SLOPE OF A LINE
Objective:
Illustrates and finds the slope of a line given
two points, equation, and graph.
writes the linear equation
What is a Line?
• A line is the set of points forming a straight
path on a plane
• The slant (slope) between any two points on
a line is always equal
• A line on the Cartesian plane can be
described by a linear equation
x-axis
y-axis
Definition - Linear Equation
• Any equation that can be put into the form
Ax + By  C = 0, where A, B, and C are
Integers and A and B are not both 0, is called
a linear equation in two variables.
• The graph will be a straight line.
• The form Ax + By  C = 0 is called standard
form (Integer coefficients all on one side = 0)
Definition - Linear Equation
• The equation of a line describes all of the
points on the line
• The equation is the rule for any ordered pair
on the line
1. 3x + 2y – 8 = 0
(4, -2) is on the line
(5, 1) is not on the line
2. x – 7y + 2 = 0
(4, -2) is not on the line
(5, 1) is on the line
Examples:
Test the point by plugging the x and y into the equation
Slope
Slope describes the
direction of a line.
Guard against 0 in
the denominator
Slope
If x1  x2, the slope of the line
through the distinct points P1(x1, y1)
and P2(x2, y2) is:
1
2
1
2
x
x
y
y
x
in
change
y
in
change
run
rise
slope





Why is
this
needed
?
x-axis
y-axis
Find the slope between (-3, 6) and (5, 2)
Rise
Run
-4
8
-1
2
= =
(-3, 6)
(5, 2)
Calculate the slope between (-3, 6) and (5, 2)
1
2
1
2
x
x
y
y
m



)
3
-
(
)
5
(
)
6
(
)
2
(



m
8
4
-

2
1
-

x1 y1 x2 y2
We use the letter m
to represent slope
m
Find the Slopes
(5, -2)
(11, 2)
(3, 9)
1
2
1
2
x
x
y
y
m



3
11
9
2
1



m
Yellow
5
11
)
2
-
(
2
2



m
Blue
3
5
9
2
-
3



m
Red
8
7
-

3
2

2
11
-

Find the slope between (5, 4) and (5, 2).
1
2
1
2
x
x
y
y
m



)
5
(
)
5
(
)
4
(
)
2
(



m
0
2
-

STOP
This slope is undefined.
x1 y1 x2 y2
x
y
Find the slope between (5, 4) and (5, 2).
Rise
Run
-2
0
Undefined
= =
Find the slope between (5, 4) and (-3, 4).
1
2
1
2
x
x
y
y
m



)
5
(
)
3
-
(
)
4
(
)
4
(



m
8
-
0

This slope is zero.
x1 y1 x2 y2
0

x
y
Rise
Run
0
-8
Zero
= =
Find the slope between (5, 4) and (-3, 4).
From these results we
can see...
•The slope of a vertical
line is undefined.
•The slope of a
horizontal line is 0.
Find the slope of the line
4x - y = 8
)
0
(
)
2
(
)
8
-
(
)
0
(



m
2
8

Let x = 0 to
find the
y-intercept.
8
-
8
-
8
)
0
(
4




y
y
y Let y = 0 to
find the
x-intercept.
2
8
4
8
)
0
(
4




x
x
x
(0, -8) (2, 0)
4

First, find two points on the line
x1 y1 x2 y2
Find the slope of the line
4x  y = 8 Here is an easier way
Solve
for y.
8
4 
 y
x
8
4
-
- 
 x
y
8
4 
 x
y
When the equation is solved for y the
coefficient of the x is the slope.
We call this the slope-intercept form
y = mx + b
m is the slope and b is the y-intercept
x
y
Graph the line that goes through (1, -3) with
(1,-3)
4
3
-

m
Sign of the Slope
Which have a
positive slope?
Green
Blue
Which have a
negative slope?
Red
Light Blue
White
Undefined
Zero
Slope
Slope of Parallel Lines
• Two lines with the
same slope are parallel.
• Two parallel lines have
the same slope.
Are the two lines parallel?
L1: through (-2, 1) and (4, 5) and
L2: through (3, 0) and (0, -2)
)
0
(
)
3
(
)
2
-
(
)
0
(
2



