SlideShare a Scribd company logo
1 of 24
Download to read offline
Global EnvironmentalMEMS Sensors (GEMS): Revolutionary Observing Technology for the 21st CenturyNIAC Phase I CP-01-02John Manobianco, Randolph J. Evans, Jonathan L. Case, David A. ShortENSCO, Inc. KristoferS.J. PisterUniversity of California BerkeleyOctober 2002
Briefing Outline 
•Introduction / definitions 
•Description 
•Motivation 
•Major feasibility issues 
•Phase II plans 
•Summary
What are MEMS? 
•Micro Electro Mechanical Systems (MEMS) 
•Micron-sized machines + IC 
•Sample applications 
< 1 cm
GEMS Concept 
Integrated System of airborne probes 
•MEMS sensors measure T, RH, P, & V(based on changes in probe position) 
•Each probe self contained with power source to provide sensing, navigation, & communication 
•Mobile, wireless network with communication among probes & with remote in situ stations, satellites 
Provide quantum leap in our understanding of the Earth’s atmosphere 
Improve forecast accuracy well beyond current capability
Motivation 
•~$2 Trillion of U.S. economy is weather sensitive 
•Produce observing capabilities commensurate with advances in atmospheric models 
•Overcome limitations of remote sensingTropical Storm Allison(June 2001) Hurricane Floyd(Sept. 1999) •Improve density / distribution of in situ obsSept. 1983Jan. 1986Shuttle Challenger
Major Feasibility IssuesProbe designPowerNavigationCommunicationNetworkingSensorEnvironmentalDeploymentDispersionScavengingData rateData impact
Probe design 
•Sensing 
•Computation 
•Communication 
•Power
Moore’s Law, take 2 
•Nanochipson a dime (Prof. Steve Smith, EECS)
Smart Dust project
Smart Dust control chip13 stateFSMcontrollerADC100kS/s 2uWambient lightsensorPhotodiodeSensor inputOscillatorPower inputPowerTX Drivers0-100kbpsCCR or diodeOptical Receiver1 Mbps, 11uW 330μm 1mmSensing: 20 pJ/sampleComputation: 10 pJ/instructionCommunication: 10 pJ/bit (optical) 1000 pJ/bit (RF)
Solar Cell ArrayCCRXLCMOSIC4.8 mm3total displaced volumeSENSORSADCFSMRECEIVERTRANSMITTERSOLAR POWER1V1V1V2V3-8VPHOTO8-bits375 kbps175 bps1-2V 
OPTICAL IN 
OPTICAL OUT
~8mm3laser scanner 
Two 4-bit mechanical DACscontrol mirror scan angles. 
~6 degrees azimuth, 3 elevation 
1Mbps
RF probe –in fab 
•CMOS ASIC 
–8 bit microcontroller 
–Custom interface circuits 
•4 external componentsinductorcrystalantenna~2 mm^2 ASICuPSRAMRadioADCRHAmpTemp 
~$1battery
Technology Forecast 
•1 year -$50 node 
–3 cc, 1 month lifetime (battery) 
–1’ helium balloon deployment 
–3 km communication range 
–Temp, pressure, humidity 
•3 years -$5/node 
–1cc, 3 month lifetime (battery) 
–Range/localization 
–Gas sensing 
•10 years -$1/node 
–10 mm3, 1month lifetime (Aluminum/air battery) 
–Integrated bouyancycontrol 
•20 years -$0.10/node 
–1mm, indefinite lifetime (solar + hydrogen fuel cell) 
–GPS/satellite comm
Simulation Tools 
•Numerical weather prediction model 
–Advanced Regional Prediction System (ARPS) 
•Navier-Stokes equations for atmospheric flow 
•Comprehensive physics 
–Virtual weather scenarios 
