ


	಺෦҆ఆੑ
 ಺ͷ೚ҙͷ഑෼ ʹ͍ͭͯ‫ʹ͍ޓ‬ଞΛࢧ഑͠ͳ͍




	ิ
ίΞ͸഑෼ʹରͯ͠ఆ͕ٛͨ͠
҆ఆू߹͸഑෼ͷ෦෼ू߹ʹରͯ͠ఆٛ͢Δ


	ิ
ϑΥϯϊΠϚϯϞϧήϯγϡςϧϯղͱ΋‫ݺ‬͹ΕΔ
(N, v) K
K y
K x x y
K x, y
ίΞͱ҆ఆू߹
ఆཧ


ಛੑؔ਺‫ܗ‬ήʔϜ ʹ͓͍ͯ
ίΞͱ҆ఆू߹͕‫ʹڞ‬ଘࡏ͢ΔͳΒ͹


ίΞ͸҆ఆू߹ʹ‫·ؚ‬ΕΔ
Λࣔͤ͹Α͍


೚ҙͷ ΛͱΔ͜ͷͱ͖ Ͱ͋Δ͜ͱΛࣔͤ͹Α͍


ͱ͢Δͱ
 ͸͋Δ഑෼ ʹࢧ഑͞ΕΔ͜ͱʹͳΔͨΊ



͕ίΞͷ഑෼Ͱ͋Δ͜ͱʹໃ६
(N, v)
C(v) ⊆ K
x ∈ C(v) x ∈ K
x ∉ K x x′

∈ K
x 	֎෦҆ఆੑ



ʹଐ͞ͳ͍͢΂ͯͷ഑෼ ʹؔͯ͠



͋Δ ಺ͷ഑෼ ͕ଘࡏͯ͠
 ͕ Λࢧ഑͢Δ
K y
K x x y
ਓήʔϜʹ͓͚Δ҆ఆू߹ͷύλʔϯ
ਓήʔϜͰ͋Ε͹҆ఆू߹͸ඞͣଘࡏ͢Δ
1
2 3
ίΞ
1
2 3
ίΞଘࡏύλʔϯ ίΞ͕ۭύλʔϯ
1
2 3
ରশղʴަব‫ۂ‬ઢ ࠩผղʴަব‫ۂ‬ઢ
ίΞʴަব‫ۂ‬ઢ






͜ͷಛੑؔ਺Λ༻͍ͯ
҆ఆू߹Λ‫ٻ‬ΊͯΈΑ͏
v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2
v({1}) = v({2}) = v({3}) = 0
C(v) = {x ∈
𝒜
(v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1}
લճͷ໰୊ ͕७ઓུD
1ʘ2 C C
B 

 


B 

 


͕७ઓུD
1ʘ2 C C
B 

 


B 

 


φογϡ‫ߧۉ‬
φογϡ‫ߧۉ‬
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ






͜ͷಛੑؔ਺Λ༻͍ͯ
҆ఆू߹Λ‫ٻ‬ΊͯΈΑ͏
ਓήʔϜͳͷͰ҆ఆू߹͸ඞͣଘࡏ͠



͔ͭ͜ͷήʔϜ͸ίΞ͕ଘࡏ͢Δ


ίΞʹଐ͢Δ഑෼͸͢΂ͯ



҆ఆू߹ʢ഑෼ͷू߹ʣʹ‫·ؚ‬ΕΔ
v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2
v({1}) = v({2}) = v({3}) = 0
C(v) = {x ∈
𝒜
(v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1}
લճͷ໰୊ ͕७ઓུD
1ʘ2 C C
B 

 


B 

 


͕७ઓུD
1ʘ2 C C
B 

 


B 

 


φογϡ‫ߧۉ‬
φογϡ‫ߧۉ‬
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ






͜ͷಛੑؔ਺Λ༻͍ͯ
҆ఆू߹Λ‫ٻ‬ΊͯΈΑ͏
഑෼ 
 ͕


ίΞʹଐ͢Δ഑෼ʹࢧ഑͞ΕΔ͜ͱΛࣔ͢


͓ΑͼίΞʹ‫·ؚ‬ΕΔ഑෼




ͨͩ͠
 Λߟ͑Ε͹


	



	



ͱͳΓ
 ͸ ʹࢧ഑͞ΕΔ
v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2
v({1}) = v({2}) = v({3}) = 0
C(v) = {x ∈
𝒜
(v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1}
x = (x1, x2, x3), x2 + x3  2 4  x1 ≤ 6
S = {2,3}
y = (y1, y2, y3) = (4, x2 + ϵ, x3 + ϵ′

)
ϵ  0, ϵ′

 0, x2 + ϵ + x3 + ϵ′

= 2
v({2,3}) = 2 ≥ 2 = y2 + y3
yi  xi, ∀i ∈ {2,3}
x y
લճͷ໰୊ ͕७ઓུD
1ʘ2 C C
B 

 