m
)
2
-
(
)
4
(
)
1
(
)
5
(
1



m
6
4

3
2

3
2

2
1
2
1
L
L
m
m


This symbol means Parallel
x
y
Perpendicular Slopes
4
3
-
1 
m
3
4
2 
m
4
3
What can we say
about the intersection
of the two white lines?
Slopes of Perpendicular Lines
• If neither line is vertical then the slopes of
perpendicular lines are negative reciprocals.
• Lines with slopes that are negative reciprocals
are perpendicular.
• If the product of the slopes of two lines is -1
then the lines are perpendicular.
• Horizontal lines are perpendicular to vertical
lines.
Write parallel, perpendicular or neither for the
pair of lines that passes through (5, -9) and (3, 7)
and the line through (0, 2) and (8, 3).
)
5
(
)
3
(
)
9
-
(
)
7
(
1



m
)
0
(
)
8
(
)
2
(
)
3
(
2



m
2
-
16
 8
-

8
1
 





1
8
-






8
1
8
8
-
 1
-

2
1
2
1 1
-
L
L
m
m




This symbol means Perpendicular
Solve for the slope and graph
The Equation of a Line
Objectives
• Write the equation of a line, given its
slope and a point on the line.
• Write the equation of a line, given two
points on the line.
• Write the equation of a line given its
slope and y-intercept.
Objectives
• Find the slope and the y-intercept of a
line, given its equation.
• Write the equation of a line parallel or
perpendicular to a given line through a
given point.
Slope-intercept Form
Objective
Write the equation of a line, given its slope
and a point on the line.
y = mx + b
m is the slope and b is the y-intercept
Write the equation of the line
with slope m = 5 and y-int -3
Take the slope intercept form y = mx + b
Replace in the m and the b y = mx + b
y = 5x + -3
y = 5x – 3
Simplify
That’s all there is to it… for this easy question
Find the equation of the line
through (-2, 7) with slope m = 3
Take the slope intercept form y = mx + b
Replace in the y, m and x y = mx + b
7 = mx + b
x y m
7 = 3x + b
7 = 3(-2) + b
7 = -6 + b
Solve for b
7 + 6 = b
13 = b
Replace m and b back into
slope intercept form y = 3x + 13
Write an equation of the line
through (-1, 2) and (5, 7).
First calculate the slope.
b

 )
1
-
(
2 6
5
1
2
1
2
x
x
y
y
m



)
1
-
(
5
2
7



6
5

Now plug into y, m and x into
slope-intercept form.
(use either x, y point)
Solve for b
Replace back into slope-intercept form
b
mx
y 

b

 6
5
-
2
b

 6
5
2
b

6
17
6
17
6
5 
 x
y
Only replace
the m and b
Horizontal and
Vertical Lines
• If a is a constant,
the vertical line
though (a, b) has
equation x = a.
• If b is a constant,
the horizontal line
though ( a, b,) has
equation y = b.
(a, b)
Write the equation of the line
through (8, -2); m = 0
2
-

y
Slope = 0 means the line is horizontal
That’s all there is!
Find the slope and
y-intercept of
2x – 5y = 1
Solve for y and
then we will be
able to read it from
the answer.
1
5
2 
 y
x
y
x 5
1
2 

y
x 

5
1
5
2
5
1
x
5
2
y 

5
2

m
5
1
-
5 5 5
Slope: y-int:
Write an equation for the line
through (5, 7) parallel to 2x – 5y = 15.
5
2

m
15
5
2 
 y
x
y
x 5
15
2 

5
5
5
15
5
2 y
x


y
x 
 3
5
2
We know the slope and
we know a point.
)
7
,
5
(
5
2

m
b

 )
5
(
7 5
2 b
mx
y 

7 = 2 + b
7 – 2 = b
5 = b
5
5
2 
 x
y
Write an equation for the line
through (5, 7) parallel to 2x – 5y = 15.
3
5
2