–Variable spatial & temporal resolution 
•Lagrangianparticle model 
–Probe deployment & dispersion 
–Simulate turbulence, terminal velocity, etc.
Observing System Simulation Experiments (OSSE) 
15 June 2001 
16 June 20010 3 6 9 12 15 18 21 0 
Nature run (“Truth”) 
Simulated observations 
Control forecast 
Data insertion window (assimilate simulated obs) 
Experiment 1 
Experiments 2, 3, …(Variations on Exp. 1) 
Compare with nature & control run to assess data impact
Simulation Domains 
Deployment strategy: random in 3D 
Deployment period: 6 h from 1200-1800 UTC 
Initial mean separation distance:3.5 ± 1.3 km 
Terminal velocity: 0.08 m s-1 
Initial 3D Probe Distribution> 15 km12.5–15 km10–12.5 km7.5–10 km5–7.5 km2.5–5 km< 2.5 km
Probe Deployment StatisticsProbe Distribution by Time & AltitudeDeployment Domain020000400006000080000100000024681012Time (hours) Number of Active Probes 14-15 km13-14 km12-13 km11-12 km10-11 km9-10 km8-9 km7-8 km6-7 km5-6 km4-5 km3-4 km2-3 km1-2 kmProbe Distribution by Time & AltitudeAssimilation Domain0500010000150002000025000024681012Time (hours) Number of Active Probes 14-15 km13-14 km12-13 km11-12 km10-11 km9-10 km8-9 km7-8 km6-7 km5-6 km4-5 km3-4 km2-3 km1-2 km
Simulation Results2-h Cumulative Precipitation (mm) 16-18Z18-20Z20-18Z22-00Z 
Nature 
Control 
Exp. 1
OSSE StatisticsGrid-Averaged 2-hour Precipitation 00.40.81.21.6212-1414-1616-1818-2020-2222-00Hours Precipitation (mm) NatureControlExp. 1Exp. 2 (No RH) Exp. 3 (No V) Exp. 4 (No T) Exp. 5 (Error) Exp. 6 (50% probes)
Hemispheric Simulation 
•Simulated release from stratospheric balloons every 10olat x 10o lon 
•Deployment: 1 probe every 6 min for 4 days (18-km altitude) 
•Terminal velocity: 0.01 m s-1 
•Simulation: 10.5 days (15-25 June 2001) 
•Total # of probes ~ 200,000 
> 15 km 
12.5–15 km 
10–12.5 km 
7.5–10 km 
5–7.5 km 
2.5–5 km 
< 2.5 km
Phase II Plan 
•Study major feasibility issues 
–Explore multi-dimensional parameter space 
•MEMS & meteorological disciplines 
•System design & trade-offs 
•Experimentation as appropriate / practical 
–Develop detailed cost-benefit analysis 
•Projected per unit & deployment cost 
•Comparisons with future observing systems 
–Continue extensive use of simulation 
•Expand / enhance OSSEsto study data impact 
•Study probe deployment, dispersion scenarios 
•Develop technology roadmap & identify enabling technologies 
•Continue building advocacy for sponsorship after Phase II
Summary 
•Advanced concept description 
–Mobile network of wireless, micron-scale airborne probes 
•Define major feasibility issues 
–Multi-dimensional parameter space 
•MEMS / Engineering 
•Meteorology 
•Phase I results & Phase II plans
Acknowledgments 
•NASA Institute for Advanced Concepts 
–Phase I funding 
•NASA Kennedy Space Center Weather Office 
–Dr. Francis Merceret–Chief, Applied Meteorology Unit 
–Access to 32-processor LINUX cluster used for ARPS simulations 
•Center for Analysis and Prediction of Storms – University of Oklahoma 
manobianco.john@ensco.com

