This document proposes a global and local structure of Siamese Convolution Neural Network (SCNN) to perform human re-identification in single-shot approaches. The network extracts features from global and local parts of input images. A decision fusion technique then combines the global and local features. Experimental results on the VIPeR dataset show the proposed method achieves a normalized Area Under Curve score of 95.75% without occlusion, outperforming using local or global features alone. With occlusion, the score is 77.5%, still better than alternatives. The method performs well for re-identification including in occlusion cases by leveraging both global and local information.