 x
y
5
5
2

 x
y
Write an equation for the line
through (5, 7) parallel to 2x – 5y = 15.
15
5
2 
 y
x
The slope of the perpendicular.
• The slope of the perpendicular line is the
negative reciprocal of m
• Flip it over and change the sign.
3
2
Examples of slopes of perpendicular lines:
-2
5
1
2
7
-
2.4
Note: The product of perpendicular slopes is -1
2
3
1
5
= -5 -2
1 2
1

12
5
-7
2 7
2

What about the special cases?
• What is the slope of
the line perpendicular
to a horizontal line?
1
0

Well, the slope of a
horizontal line is 0…
So what’s the negative
reciprocal of 0?
0
0
1
Anything over
zero is undefined
The slope of a line
 to a horizontal
line is undefined.
Write an equation in for the line through (-8, 3)
perpendicular to 2x – 3y = 10.
We know the perpendicular
slope and we know a point.
3
2

slope
)
3
,
8
-
(
2
3
-
2 
m
Isolate y to find the slope: 2x – 3y = 10
2x = 10 + 3y
2x – 10 = 3y
3 3 3
b

 )
8
-
(
3 2
3
- b
mx
y 

3 = 12 + b
3 – 12 = b
-9 = b
9
2
-3
: 
 x
y
answer
Write an equation in standard form for the
line through (-8, 3) perpendicular to
2x - 3y = 10.
3
10
3
2

 x
y
9
2
3
-

 x
y
Summary
b
mx
y 

• Slope-intercept form
• y is isolated
• Slope is m.
• y-intercept is (0, b)
Summary
• Vertical line
– Slope is undefined
– x-intercept is (a, 0)
– no y-intercept
• Horizontal line
– Slope is 0.
– y-intercept is (0, b)
– no x-intercept
a
x 
b
y 