More Related Content

What's hot

Ground Penetrating Radar : Basic and Applications for Civil Engineering
Ground Penetrating Radar : Basic and Applications for Civil EngineeringGround Penetrating Radar : Basic and Applications for Civil Engineering
Ground Penetrating Radar : Basic and Applications for Civil EngineeringKorea Expressway Corporation
 
Gpr seminar by emmaual
Gpr seminar by emmaualGpr seminar by emmaual
Gpr seminar by emmaualemmanualroy
 
Ground Penetrating Radar
Ground Penetrating RadarGround Penetrating Radar
Ground Penetrating RadarVARUN KUMAR
 
A geomatics approach to the interpretation of Ground Penetrating Radar (GPR)
A geomatics approach to the interpretation of Ground Penetrating Radar (GPR)A geomatics approach to the interpretation of Ground Penetrating Radar (GPR)
A geomatics approach to the interpretation of Ground Penetrating Radar (GPR)Stuart Glenday
 
ground penetrating radar
ground penetrating radarground penetrating radar
ground penetrating radarGauravate
 
Optimising the use of Ground Penetrating Radar(GPR) for quality control of Pa...
Optimising the use of Ground Penetrating Radar(GPR) for quality control of Pa...Optimising the use of Ground Penetrating Radar(GPR) for quality control of Pa...
Optimising the use of Ground Penetrating Radar(GPR) for quality control of Pa...Himanshu Rao
 
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptxIGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptxgrssieee
 
iono_statmodel_final-meyer.ppt
iono_statmodel_final-meyer.pptiono_statmodel_final-meyer.ppt
iono_statmodel_final-meyer.pptgrssieee
 
Ground penetrating radar (nio)
Ground penetrating radar (nio)Ground penetrating radar (nio)
Ground penetrating radar (nio)Sabna Thilakan
 
GROUND PENETRATING RADAR(GPR) ppt
GROUND PENETRATING RADAR(GPR) ppt GROUND PENETRATING RADAR(GPR) ppt
GROUND PENETRATING RADAR(GPR) ppt Himanshu Yadav
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORgrssieee
 
Application of Ground Penetrating Radar in Subsurface mapping
Application of Ground Penetrating Radar in Subsurface mapping Application of Ground Penetrating Radar in Subsurface mapping
Application of Ground Penetrating Radar in Subsurface mapping Dr. Rajesh P Barnwal
 
Gpr application
Gpr applicationGpr application
Gpr applicationVinay c
 
Satellite Link Measurements
Satellite Link MeasurementsSatellite Link Measurements
Satellite Link Measurementsbjp4642
 
Identify the possibility of predication of seismic activity through the ionos...
Identify the possibility of predication of seismic activity through the ionos...Identify the possibility of predication of seismic activity through the ionos...
Identify the possibility of predication of seismic activity through the ionos...ashrafrateb1985
 
Humanitarian Demining with Ultra Wide Band Ground Penetrating Radar
Humanitarian Demining with Ultra Wide Band Ground Penetrating RadarHumanitarian Demining with Ultra Wide Band Ground Penetrating Radar
Humanitarian Demining with Ultra Wide Band Ground Penetrating Radaralvaromunozmayordomo
 
Soil and EM monitoring presentation 110110
Soil and EM monitoring presentation 110110Soil and EM monitoring presentation 110110
Soil and EM monitoring presentation 110110DART Project
 

What's hot (20)

Ground Penetrating Radar : Basic and Applications for Civil Engineering
Ground Penetrating Radar : Basic and Applications for Civil EngineeringGround Penetrating Radar : Basic and Applications for Civil Engineering
Ground Penetrating Radar : Basic and Applications for Civil Engineering
 
Gpr seminar by emmaual
Gpr seminar by emmaualGpr seminar by emmaual
Gpr seminar by emmaual
 
Ground Penetrating Radar
Ground Penetrating RadarGround Penetrating Radar
Ground Penetrating Radar
 
Gpr
GprGpr
Gpr
 
A geomatics approach to the interpretation of Ground Penetrating Radar (GPR)
A geomatics approach to the interpretation of Ground Penetrating Radar (GPR)A geomatics approach to the interpretation of Ground Penetrating Radar (GPR)
A geomatics approach to the interpretation of Ground Penetrating Radar (GPR)
 
Land mine ppt
Land mine pptLand mine ppt
Land mine ppt
 
ground penetrating radar
ground penetrating radarground penetrating radar
ground penetrating radar
 
Optimising the use of Ground Penetrating Radar(GPR) for quality control of Pa...
Optimising the use of Ground Penetrating Radar(GPR) for quality control of Pa...Optimising the use of Ground Penetrating Radar(GPR) for quality control of Pa...
Optimising the use of Ground Penetrating Radar(GPR) for quality control of Pa...
 
