SlideShare a Scribd company logo
Galvanometer<br />The galvanometer, a device used to measure extremely small electrical currents, traces its origin back to 1820. In that year Hans Christian Oersted (1777-1851) discovered that an electric current flowing in a wire created a magnetic field around it, deflecting a magnetized needle. This effect became the basic principle behind the galvanometer. In the same year Andrรฉ Ampรจre (1775-1836) used the effect to invent a device to measure electric current. He suggested it be called the galvanometer, in honor of Luigi Galvani (1737-1798), a pioneer in the investigation of electricity.<br />The first practical use of the galvanometer was made by Karl Friedrich Gauss in 1832. Gauss built a telegraph that sent signals by deflecting a magnetic needle. This style is known as a moving-magnet galvanometer. More commonly used today is the moving-coil or moving-mirror galvanometer, sometimes called a D'Arsonval galvanometer.<br />The invention of the moving-coil galvanometer is credited to Johann Schweigger in 1825, three years later Italian physicist C. L. Nobilli designed an astatic type. It consists of a coil that has been wound with very fine wire mounted between the poles of a permanent magnet. Attached to the coil is a pointer. When electric current is turned on, the coil turns and the deflection angle is measured as the pointer moves along a graduated scale.<br />In the case of a moving-mirror galvanometer, a mirror is attached to the coil, and illuminated with light. When the coil moves the deflection of the light is measured along a scale. The mirror galvanometer was of major use in laying the transatlantic telegraph cable between the United States and Europe in 1866. William Thomson, later known as Lord Kelvin, used it to keep track of how much electric current was coursing through the cable. Thomson also invented a quot;
siphon recorder,quot;
 which was a more sensitive galvanometer. Ink was siphoned through a thin glass tube that was attached to the coil of wire which was mounted between the poles of a horseshoe magnet. The moving tube carried the ink onto a paper tape where it traced a line.<br />Galvanometers come in a variety of types. Ultraviolet recorders use light-sensitive paper and ultraviolet light in place of ink. A photoelectric galvanometer amplifies the signal using a photocell. The ballistic galvanometer is used to measure an electric pulse or burst. A cousin of the galvanometer is the direct current ammeter, which is a calibrated galvanometer that measures larger currents. Another cousin still is the direct-current voltmeter, which uses Ohm's Law to measure voltage. Digital display galvanometers, the best of which can measure a current as small as one hundredth billionth (10-11) of an amp, have almost entirely replaced the early analog galvanometers of yore. <br />Mirror galvanometer<br />From Wikipedia, the free encyclopedia<br />A mirror galvanometer<br />A mirror galvanometer is a mechanical meter that senses electric current, except that instead of moving a needle, it moves a mirror. The mirror reflects a beam of light, which projects onto a meter, and acts as a long, weightless, massless pointer. In 1826, Johann Christian Poggendorff developed the mirror galvanometer for detecting electric currents. The apparatus is also known as a spot galvanometer after the spot of light produced in some models.<br />Mirror galvanometers were used extensively in scientific instruments before reliable, stable electronic amplifiers were available. The most common uses were as recording equipment for seismometers and submarine cables used for telegraphy.<br />In modern times, high-speed mirror galvanometers are employed in laser light shows to move the laser beams and produce colorful geometric patterns in fog around the audience.<br />High speed mirror galvanometers have proved to be indispensable in industry for Laser engraving systems for everything from laser scribing hand tools, containers, and parts to batch-coding Semiconductor wafers in Semiconductor device fabrication. They typically control X and Y directions on Nd:YAG and CO2 laser markers to control the position of the infrared power laser spot. Laser cutting, Laser ablation, Laser beam machining and Wafer dicing are all industrial areas where high-speed mirror galvanometers can be found. Closer to home, mirror galvanometers are located in most retail outlets, warehouses, and parcel delivery service providers, in the form of Barcode readers for Universal Product Codes and other forms of Barcodes.<br />Kelvin's galvanometer<br />Thomson mirror galvanometer of tripod type, from around 1900.