States of Matter Particle vibration fluid motion rapid, random motion Rigid positions move past independent of each other ...
Phases and Transitions Sublimation Condensation Evaporation Melting Freezing
Intermolecular Forces <ul><li>Strongest = IONIC FORCES </li></ul><ul><li>High melting points </li></ul><ul><li>Oppositely ...
Dipole-Dipole Forces <ul><li>Dipole: contains both positively and negatively charged regions: </li></ul>
Hydrogen Bonding <ul><li>Special case of dipole-dipole forces </li></ul><ul><li>Causes water to have higher than expected ...
Water Properties <ul><li>Surface tension </li></ul>
Water Properties <ul><li>Capillary action </li></ul>
Boiling Points Molecule Boiling Point H 2 O 100°C H 2 S – 60.7 °C H 2 Se – 41°C H 2 Te – 2°C
Hydrogen Bonding <ul><li>Weak bond between H and electronegative atom: </li></ul><ul><li>Recall </li></ul>
Hydrogen Bonding
Hydrogen Bonding <ul><li>DNA </li></ul>
Dipole-Dipole Forces
London (Dispersion) Forces <ul><li>Weak attractions between non-polar </li></ul><ul><li>Increases with size of molecule  (...
London (Dispersion) Forces <ul><li>Weak attractions between non-polar </li></ul><ul><li>“ Temporary”  or instantaneous dip...
Intermolecular Forces <ul><li>IONIC  >>  Dipole – Dipole >> London </li></ul>
Intermolecular Forces <ul><li>Which intermolecular force is expected? </li></ul><ul><li>CH 4 </li></ul>
Intermolecular Forces <ul><li>Which intermolecular force is expected? </li></ul><ul><li>CH 4 </li></ul><ul><li>Non-polar c...
Intermolecular Forces <ul><li>Which intermolecular force is expected? </li></ul><ul><li>Butanol </li></ul><ul><li>CH 3 CH ...
Intermolecular Forces <ul><li>Which intermolecular force is expected? </li></ul><ul><li>Butanol </li></ul><ul><li>CH 3 CH ...
Energy of Phase Changes <ul><li>Energy is required for all phase changes </li></ul>
Phase Diagram (H 2 O)
Phase Diagram (CO 2 ) Triple Point Triple Point:  where all three phases co-exist (T, p)
Phase Diagrams (carbon)
Properties of Matter <ul><li>  Force </li></ul><ul><li>Pressure  =  area </li></ul><ul><li>  h  = 760 mm = 1 atm </li></ul...
Robert Boyle
Boyle’s Law <ul><li>For a gas at constant T and n </li></ul><ul><li>V and p are  inversely proportional   </li></ul><ul><l...
Charles’ Law <ul><li>At constant pressure, V/T = constant </li></ul>
Charles’ Law
Gay – Lussac’s Law <ul><li>In a constant volume: P/T = constant </li></ul>
Gay-Lussac’s Law
Combined Gas Law <ul><li>Boyle’s Law  pV  =  constant </li></ul><ul><li>Charles’ Law  V/T  = constant </li></ul><ul><li>Ga...
Combined Gas Law <ul><li>A sample of gas has a volume of 400 liters when its temperature is 20°C and its pressure is 300 m...
Combined Gas Law <ul><li>p 1 V 1   p 2 V 2 </li></ul><ul><li>T 1   =  T 2  T in Kelvin </li></ul><ul><li>(300/760 mm Hg)(4...
Combined Gas Law <ul><li>A sample of He gas has a volume of 250 mL at 456 torr and 25°C. At what temperature does this gas...
Combined Gas Law <ul><li>A sample of He gas has a volume of 250 mL at 456 torr and 25°C. At what temperature does this gas...
Combined Gas Law <ul><li>A sample of He gas has a volume of 250 mL at 456 torr and 25°C. At what temperature does this gas...
Ideal Gases <ul><li>Non-interacting </li></ul><ul><li>Point particles </li></ul><ul><li>Randomly moving with elastic  </li...
Ideal Gases <ul><li>Avogadro’s Law: </li></ul><ul><li>Equal volumes of gas contain the same number of molecules at the sam...
Ideal Gas Law <ul><li>p 1 V 1   =  constant  =  0.082 L atm  =  R </li></ul><ul><li>n T 1   K mole  </li></ul><ul><li>  = ...
Ideal Gas Law <ul><li>pV  =  nRT </li></ul><ul><li>How many moles of Helium are present in a balloon that has a volume of ...
Ideal Gas Law <ul><li>pV  =  nRT </li></ul><ul><li>How many moles of Helium are present in a balloon that has a volume of ...