B 

 


͕७ઓུD
1ʘ2 C C
B 

 


B 

 


φογϡ‫ߧۉ‬
φογϡ‫ߧۉ‬
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ
഑෼ ͕ఏ‫ܞ‬ Ͱ࿫͑Δ
y {2,3}
ఏ‫ܞ‬ ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸


഑෼ ͕๬·͍͠
{2,3}
y






͜ͷಛੑؔ਺Λ༻͍ͯ
҆ఆू߹Λ‫ٻ‬ΊͯΈΑ͏
഑෼ 
 ͕


ίΞʹଐ͢Δ഑෼ʹࢧ഑͞ΕΔ͜ͱΛࣔ͢


͓ΑͼίΞʹ‫·ؚ‬ΕΔ഑෼




ͨͩ͠
 Λߟ͑Ε͹


	



	



ͱͳΓ
 ͸ ʹࢧ഑͞ΕΔ
v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2
v({1}) = v({2}) = v({3}) = 0
C(v) = {x ∈
𝒜
(v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1}
x′

= (x′

1, x′

2, x′

3), x′

1 + x′

3  3 3  x′

2 ≤ 6
S = {1,3}
y = (y1, y2, y3) = (x′

1 + ϵ, 3, x′

3 + ϵ′

)
ϵ  0, ϵ′

 0, x′

1 + ϵ + x′

3 + ϵ′

= 3
v({1,3}) = 3 ≥ 3 = y1 + y3
yi  x′

i, ∀i ∈ {1,3}
x′

y
લճͷ໰୊ ͕७ઓུD
1ʘ2 C C
B 

 


B 

 


͕७ઓུD
1ʘ2 C C
B 

 


B 

 


φογϡ‫ߧۉ‬
φογϡ‫ߧۉ‬
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ
഑෼ ͕ఏ‫ܞ‬ Ͱ࿫͑Δ
y {1,3}
ఏ‫ܞ‬ ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸


഑෼ ͕๬·͍͠
{1,3}
y






͜ͷಛੑؔ਺Λ༻͍ͯ
҆ఆू߹Λ‫ٻ‬ΊͯΈΑ͏
഑෼ 
 ͕


ίΞʹଐ͢Δ഑෼ʹࢧ഑͞ΕΔ͜ͱΛࣔ͢


͓ΑͼίΞʹ‫·ؚ‬ΕΔ഑෼




ͨͩ͠
 Λߟ͑Ε͹


	



	



ͱͳΓ
 ͸ ʹࢧ഑͞ΕΔ
v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2
v({1}) = v({2}) = v({3}) = 0
C(v) = {x ∈
𝒜
(v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1}
x′

′

= (x′

′

1, x′

′

2, x′

′

3), x′

′

1 + x′

′

2  1 5  x′

′

3 ≤ 6
S = {1,2}
y = (y1, y2, y3) = (x′

′

1 + ϵ, x′

′

2 + ϵ′

,5)
ϵ  0, ϵ′

 0, x′

′

1 + ϵ + x′

′

2 + ϵ′

= 1
v({1,2}) = 1 ≥ 1 = y1 + y2
yi  x′

′

i , ∀i ∈ {1,2}
x′

′

y
લճͷ໰୊ ͕७ઓུD
1ʘ2 C C
B 

 


B 

 


͕७ઓུD
1ʘ2 C C
B 

 


B 

 


φογϡ‫ߧۉ‬
φογϡ‫ߧۉ‬
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ
഑෼ ͕ఏ‫ܞ‬ Ͱ࿫͑Δ
y {1,2}
ఏ‫ܞ‬ ʹ‫·ؚ‬ΕΔϓϨΠϠʔ͸


഑෼ ͕๬·͍͠
{1,2}
y






͜ͷಛੑؔ਺Λ༻͍ͯ
҆ఆू߹Λ‫ٻ‬ΊͯΈΑ͏


Ҏ্ͷٞ࿦ΑΓ
҆ఆू߹͸ίΞʹ‫·ؚ‬ΕΔ഑෼ͷू߹
v({1,2,3}) = 6 v({1,2}) = 1 v({1,3}) = 3 v({2,3}) = 2
v({1}) = v({2}) = v({3}) = 0
C(v) = {x ∈
𝒜
(v)|5 ≥ x3, 3 ≥ x2, 4 ≥ x1}
લճͷ໰୊ ͕७ઓུD
1ʘ2 C C
B 

 


B 

 


͕७ઓུD
1ʘ2 C C
B 

 


B 

 


φογϡ‫ߧۉ‬
φογϡ‫ߧۉ‬
1
2 3
x1 ≤ 4
x2 ≤ 3
x3 ≤ 5
ίΞ
҆ఆू߹
ήʔϜཧ࿦#4*$ԋश
҆ఆू߹Λ‫ٻ‬ΊΔ
࣍ճɿԋश

ゲーム理論BASIC 演習3 -安定集合を求める-