<br />Galvanometer by H.W. Sullivan, London. Late 19th or early 20th century. This galvanometer was used at the transatlantic cable station, Halifax, NS, Canada.<br />The mirror galvanometer was later improved by William Thomson, later to become Lord Kelvin. He would patent the device in 1858.<br />Thomson reacted to the need for an instrument that could indicate with sensibility all the variations of the current in a long cable. This instrument was far more sensitive than any which preceded it, enabling the detection of the slightest defect in the core of a cable during its manufacture and submersion. Moreover, it proved the best apparatus for receiving messages through a long cable.<br />The following is adapted from a contemporary account[1] of Thomson's instrument:<br />โ€œThe mirror galvanometer consists of a long fine coil of silk-covered copper wire. In the heart of that coil, within a little air-chamber, a small round mirror is hung by a single fibre of floss silk, with four tiny magnets cemented to its back. A beam of light is thrown from a lamp upon the mirror, and reflected by it upon a white screen or scale a few feet distant, where it forms a bright spot of light. When there is no current on the instrument, the spot of light remains stationary at the zero position on the screen; but the instant a current traverses the long wire of the coil, the suspended magnets twist themselves horizontally out of their former position, the mirror is of course inclined with them, and the beam of light is deflected along the screen to one side or the other, according to the nature of the current. If a positive electric current gives a deflection to the right of zero, a negative current will give a deflection to the left of zero, and vice versa. The air in the little chamber surrounding the mirror is compressed at will, so as to act like a cushion, and deaden the movements of the mirror. The needle is thus prevented from idly swinging about at each deflection, and the separate signals are rendered abrupt. At a receiving station the current coming in from the cable has simply to be passed through the coil before it is sent into the ground, and the wandering light spot on the screen faithfully represents all its variations to the clerk, who, looking on, interprets these, and cries out the message word by word. The small weight of the mirror and magnets which form the moving part of this instrument, and the range to which the minute motions of the mirror can be magnified on the screen by the reflected beam of light, which acts as a long impalpable hand or pointer, render the mirror galvanometer marvellously sensitive to the current, especially when compared with other forms of receiving instruments. Messages could be sent from the UK to the USA through one Atlantic cable and back again through another, and there received on the mirror galvanometer, the electric current used being that from a toy battery made out of a lady's silver thimble, a grain of zinc, and a drop of acidulated water.The practical advantage of this extreme delicacy is that the signal waves of the current may follow each other so closely as almost entirely to coalesce, leaving only a very slight rise and fall of their crests, like ripples on the surface of a flowing stream, and yet the light spot will respond to each. The main flow of the current will of course shift the zero of the spot, but over and above this change of place the spot will follow the momentary fluctuations of the current which form the individual signals of the message. What with this shifting of the zero and the very slight rise and fall in the current produced by rapid signalling, the ordinary land line instruments are quite unserviceable for work upon long cables.โ€<br />Moving coil galvanometer was developed independently by Marcel Deprez and Jacques-Arsรจne d'Arsonval about 1880. Deprez's galvanometer was developed for high currents, while D'Arsonval designed his to measure weak currents. Unlike in the Kelvin's galvanometer, in this type of galvanometer the magnet is stationary and the coil is suspended in the magnet gap. The mirror attached to the coil frame rotates together with it. This form of instrument can be more sensitive and accurate and it replaced the Kelvin's galvanometer in most applications. The moving coil galvanometer is practically immune to ambient magnetic fields. Another important feature is self-damping generated by the electro-magnetic forces due to the currents induced in the coil by its movements the magnetic field. These are proportional to the angular velocity of the coil.<br />
Galvanometer
Galvanometer
Galvanometer