Ideal Gas <ul><li>6.2 liters of an ideal gas are contained at 3.0 atm and 37 °C. How many moles of this gas are present? <...
Ideal Gas <ul><li>6.2 liters of an ideal gas are contained at 3.0 atm and 37 °C. How many moles of this gas are present? <...
Ideal Gases and Density
Density <ul><li>Gas density increases with molecular mass. </li></ul>
Density <ul><li>What is the density of NO 2  gas at 0.97 atm and 35°C? </li></ul><ul><li>MW = 46 g/mole </li></ul><ul><ul>...
Gas Diffusion <ul><li>Movement of particles from region of  </li></ul><ul><li>Higher density to lower density </li></ul>
Gas Diffusion <ul><li>Movement of particles from region of  </li></ul><ul><li>Higher density to lower density </li></ul><u...
Graham’s Law proportionality <ul><li>Rate of effusion inversely to square root of molar mass </li></ul><ul><li>Smaller mol...
Dalton’s Law <ul><li>PT  =  P1  +  P2 +  P3 + . . . . </li></ul><ul><li>Total pressure of a gas sample is the sun of the p...
Dalton’s Law <ul><li>A mixture of O 2 , CO 2  and N 2  has a p T  of 0.97 atm; if p O2  = 0.7 atm and p N2  = 0.12 atm, wh...
Dalton’s Law <ul><li>A mixture of O 2 , CO 2  and N 2  has a p T  of 0.97 atm; if p O2  = 0.7 atm and p N2  = 0.12 atm, wh...
Dalton’s Law <ul><li>The partial pressures of CH 4  and O 2  are 0.175 atm and 0.25 atm. </li></ul><ul><li>At 65°C in a vo...
Dalton’s Law <ul><li>The partial pressures of CH 4  and O 2  are 0.175 atm and 0.25 atm. </li></ul><ul><li>At 65°C in a vo...
Unit 7 Review <ul><li>Phases of Matter and Transitions </li></ul><ul><li>Intermolecular Forces </li></ul><ul><li>Phase Dia...
Upcoming SlideShare
Loading in …5
×

Chem Unit7

560 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
560
On SlideShare
0
From Embeds
0
Number of Embeds
8
Actions
Shares
0
Downloads
21
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Chem Unit7

  1. 1. States of Matter Particle vibration fluid motion rapid, random motion Rigid positions move past independent of each other each other Fixed volume fixed volume volume of container
  2. 2. Phases and Transitions Sublimation Condensation Evaporation Melting Freezing
  3. 3. Intermolecular Forces <ul><li>Strongest = IONIC FORCES </li></ul><ul><li>High melting points </li></ul><ul><li>Oppositely charged ions </li></ul>
  4. 4. Dipole-Dipole Forces <ul><li>Dipole: contains both positively and negatively charged regions: </li></ul>
  5. 5. Hydrogen Bonding <ul><li>Special case of dipole-dipole forces </li></ul><ul><li>Causes water to have higher than expected boiling point </li></ul>
  6. 6. Water Properties <ul><li>Surface tension </li></ul>
  7. 7. Water Properties <ul><li>Capillary action </li></ul>
  8. 8. Boiling Points Molecule Boiling Point H 2 O 100°C H 2 S – 60.7 °C H 2 Se – 41°C H 2 Te – 2°C
  9. 9. Hydrogen Bonding <ul><li>Weak bond between H and electronegative atom: </li></ul><ul><li>Recall </li></ul>
  10. 10. Hydrogen Bonding
  11. 11. Hydrogen Bonding <ul><li>DNA </li></ul>
  12. 12. Dipole-Dipole Forces
  13. 13. London (Dispersion) Forces <ul><li>Weak attractions between non-polar </li></ul><ul><li>Increases with size of molecule (number of electrons) </li></ul><ul><li>Molecular Shape (less compact > compact) </li></ul><ul><li> > > </li></ul>
  14. 14. London (Dispersion) Forces <ul><li>Weak attractions between non-polar </li></ul><ul><li>“ Temporary” or instantaneous dipoles </li></ul><ul><li> </li></ul>
  15. 15. Intermolecular Forces <ul><li>IONIC >> Dipole – Dipole >> London </li></ul>
  16. 16. Intermolecular Forces <ul><li>Which intermolecular force is expected? </li></ul><ul><li>CH 4 </li></ul>
