This document provides an introduction to group theory from a physicist's perspective. It defines what a group is, including properties like closure, associativity, identity, and inverse. Examples of important groups in physics are given, including finite groups like Zn and Sn, and continuous groups like SU(n), SO(n), and the Lorentz group. The document outlines topics like discrete and finite groups, representation of groups, Lie groups and algebras, and applications of specific groups like SU(2) and SU(3) to physics.