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptxIGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
IGARSS11_Atmos_Suite_MIS_TH1_T07_5.pptx
 
iono_statmodel_final-meyer.ppt
iono_statmodel_final-meyer.pptiono_statmodel_final-meyer.ppt
iono_statmodel_final-meyer.ppt
 
Ground penetrating radar (nio)
Ground penetrating radar (nio)Ground penetrating radar (nio)
Ground penetrating radar (nio)
 
GROUND PENETRATING RADAR(GPR) ppt
GROUND PENETRATING RADAR(GPR) ppt GROUND PENETRATING RADAR(GPR) ppt
GROUND PENETRATING RADAR(GPR) ppt
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATORSIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
 
Application of Ground Penetrating Radar in Subsurface mapping
Application of Ground Penetrating Radar in Subsurface mapping Application of Ground Penetrating Radar in Subsurface mapping
Application of Ground Penetrating Radar in Subsurface mapping
 
Gpr application
Gpr applicationGpr application
Gpr application
 
Satellite Link Measurements
Satellite Link MeasurementsSatellite Link Measurements
Satellite Link Measurements
 
Identify the possibility of predication of seismic activity through the ionos...
Identify the possibility of predication of seismic activity through the ionos...Identify the possibility of predication of seismic activity through the ionos...
Identify the possibility of predication of seismic activity through the ionos...
 
Humanitarian Demining with Ultra Wide Band Ground Penetrating Radar
Humanitarian Demining with Ultra Wide Band Ground Penetrating RadarHumanitarian Demining with Ultra Wide Band Ground Penetrating Radar
Humanitarian Demining with Ultra Wide Band Ground Penetrating Radar
 
Sabaghy_Workshop
Sabaghy_WorkshopSabaghy_Workshop
Sabaghy_Workshop
 
Soil and EM monitoring presentation 110110
Soil and EM monitoring presentation 110110Soil and EM monitoring presentation 110110
Soil and EM monitoring presentation 110110
 

Similar to Gems

NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.pptNineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.pptgrssieee
 
The MU-RAY project - PhD_defence
The MU-RAY project - PhD_defenceThe MU-RAY project - PhD_defence
The MU-RAY project - PhD_defenceLuigi Cimmino
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画Toshihiro FUJII
 
The Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model DataThe Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model DataSiri Jodha Singh Khalsa
 
Boyd - High Speed Monitoring
Boyd - High Speed MonitoringBoyd - High Speed Monitoring
Boyd - High Speed MonitoringMatthew Boyd
 
Mars Geophysical Lander Proposal Authorization Review
Mars Geophysical Lander Proposal Authorization ReviewMars Geophysical Lander Proposal Authorization Review
Mars Geophysical Lander Proposal Authorization ReviewBrian Shiro
 
The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM)
The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM)The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM)
The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM)eimgreece
 
Iloa ngizani2020
Iloa ngizani2020Iloa ngizani2020
Iloa ngizani2020ILOAHawaii
 
Distributed Data Processing using Spark by Panos Labropoulos_and Sarod Yataw...
Distributed Data Processing using Spark by  Panos Labropoulos_and Sarod Yataw...Distributed Data Processing using Spark by  Panos Labropoulos_and Sarod Yataw...
Distributed Data Processing using Spark by Panos Labropoulos_and Sarod Yataw...Spark Summit
 