  17. 17. Intermolecular Forces <ul><li>Which intermolecular force is expected? </li></ul><ul><li>CH 4 </li></ul><ul><li>Non-polar covalent molecule </li></ul><ul><li>London (dispersion) forces </li></ul>
  18. 18. Intermolecular Forces <ul><li>Which intermolecular force is expected? </li></ul><ul><li>Butanol </li></ul><ul><li>CH 3 CH 2 CH 2 CH 2 OH </li></ul>
  19. 19. Intermolecular Forces <ul><li>Which intermolecular force is expected? </li></ul><ul><li>Butanol </li></ul><ul><li>CH 3 CH 2 CH 2 CH 2 OH </li></ul><ul><li>Dipole-Dipole </li></ul>
  20. 20. Energy of Phase Changes <ul><li>Energy is required for all phase changes </li></ul>
  21. 21. Phase Diagram (H 2 O)
  22. 22. Phase Diagram (CO 2 ) Triple Point Triple Point: where all three phases co-exist (T, p)
  23. 23. Phase Diagrams (carbon)
  24. 24. Properties of Matter <ul><li> Force </li></ul><ul><li>Pressure = area </li></ul><ul><li> h = 760 mm = 1 atm </li></ul><ul><li> Torricelli barometer </li></ul>
  25. 25. Robert Boyle
  26. 26. Boyle’s Law <ul><li>For a gas at constant T and n </li></ul><ul><li>V and p are inversely proportional </li></ul><ul><li>pV = constant </li></ul>
  27. 27. Charles’ Law <ul><li>At constant pressure, V/T = constant </li></ul>
  28. 28. Charles’ Law
  29. 29. Gay – Lussac’s Law <ul><li>In a constant volume: P/T = constant </li></ul>
  30. 30. Gay-Lussac’s Law
  31. 31. Combined Gas Law <ul><li>Boyle’s Law pV = constant </li></ul><ul><li>Charles’ Law V/T = constant </li></ul><ul><li>Gay-Lussac’s Law p/T = constant </li></ul><ul><li>Combining all three: </li></ul><ul><li>p 1 V 1 p 2 V 2 </li></ul><ul><li>So: T 1 = T 2 </li></ul>
  32. 32. Combined Gas Law <ul><li>A sample of gas has a volume of 400 liters when its temperature is 20°C and its pressure is 300 mm Hg. What volume will the gas occupy at STP? </li></ul>
  33. 33. Combined Gas Law <ul><li>p 1 V 1 p 2 V 2 </li></ul><ul><li>T 1 = T 2 T in Kelvin </li></ul><ul><li>(300/760 mm Hg)(400 L) = (760 mm Hg) (V 2 ) </li></ul><ul><li>(293 K) (273 K) </li></ul><ul><li>V 2 = 147 Liters </li></ul>
  34. 34. Combined Gas Law <ul><li>A sample of He gas has a volume of 250 mL at 456 torr and 25°C. At what temperature does this gas have a volume of 150 mL and 561 torr? </li></ul><ul><li>p 1 V 1 p 2 V 2 </li></ul><ul><li>T 1 = T 2 </li></ul>
  35. 35. Combined Gas Law <ul><li>A sample of He gas has a volume of 250 mL at 456 torr and 25°C. At what temperature does this gas have a volume of 150 mL and 561 torr? </li></ul><ul><li>p 1 V 1 p 2 V 2 T 2 = p 2 V 2 T 1 </li></ul><ul><li>T 1 = T 2 p 1 V 1 </li></ul>
  36. 36. Combined Gas Law <ul><li>A sample of He gas has a volume of 250 mL at 456 torr and 25°C. At what temperature does this gas have a volume of 150 mL and 561 torr? </li></ul><ul><li>p 1 V 1 p 2 V 2 (561/760)(0.15L)(298K) </li></ul><ul><li>T 1 = T 2 T 2 = (456/760)(0.25L) </li></ul><ul><li> = 220 K = -53°C </li></ul>
  37. 37. Ideal Gases <ul><li>Non-interacting </li></ul><ul><li>Point particles </li></ul><ul><li>Randomly moving with elastic </li></ul><ul><li>collisions (no energy lost) </li></ul>
  38. 38. Ideal Gases <ul><li>Avogadro’s Law: </li></ul><ul><li>Equal volumes of gas contain the same number of molecules at the same T & p. </li></ul><ul><li>n = number of moles </li></ul><ul><li>p 1 V 1 = constant </li></ul><ul><li>n T 1 </li></ul>
  39. 39. Ideal Gas Law <ul><li>p 1 V 1 = constant = 0.082 L atm = R </li></ul><ul><li>n T 1 K mole </li></ul><ul><li> = Universal Gas Constant </li></ul><ul><li>One mole of gas at STP : </li></ul><ul><li>Volume = nRT/p = (1 mole)(0.082 Latm)(273K)/1 atm </li></ul><ul><li> = 22.4 Liters </li></ul>