More Related Content

What's hot

Overvoltage phenomenon
Overvoltage phenomenonOvervoltage phenomenon
Overvoltage phenomenon
Swaminathan P
ย 
Over voltages in power system
Over voltages in power systemOver voltages in power system
Over voltages in power system
SANGEETHA S
ย 
Introduction to Radiology
Introduction to RadiologyIntroduction to Radiology
Introduction to Radiology
SzeMin Chong
ย 
PROTECTION AGAINST OVER VOLTAGE AND GROUNDING Part 1
PROTECTION AGAINST OVER VOLTAGE AND GROUNDING Part 1PROTECTION AGAINST OVER VOLTAGE AND GROUNDING Part 1
PROTECTION AGAINST OVER VOLTAGE AND GROUNDING Part 1
Dr. Rohit Babu
ย 
X ray ppt
X ray pptX ray ppt
X ray ppt
Anand Rk
ย 
12695 solid state m icrowave devices
12695 solid state m icrowave devices12695 solid state m icrowave devices
12695 solid state m icrowave devices
Mohit Vyas
ย 
Cathode Ray Oscilloscope
Cathode Ray OscilloscopeCathode Ray Oscilloscope
Cathode Ray Oscilloscope
Ketan Nayak
ย 
Microwave devices
Microwave devicesMicrowave devices
Microwave devices
Anup Kumar
ย 
3. x ray imaging system
3. x ray imaging system3. x ray imaging system
3. x ray imaging system
AbuIshaq
ย 
EE6701 - HVE
EE6701 - HVEEE6701 - HVE
Waves
WavesWaves
Waves
Brad Kremer
ย 
I v characteristics of zener diode
I v characteristics of zener diodeI v characteristics of zener diode
I v characteristics of zener diode
Md. Mujahiduzzaman
ย 

What's hot (14)

Overvoltage phenomenon
Overvoltage phenomenonOvervoltage phenomenon
Overvoltage phenomenon
ย 
Over voltages in power system
Over voltages in power systemOver voltages in power system
Over voltages in power system
ย 
Zenerdiode
ZenerdiodeZenerdiode
Zenerdiode
ย 
Introduction to Radiology
Introduction to RadiologyIntroduction to Radiology
Introduction to Radiology
ย 
PROTECTION AGAINST OVER VOLTAGE AND GROUNDING Part 1
PROTECTION AGAINST OVER VOLTAGE AND GROUNDING Part 1PROTECTION AGAINST OVER VOLTAGE AND GROUNDING Part 1
PROTECTION AGAINST OVER VOLTAGE AND GROUNDING Part 1
ย 
X ray ppt
X ray pptX ray ppt
X ray ppt
ย 
12695 solid state m icrowave devices
12695 solid state m icrowave devices12695 solid state m icrowave devices
12695 solid state m icrowave devices
ย 
Cathode Ray Oscilloscope
Cathode Ray OscilloscopeCathode Ray Oscilloscope
Cathode Ray Oscilloscope
ย 
Microwave devices
Microwave devicesMicrowave devices
Microwave devices
ย 
3. x ray imaging system
3. x ray imaging system3. x ray imaging system
3. x ray imaging system
ย 
Arrester
ArresterArrester
Arrester
ย 
EE6701 - HVE
EE6701 - HVEEE6701 - HVE
EE6701 - HVE
ย 
Waves
WavesWaves
Waves
ย 
I v characteristics of zener diode
I v characteristics of zener diodeI v characteristics of zener diode
I v characteristics of zener diode
ย 