Wireless power transmission technologies for solar power satellite
Wireless power transmission technologies for solar power satelliteWireless power transmission technologies for solar power satellite
Wireless power transmission technologies for solar power satelliteRaviGhael
 
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptx
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptxfr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptx
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptxgrssieee
 

Similar to Gems (20)

842 manobianco
842 manobianco842 manobianco
842 manobianco
 
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.pptNineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
NineYearsofAtmosphericRemoteSensingwithSCIAMACHY-InstrumentPerformance.ppt
 
The MU-RAY project - PhD_defence
The MU-RAY project - PhD_defenceThe MU-RAY project - PhD_defence
The MU-RAY project - PhD_defence
 
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
FAST実験6:新型大気蛍光望遠鏡による観測報告とピエールオージェ観測所への設置計画
 
Orbital Debris Mapping
Orbital Debris MappingOrbital Debris Mapping
Orbital Debris Mapping
 
The Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model DataThe Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model Data
 
61 boyd high_speed_monitoring
61 boyd high_speed_monitoring61 boyd high_speed_monitoring
61 boyd high_speed_monitoring
 
Boyd - High Speed Monitoring
Boyd - High Speed MonitoringBoyd - High Speed Monitoring
Boyd - High Speed Monitoring
 
Mars Geophysical Lander Proposal Authorization Review
Mars Geophysical Lander Proposal Authorization ReviewMars Geophysical Lander Proposal Authorization Review
Mars Geophysical Lander Proposal Authorization Review
 
The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM)
The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM)The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM)
The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM)
 
Iloa ngizani2020
Iloa ngizani2020Iloa ngizani2020
Iloa ngizani2020
 
Sat fc j-intro_mw_remotesensing
Sat fc j-intro_mw_remotesensingSat fc j-intro_mw_remotesensing
Sat fc j-intro_mw_remotesensing
 
942 bekey[2]
942 bekey[2]942 bekey[2]
942 bekey[2]
 
Gps
GpsGps
Gps
 
Distributed Data Processing using Spark by Panos Labropoulos_and Sarod Yataw...
Distributed Data Processing using Spark by  Panos Labropoulos_and Sarod Yataw...Distributed Data Processing using Spark by  Panos Labropoulos_and Sarod Yataw...
Distributed Data Processing using Spark by Panos Labropoulos_and Sarod Yataw...
 
Wireless power transmission technologies for solar power satellite
Wireless power transmission technologies for solar power satelliteWireless power transmission technologies for solar power satellite
Wireless power transmission technologies for solar power satellite
 
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptx
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptxfr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptx
fr2.t03.5.2-micron IPDA Presentation at IGARSS-2011-Final-Revised-1.pptx
 
Gps
GpsGps
Gps
 
1059 maise[2]
1059 maise[2]1059 maise[2]
1059 maise[2]
 
CAMS GS Global Analyses
CAMS GS Global Analyses  CAMS GS Global Analyses
CAMS GS Global Analyses
 

More from Clifford Stone (20)

Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 
Xray telescopeconcept
Xray telescopeconceptXray telescopeconcept
Xray telescopeconcept
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
Wpafb blue bookdocuments
Wpafb blue bookdocumentsWpafb blue bookdocuments
Wpafb blue bookdocuments
 
What gov knows_about_ufos
What gov knows_about_ufosWhat gov knows_about_ufos
What gov knows_about_ufos
 
Welcome oct02
Welcome oct02Welcome oct02
Welcome oct02
 
Weather jun02
Weather jun02Weather jun02
Weather jun02
 
Wassersug richard[1]
Wassersug richard[1]Wassersug richard[1]
Wassersug richard[1]
 
Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952Washington, d.c., jul 26 27, 1952
Washington, d.c., jul 26 27, 1952
 
Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952Wash dc jul 19 to 20 1952
Wash dc jul 19 to 20 1952
 