  40. 40. Ideal Gas Law <ul><li>pV = nRT </li></ul><ul><li>How many moles of Helium are present in a balloon that has a volume of 65 L at 20° C and 705 torr? </li></ul><ul><li>Given Needed </li></ul><ul><li>V, T, p, R n </li></ul><ul><li> n = pV/RT </li></ul>
  41. 41. Ideal Gas Law <ul><li>pV = nRT </li></ul><ul><li>How many moles of Helium are present in a balloon that has a volume of 65 L at 20° C and 705 torr? </li></ul><ul><li> n = pV/RT </li></ul><ul><li>= (705/760 atm)(65 L) </li></ul><ul><li> (0.082 Latm/K)(293) </li></ul><ul><li>= 2.5 moles He </li></ul>
  42. 42. Ideal Gas <ul><li>6.2 liters of an ideal gas are contained at 3.0 atm and 37 °C. How many moles of this gas are present? </li></ul>
  43. 43. Ideal Gas <ul><li>6.2 liters of an ideal gas are contained at 3.0 atm and 37 °C. How many moles of this gas are present? </li></ul><ul><li>n = pV/RT </li></ul><ul><li>= (3 atm)(6.2 L) </li></ul><ul><li>(0.082 L atm/mole K ) (310 K) </li></ul><ul><li>= 0.73 moles </li></ul>
  44. 44. Ideal Gases and Density
  45. 45. Density <ul><li>Gas density increases with molecular mass. </li></ul>
  46. 46. Density <ul><li>What is the density of NO 2 gas at 0.97 atm and 35°C? </li></ul><ul><li>MW = 46 g/mole </li></ul><ul><ul><ul><ul><ul><li>Molar mass p (46 g/mole)(0.97 atm) </li></ul></ul></ul></ul></ul><ul><li>Density = RT (0.082 L atm/mole K) (308 K) </li></ul><ul><ul><ul><ul><ul><li>= 1.767 g/L </li></ul></ul></ul></ul></ul>
  47. 47. Gas Diffusion <ul><li>Movement of particles from region of </li></ul><ul><li>Higher density to lower density </li></ul>
  48. 48. Gas Diffusion <ul><li>Movement of particles from region of </li></ul><ul><li>Higher density to lower density </li></ul><ul><li>Depends on density (molar mass) </li></ul>
  49. 49. Graham’s Law proportionality <ul><li>Rate of effusion inversely to square root of molar mass </li></ul><ul><li>Smaller molecules escape FASTER than larger molecules </li></ul>
  50. 50. Dalton’s Law <ul><li>PT = P1 + P2 + P3 + . . . . </li></ul><ul><li>Total pressure of a gas sample is the sun of the partial pressures. </li></ul>
  51. 51. Dalton’s Law <ul><li>A mixture of O 2 , CO 2 and N 2 has a p T of 0.97 atm; if p O2 = 0.7 atm and p N2 = 0.12 atm, what is p CO2 ? </li></ul>
  52. 52. Dalton’s Law <ul><li>A mixture of O 2 , CO 2 and N 2 has a p T of 0.97 atm; if p O2 = 0.7 atm and p N2 = 0.12 atm, what is p CO2 ? </li></ul><ul><li>pT = p O2 + p N2 + p CO2 = 0.97 atm </li></ul><ul><li>p CO2 = 0.97 atm - (0.7 atm + 0.12 atm) </li></ul><ul><li> = 0.15 atm </li></ul>
  53. 53. Dalton’s Law <ul><li>The partial pressures of CH 4 and O 2 are 0.175 atm and 0.25 atm. </li></ul><ul><li>At 65°C in a volume of 2 L, how many moles of each gas are present? </li></ul>
  54. 54. Dalton’s Law <ul><li>The partial pressures of CH 4 and O 2 are 0.175 atm and 0.25 atm. </li></ul><ul><li>At 65°C in a volume of 2 L, how many moles of each gas are present? </li></ul><ul><li>n CH4 = pV/RT = 0.175 atm (2L)/0.082 L atm/mole K (338 K </li></ul><ul><li> = 0.126 moles </li></ul><ul><li>n O2 = pV/RT = 0.25 atm (2L)/ 0.082 L atm/mole K (338 K) </li></ul><ul><li>= 0.018 moles </li></ul>
  55. 55. Unit 7 Review <ul><li>Phases of Matter and Transitions </li></ul><ul><li>Intermolecular Forces </li></ul><ul><li>Phase Diagrams </li></ul><ul><li>Boyle’s, Charles’, Gay Lussac’s Laws </li></ul><ul><li>Ideal Gas Law pV = nRT </li></ul><ul><li>Graham’s Law of Diffusion </li></ul><ul><li>Partial Pressure </li></ul>

×