Similar to Galvanometer

Theory of wireless power by eric dollard ocr
Theory of wireless power by eric dollard ocrTheory of wireless power by eric dollard ocr
Theory of wireless power by eric dollard ocrPublicLeaker
ย 
Theory of wireless power by eric dollard ocr
Theory of wireless power by eric dollard  ocrTheory of wireless power by eric dollard  ocr
Theory of wireless power by eric dollard ocrPublicLeaker
ย 
RRG Exhibits 10-2016 -
RRG Exhibits 10-2016 -RRG Exhibits 10-2016 -
RRG Exhibits 10-2016 -Richard Gagnon
ย 
X ray tube
X ray tube X ray tube
X ray tube
DrMansi Mehta
ย 
X ray machine- ppt
X ray machine- pptX ray machine- ppt
X ray machine- ppt
SUCHITHRAKS3
ย 
What is Electronics, Human and Development of Electronics
What is Electronics, Human and Development of ElectronicsWhat is Electronics, Human and Development of Electronics
What is Electronics, Human and Development of Electronics
kathleenmiranda885
ย 
Quantum Physics ,Hertz and Planck ppt
Quantum Physics ,Hertz and Planck pptQuantum Physics ,Hertz and Planck ppt
Quantum Physics ,Hertz and Planck ppt
craigfitz1
ย 
Wireless Charging
Wireless ChargingWireless Charging
Wireless Charging
Colloquium
ย 
Sensors VS Transducers
Sensors VS Transducers Sensors VS Transducers
Sensors VS Transducers Andrew William
ย 
EM spectrum and wave.pptx
EM spectrum and wave.pptxEM spectrum and wave.pptx
EM spectrum and wave.pptx
paolo Macarayo
ย 
Microstrip Antenna Resonating at Ku-band frequency Report
Microstrip Antenna Resonating at Ku-band frequency ReportMicrostrip Antenna Resonating at Ku-band frequency Report
Microstrip Antenna Resonating at Ku-band frequency Report
charan -
ย 
How is electricity_produced
How is electricity_producedHow is electricity_produced
How is electricity_produced
Mar Sanchez Osuna
ย 
Laser &amp; x rays 2
Laser &amp; x  rays 2Laser &amp; x  rays 2
Laser &amp; x rays 2
MuhammadAttiquegujja
ย 
X ray tube
X ray tubeX ray tube
X ray tube
Aiims New Delhi
ย 
xraytub3.pdf
xraytub3.pdfxraytub3.pdf
xraytub3.pdf
AkhmadiUSG
ย 
Oral radiology lecture 1
Oral radiology lecture 1Oral radiology lecture 1
Oral radiology lecture 1
Lama K Banna
ย 
Answer 1 sir teehseen
Answer 1 sir teehseenAnswer 1 sir teehseen
Answer 1 sir teehseen
WAQARAHMED586
ย 
X-Ray Presentation SMK SMAK Bogor 2014/2015
X-Ray Presentation SMK SMAK Bogor 2014/2015X-Ray Presentation SMK SMAK Bogor 2014/2015
X-Ray Presentation SMK SMAK Bogor 2014/2015
Nanda Wiguna
ย 
The electromagnetic spectrum digregorio
The electromagnetic spectrum digregorioThe electromagnetic spectrum digregorio
The electromagnetic spectrum digregorio
Beux2602
ย 
ELECTROMAGNETIC WAVE THEORY PPT.pptx
ELECTROMAGNETIC WAVE THEORY PPT.pptxELECTROMAGNETIC WAVE THEORY PPT.pptx
ELECTROMAGNETIC WAVE THEORY PPT.pptx
Marybel41
ย 

Similar to Galvanometer (20)