Vol4ch03
Vol4ch03Vol4ch03
Vol4ch03
 
Vol4ch02
Vol4ch02Vol4ch02
Vol4ch02
 
Vol4ch01
Vol4ch01Vol4ch01
Vol4ch01
 
Vol3ch16
Vol3ch16Vol3ch16
Vol3ch16
 
Vol3ch14
Vol3ch14Vol3ch14
Vol3ch14
 
Vol3ch13
Vol3ch13Vol3ch13
Vol3ch13
 
Vol3ch12
Vol3ch12Vol3ch12
Vol3ch12
 
Vol3ch11
Vol3ch11Vol3ch11
Vol3ch11
 
Vol3ch10
Vol3ch10Vol3ch10
Vol3ch10
 
Vol3ch09
Vol3ch09Vol3ch09
Vol3ch09
 

Gems

  • 1. Global EnvironmentalMEMS Sensors (GEMS): Revolutionary Observing Technology for the 21st CenturyNIAC Phase I CP-01-02John Manobianco, Randolph J. Evans, Jonathan L. Case, David A. ShortENSCO, Inc. KristoferS.J. PisterUniversity of California BerkeleyOctober 2002
  • 2. Briefing Outline •Introduction / definitions •Description •Motivation •Major feasibility issues •Phase II plans •Summary
  • 3. What are MEMS? •Micro Electro Mechanical Systems (MEMS) •Micron-sized machines + IC •Sample applications < 1 cm
  • 4. GEMS Concept Integrated System of airborne probes •MEMS sensors measure T, RH, P, & V(based on changes in probe position) •Each probe self contained with power source to provide sensing, navigation, & communication •Mobile, wireless network with communication among probes & with remote in situ stations, satellites Provide quantum leap in our understanding of the Earth’s atmosphere Improve forecast accuracy well beyond current capability
  • 5. Motivation •~$2 Trillion of U.S. economy is weather sensitive •Produce observing capabilities commensurate with advances in atmospheric models •Overcome limitations of remote sensingTropical Storm Allison(June 2001) Hurricane Floyd(Sept. 1999) •Improve density / distribution of in situ obsSept. 1983Jan. 1986Shuttle Challenger
  • 6. Major Feasibility IssuesProbe designPowerNavigationCommunicationNetworkingSensorEnvironmentalDeploymentDispersionScavengingData rateData impact
  • 7. Probe design •Sensing •Computation •Communication •Power
  • 8. Moore’s Law, take 2 •Nanochipson a dime (Prof. Steve Smith, EECS)
  • 10. Smart Dust control chip13 stateFSMcontrollerADC100kS/s 2uWambient lightsensorPhotodiodeSensor inputOscillatorPower inputPowerTX Drivers0-100kbpsCCR or diodeOptical Receiver1 Mbps, 11uW 330μm 1mmSensing: 20 pJ/sampleComputation: 10 pJ/instructionCommunication: 10 pJ/bit (optical) 1000 pJ/bit (RF)
  • 11. Solar Cell ArrayCCRXLCMOSIC4.8 mm3total displaced volumeSENSORSADCFSMRECEIVERTRANSMITTERSOLAR POWER1V1V1V2V3-8VPHOTO8-bits375 kbps175 bps1-2V OPTICAL IN OPTICAL OUT
  • 12. ~8mm3laser scanner Two 4-bit mechanical DACscontrol mirror scan angles. ~6 degrees azimuth, 3 elevation 1Mbps
  • 13. RF probe –in fab •CMOS ASIC –8 bit microcontroller –Custom interface circuits •4 external componentsinductorcrystalantenna~2 mm^2 ASICuPSRAMRadioADCRHAmpTemp ~$1battery
  • 14. Technology Forecast •1 year -$50 node –3 cc, 1 month lifetime (battery) –1’ helium balloon deployment –3 km communication range –Temp, pressure, humidity •3 years -$5/node –1cc, 3 month lifetime (battery) –Range/localization –Gas sensing •10 years -$1/node –10 mm3, 1month lifetime (Aluminum/air battery) –Integrated bouyancycontrol •20 years -$0.10/node –1mm, indefinite lifetime (solar + hydrogen fuel cell) –GPS/satellite comm