Grade 8-Math-Q1-Week-5-Slope-of-a-Line.ppt

  • 1.
    SLOPE OF ALINE Objective: Illustrates and finds the slope of a line given two points, equation, and graph. writes the linear equation
  • 2.
    What is aLine? • A line is the set of points forming a straight path on a plane • The slant (slope) between any two points on a line is always equal • A line on the Cartesian plane can be described by a linear equation x-axis y-axis
  • 3.
    Definition - LinearEquation • Any equation that can be put into the form Ax + By  C = 0, where A, B, and C are Integers and A and B are not both 0, is called a linear equation in two variables. • The graph will be a straight line. • The form Ax + By  C = 0 is called standard form (Integer coefficients all on one side = 0)
  • 4.
    Definition - LinearEquation • The equation of a line describes all of the points on the line • The equation is the rule for any ordered pair on the line 1. 3x + 2y – 8 = 0 (4, -2) is on the line (5, 1) is not on the line 2. x – 7y + 2 = 0 (4, -2) is not on the line (5, 1) is on the line Examples: Test the point by plugging the x and y into the equation
  • 5.
  • 6.
    Guard against 0in the denominator Slope If x1  x2, the slope of the line through the distinct points P1(x1, y1) and P2(x2, y2) is: 1 2 1 2 x x y y x in change y in change run rise slope      Why is this needed ?
  • 7.
    x-axis y-axis Find the slopebetween (-3, 6) and (5, 2) Rise Run -4 8 -1 2 = = (-3, 6) (5, 2)
  • 8.
    Calculate the slopebetween (-3, 6) and (5, 2) 1 2 1 2 x x y y m    ) 3 - ( ) 5 ( ) 6 ( ) 2 (    m 8 4 -  2 1 -  x1 y1 x2 y2 We use the letter m to represent slope m
  • 9.
    Find the Slopes (5,-2) (11, 2) (3, 9) 1 2 1 2 x x y y m    3 11 9 2 1    m Yellow 5 11 ) 2 - ( 2 2    m Blue 3 5 9 2 - 3    m Red 8 7 -  3 2  2 11 - 
  • 10.
    Find the slopebetween (5, 4) and (5, 2). 1 2 1 2 x x y y m    ) 5 ( ) 5 ( ) 4 ( ) 2 (    m 0 2 -  STOP This slope is undefined. x1 y1 x2 y2
  • 11.
    x y Find the slopebetween (5, 4) and (5, 2). Rise Run -2 0 Undefined = =
  • 12.
    Find the slopebetween (5, 4) and (-3, 4). 1 2 1 2 x x y y m    ) 5 ( ) 3 - ( ) 4 ( ) 4 (    m 8 - 0  This slope is zero. x1 y1 x2 y2 0 
  • 13.
    x y Rise Run 0 -8 Zero = = Find theslope between (5, 4) and (-3, 4).
  • 14.
    From these resultswe can see... •The slope of a vertical line is undefined. •The slope of a horizontal line is 0.
  • 15.
    Find the slopeof the line 4x - y = 8 ) 0 ( ) 2 ( ) 8 - ( ) 0 (    m 2 8  Let x = 0 to find the y-intercept. 8 - 8 - 8 ) 0 ( 4     y y y Let y = 0 to find the x-intercept. 2 8 4 8 ) 0 ( 4     x x x (0, -8) (2, 0) 4  First, find two points on the line x1 y1 x2 y2
  • 16.
    Find the slopeof the line 4x  y = 8 Here is an easier way Solve for y. 8 4   y x 8 4 - -   x y 8 4   x y When the equation is solved for y the coefficient of the x is the slope. We call this the slope-intercept form y = mx + b m is the slope and b is the y-intercept
  • 17.
    x y Graph the linethat goes through (1, -3) with (1,-3) 4 3 -  m
  • 18.
    Sign of theSlope Which have a positive slope? Green Blue Which have a negative slope? Red Light Blue White Undefined Zero Slope
  • 19.
    Slope of ParallelLines • Two lines with the same slope are parallel. • Two parallel lines have the same slope.
  • 20.
    Are the twolines parallel? L1: through (-2, 1) and (4, 5) and L2: through (3, 0) and (0, -2) ) 0 ( ) 3 ( ) 2 - ( ) 0 ( 2    m ) 2 - ( ) 4 ( ) 1 ( ) 5 ( 1    m 6 4  3 2  3 2  2 1 2 1 L L m m   This symbol means Parallel
  • 21.
    x y Perpendicular Slopes 4 3 - 1  m 3 4 2 m 4 3 What can we say about the intersection of the two white lines?
  • 22.
    Slopes of PerpendicularLines • If neither line is vertical then the slopes of perpendicular lines are negative reciprocals. • Lines with slopes that are negative reciprocals are perpendicular. • If the product of the slopes of two lines is -1 then the lines are perpendicular. • Horizontal lines are perpendicular to vertical lines.
  • 23.