Theory of wireless power by eric dollard ocr
Theory of wireless power by eric dollard ocrTheory of wireless power by eric dollard ocr
Theory of wireless power by eric dollard ocr
ย 
Theory of wireless power by eric dollard ocr
Theory of wireless power by eric dollard  ocrTheory of wireless power by eric dollard  ocr
Theory of wireless power by eric dollard ocr
ย 
RRG Exhibits 10-2016 -
RRG Exhibits 10-2016 -RRG Exhibits 10-2016 -
RRG Exhibits 10-2016 -
ย 
X ray tube
X ray tube X ray tube
X ray tube
ย 
X ray machine- ppt
X ray machine- pptX ray machine- ppt
X ray machine- ppt
ย 
What is Electronics, Human and Development of Electronics
What is Electronics, Human and Development of ElectronicsWhat is Electronics, Human and Development of Electronics
What is Electronics, Human and Development of Electronics
ย 
Quantum Physics ,Hertz and Planck ppt
Quantum Physics ,Hertz and Planck pptQuantum Physics ,Hertz and Planck ppt
Quantum Physics ,Hertz and Planck ppt
ย 
Wireless Charging
Wireless ChargingWireless Charging
Wireless Charging
ย 
Sensors VS Transducers
Sensors VS Transducers Sensors VS Transducers
Sensors VS Transducers
ย 
EM spectrum and wave.pptx
EM spectrum and wave.pptxEM spectrum and wave.pptx
EM spectrum and wave.pptx
ย 
Microstrip Antenna Resonating at Ku-band frequency Report
Microstrip Antenna Resonating at Ku-band frequency ReportMicrostrip Antenna Resonating at Ku-band frequency Report
Microstrip Antenna Resonating at Ku-band frequency Report
ย 
How is electricity_produced
How is electricity_producedHow is electricity_produced
How is electricity_produced
ย 
Laser &amp; x rays 2
Laser &amp; x  rays 2Laser &amp; x  rays 2
Laser &amp; x rays 2
ย 
X ray tube
X ray tubeX ray tube
X ray tube
ย 
xraytub3.pdf
xraytub3.pdfxraytub3.pdf
xraytub3.pdf
ย 
Oral radiology lecture 1
Oral radiology lecture 1Oral radiology lecture 1
Oral radiology lecture 1
ย 
Answer 1 sir teehseen
Answer 1 sir teehseenAnswer 1 sir teehseen
Answer 1 sir teehseen
ย 
X-Ray Presentation SMK SMAK Bogor 2014/2015
X-Ray Presentation SMK SMAK Bogor 2014/2015X-Ray Presentation SMK SMAK Bogor 2014/2015
X-Ray Presentation SMK SMAK Bogor 2014/2015
ย 
The electromagnetic spectrum digregorio
The electromagnetic spectrum digregorioThe electromagnetic spectrum digregorio
The electromagnetic spectrum digregorio
ย 
ELECTROMAGNETIC WAVE THEORY PPT.pptx
ELECTROMAGNETIC WAVE THEORY PPT.pptxELECTROMAGNETIC WAVE THEORY PPT.pptx
ELECTROMAGNETIC WAVE THEORY PPT.pptx
ย 