  • 15. Simulation Tools •Numerical weather prediction model –Advanced Regional Prediction System (ARPS) •Navier-Stokes equations for atmospheric flow •Comprehensive physics –Virtual weather scenarios –Variable spatial & temporal resolution •Lagrangianparticle model –Probe deployment & dispersion –Simulate turbulence, terminal velocity, etc.
  • 16. Observing System Simulation Experiments (OSSE) 15 June 2001 16 June 20010 3 6 9 12 15 18 21 0 Nature run (“Truth”) Simulated observations Control forecast Data insertion window (assimilate simulated obs) Experiment 1 Experiments 2, 3, …(Variations on Exp. 1) Compare with nature & control run to assess data impact
  • 17. Simulation Domains Deployment strategy: random in 3D Deployment period: 6 h from 1200-1800 UTC Initial mean separation distance:3.5 ± 1.3 km Terminal velocity: 0.08 m s-1 Initial 3D Probe Distribution> 15 km12.5–15 km10–12.5 km7.5–10 km5–7.5 km2.5–5 km< 2.5 km
  • 18. Probe Deployment StatisticsProbe Distribution by Time & AltitudeDeployment Domain020000400006000080000100000024681012Time (hours) Number of Active Probes 14-15 km13-14 km12-13 km11-12 km10-11 km9-10 km8-9 km7-8 km6-7 km5-6 km4-5 km3-4 km2-3 km1-2 kmProbe Distribution by Time & AltitudeAssimilation Domain0500010000150002000025000024681012Time (hours) Number of Active Probes 14-15 km13-14 km12-13 km11-12 km10-11 km9-10 km8-9 km7-8 km6-7 km5-6 km4-5 km3-4 km2-3 km1-2 km
  • 19. Simulation Results2-h Cumulative Precipitation (mm) 16-18Z18-20Z20-18Z22-00Z Nature Control Exp. 1
  • 20. OSSE StatisticsGrid-Averaged 2-hour Precipitation 00.40.81.21.6212-1414-1616-1818-2020-2222-00Hours Precipitation (mm) NatureControlExp. 1Exp. 2 (No RH) Exp. 3 (No V) Exp. 4 (No T) Exp. 5 (Error) Exp. 6 (50% probes)
  • 21. Hemispheric Simulation •Simulated release from stratospheric balloons every 10olat x 10o lon •Deployment: 1 probe every 6 min for 4 days (18-km altitude) •Terminal velocity: 0.01 m s-1 •Simulation: 10.5 days (15-25 June 2001) •Total # of probes ~ 200,000 > 15 km 12.5–15 km 10–12.5 km 7.5–10 km 5–7.5 km 2.5–5 km < 2.5 km
  • 22. Phase II Plan •Study major feasibility issues –Explore multi-dimensional parameter space •MEMS & meteorological disciplines •System design & trade-offs •Experimentation as appropriate / practical –Develop detailed cost-benefit analysis •Projected per unit & deployment cost •Comparisons with future observing systems –Continue extensive use of simulation •Expand / enhance OSSEsto study data impact •Study probe deployment, dispersion scenarios •Develop technology roadmap & identify enabling technologies •Continue building advocacy for sponsorship after Phase II
  • 23. Summary •Advanced concept description –Mobile network of wireless, micron-scale airborne probes •Define major feasibility issues –Multi-dimensional parameter space •MEMS / Engineering •Meteorology •Phase I results & Phase II plans
  • 24. Acknowledgments •NASA Institute for Advanced Concepts –Phase I funding •NASA Kennedy Space Center Weather Office –Dr. Francis Merceret–Chief, Applied Meteorology Unit –Access to 32-processor LINUX cluster used for ARPS simulations •Center for Analysis and Prediction of Storms – University of Oklahoma manobianco.john@ensco.com