This document presents two approaches for improving robustness in medical image segmentation using generative adversarial networks (GANs). The first approach, UltraGAN, uses a GAN to enhance the quality of ultrasound images and improve robustness to low image quality. The second approach, MedRobGAN, generates adversarial medical image examples to improve robustness against adversarial attacks. Both methods are evaluated on medical segmentation tasks to validate their effectiveness in improving robustness.