    Write parallel, perpendicularor neither for the pair of lines that passes through (5, -9) and (3, 7) and the line through (0, 2) and (8, 3). ) 5 ( ) 3 ( ) 9 - ( ) 7 ( 1    m ) 0 ( ) 8 ( ) 2 ( ) 3 ( 2    m 2 - 16  8 -  8 1        1 8 -       8 1 8 8 -  1 -  2 1 2 1 1 - L L m m     This symbol means Perpendicular
  • 24.
    Solve for theslope and graph
  • 25.
  • 26.
    Objectives • Write theequation of a line, given its slope and a point on the line. • Write the equation of a line, given two points on the line. • Write the equation of a line given its slope and y-intercept.
  • 27.
    Objectives • Find theslope and the y-intercept of a line, given its equation. • Write the equation of a line parallel or perpendicular to a given line through a given point.
  • 28.
    Slope-intercept Form Objective Write theequation of a line, given its slope and a point on the line. y = mx + b m is the slope and b is the y-intercept
  • 29.
    Write the equationof the line with slope m = 5 and y-int -3 Take the slope intercept form y = mx + b Replace in the m and the b y = mx + b y = 5x + -3 y = 5x – 3 Simplify That’s all there is to it… for this easy question
  • 30.
    Find the equationof the line through (-2, 7) with slope m = 3 Take the slope intercept form y = mx + b Replace in the y, m and x y = mx + b 7 = mx + b x y m 7 = 3x + b 7 = 3(-2) + b 7 = -6 + b Solve for b 7 + 6 = b 13 = b Replace m and b back into slope intercept form y = 3x + 13
  • 31.
    Write an equationof the line through (-1, 2) and (5, 7). First calculate the slope. b   ) 1 - ( 2 6 5 1 2 1 2 x x y y m    ) 1 - ( 5 2 7    6 5  Now plug into y, m and x into slope-intercept form. (use either x, y point) Solve for b Replace back into slope-intercept form b mx y   b   6 5 - 2 b   6 5 2 b  6 17 6 17 6 5   x y Only replace the m and b
  • 32.
    Horizontal and Vertical Lines •If a is a constant, the vertical line though (a, b) has equation x = a. • If b is a constant, the horizontal line though ( a, b,) has equation y = b. (a, b)
  • 33.
    Write the equationof the line through (8, -2); m = 0 2 -  y Slope = 0 means the line is horizontal That’s all there is!
  • 34.
    Find the slopeand y-intercept of 2x – 5y = 1 Solve for y and then we will be able to read it from the answer. 1 5 2   y x y x 5 1 2   y x   5 1 5 2 5 1 x 5 2 y   5 2  m 5 1 - 5 5 5 Slope: y-int:
  • 35.
    Write an equationfor the line through (5, 7) parallel to 2x – 5y = 15. 5 2  m 15 5 2   y x y x 5 15 2   5 5 5 15 5 2 y x   y x   3 5 2
  • 36.
    We know theslope and we know a point. ) 7 , 5 ( 5 2  m b   ) 5 ( 7 5 2 b mx y   7 = 2 + b 7 – 2 = b 5 = b 5 5 2   x y Write an equation for the line through (5, 7) parallel to 2x – 5y = 15.
  • 37.
    3 5 2   x y 5 5 2   x y Writean equation for the line through (5, 7) parallel to 2x – 5y = 15. 15 5 2   y x
  • 38.
    The slope ofthe perpendicular. • The slope of the perpendicular line is the negative reciprocal of m • Flip it over and change the sign. 3 2 Examples of slopes of perpendicular lines: -2 5 1 2 7 - 2.4 Note: The product of perpendicular slopes is -1 2 3 1 5 = -5 -2 1 2 1  12 5 -7 2 7 2 
  • 39.
    What about thespecial cases? • What is the slope of the line perpendicular to a horizontal line? 1 0  Well, the slope of a horizontal line is 0… So what’s the negative reciprocal of 0? 0 0 1 Anything over zero is undefined The slope of a line  to a horizontal line is undefined.
  • 40.
    Write an equationin for the line through (-8, 3) perpendicular to 2x – 3y = 10. We know the perpendicular slope and we know a point. 3 2  slope ) 3 , 8 - ( 2 3 - 2  m Isolate y to find the slope: 2x – 3y = 10 2x = 10 + 3y 2x – 10 = 3y 3 3 3 b   ) 8 - ( 3 2 3 - b mx y   3 = 12 + b 3 – 12 = b -9 = b 9 2 -3 :   x y answer
  • 41.
    Write an equationin standard form for the line through (-8, 3) perpendicular to 2x - 3y = 10. 3 10 3 2   x y 9 2 3 -   x y
  • 42.
    Summary b mx y   • Slope-interceptform • y is isolated • Slope is m. • y-intercept is (0, b)
  • 43.
    Summary • Vertical line –Slope is undefined – x-intercept is (a, 0) – no y-intercept • Horizontal line – Slope is 0. – y-intercept is (0, b) – no x-intercept a x  b y 