Recently uploaded

Premium MEAN Stack Development Solutions for Modern Businesses
Premium MEAN Stack Development Solutions for Modern BusinessesPremium MEAN Stack Development Solutions for Modern Businesses
Premium MEAN Stack Development Solutions for Modern Businesses
SynapseIndia
ย 
Cree_Rey_BrandIdentityKit.PDF_PersonalBd
Cree_Rey_BrandIdentityKit.PDF_PersonalBdCree_Rey_BrandIdentityKit.PDF_PersonalBd
Cree_Rey_BrandIdentityKit.PDF_PersonalBd
creerey
ย 
-- June 2024 is National Volunteer Month --
-- June 2024 is National Volunteer Month ---- June 2024 is National Volunteer Month --
-- June 2024 is National Volunteer Month --
NZSG
ย 
Mastering B2B Payments Webinar from BlueSnap
Mastering B2B Payments Webinar from BlueSnapMastering B2B Payments Webinar from BlueSnap
Mastering B2B Payments Webinar from BlueSnap
Norma Mushkat Gaffin
ย 
Enterprise Excellence is Inclusive Excellence.pdf
Enterprise Excellence is Inclusive Excellence.pdfEnterprise Excellence is Inclusive Excellence.pdf
Enterprise Excellence is Inclusive Excellence.pdf
KaiNexus
ย 
The key differences between the MDR and IVDR in the EU
The key differences between the MDR and IVDR in the EUThe key differences between the MDR and IVDR in the EU
The key differences between the MDR and IVDR in the EU
Allensmith572606
ย 
LA HUG - Video Testimonials with Chynna Morgan - June 2024
LA HUG - Video Testimonials with Chynna Morgan - June 2024LA HUG - Video Testimonials with Chynna Morgan - June 2024
LA HUG - Video Testimonials with Chynna Morgan - June 2024
Lital Barkan
ย 
Discover the innovative and creative projects that highlight my journey throu...
Discover the innovative and creative projects that highlight my journey throu...Discover the innovative and creative projects that highlight my journey throu...
Discover the innovative and creative projects that highlight my journey throu...
dylandmeas
ย 
Call 7735293663 Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta...
Call 7735293663 Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta...Call 7735293663 Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta...
Call 7735293663 Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta...
bosssp10
ย 
The Parable of the Pipeline a book every new businessman or business student ...
The Parable of the Pipeline a book every new businessman or business student ...The Parable of the Pipeline a book every new businessman or business student ...
The Parable of the Pipeline a book every new businessman or business student ...
awaisafdar
ย 
Evgen Osmak: Methods of key project parameters estimation: from the shaman-in...
Evgen Osmak: Methods of key project parameters estimation: from the shaman-in...Evgen Osmak: Methods of key project parameters estimation: from the shaman-in...
Evgen Osmak: Methods of key project parameters estimation: from the shaman-in...
Lviv Startup Club
ย 
Digital Transformation and IT Strategy Toolkit and Templates
Digital Transformation and IT Strategy Toolkit and TemplatesDigital Transformation and IT Strategy Toolkit and Templates
Digital Transformation and IT Strategy Toolkit and Templates
Aurelien Domont, MBA
ย 
20240425_ TJ Communications Credentials_compressed.pdf
20240425_ TJ Communications Credentials_compressed.pdf20240425_ TJ Communications Credentials_compressed.pdf
20240425_ TJ Communications Credentials_compressed.pdf
tjcomstrang
ย 
Brand Analysis for an artist named Struan
Brand Analysis for an artist named StruanBrand Analysis for an artist named Struan
Brand Analysis for an artist named Struan
sarahvanessa51503
ย 
Company Valuation webinar series - Tuesday, 4 June 2024
Company Valuation webinar series - Tuesday, 4 June 2024Company Valuation webinar series - Tuesday, 4 June 2024
Company Valuation webinar series - Tuesday, 4 June 2024
FelixPerez547899
ย 
5 Things You Need To Know Before Hiring a Videographer
5 Things You Need To Know Before Hiring a Videographer5 Things You Need To Know Before Hiring a Videographer
5 Things You Need To Know Before Hiring a Videographer
ofm712785
ย 
Business Valuation Principles for Entrepreneurs
Business Valuation Principles for EntrepreneursBusiness Valuation Principles for Entrepreneurs
Business Valuation Principles for Entrepreneurs
Ben Wann
ย 
The-McKinsey-7S-Framework. strategic management
The-McKinsey-7S-Framework. strategic managementThe-McKinsey-7S-Framework. strategic management
The-McKinsey-7S-Framework. strategic management
Bojamma2
ย 
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdfMeas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
dylandmeas
ย 
ikea_woodgreen_petscharity_cat-alogue_digital.pdf
ikea_woodgreen_petscharity_cat-alogue_digital.pdfikea_woodgreen_petscharity_cat-alogue_digital.pdf
ikea_woodgreen_petscharity_cat-alogue_digital.pdf
agatadrynko
ย 

Recently uploaded (20)

Premium MEAN Stack Development Solutions for Modern Businesses
Premium MEAN Stack Development Solutions for Modern BusinessesPremium MEAN Stack Development Solutions for Modern Businesses
Premium MEAN Stack Development Solutions for Modern Businesses
ย 
Cree_Rey_BrandIdentityKit.PDF_PersonalBd
Cree_Rey_BrandIdentityKit.PDF_PersonalBdCree_Rey_BrandIdentityKit.PDF_PersonalBd
Cree_Rey_BrandIdentityKit.PDF_PersonalBd
ย 
-- June 2024 is National Volunteer Month --
-- June 2024 is National Volunteer Month ---- June 2024 is National Volunteer Month --
-- June 2024 is National Volunteer Month --
ย 
Mastering B2B Payments Webinar from BlueSnap
Mastering B2B Payments Webinar from BlueSnapMastering B2B Payments Webinar from BlueSnap
Mastering B2B Payments Webinar from BlueSnap
ย 
Enterprise Excellence is Inclusive Excellence.pdf
Enterprise Excellence is Inclusive Excellence.pdfEnterprise Excellence is Inclusive Excellence.pdf
Enterprise Excellence is Inclusive Excellence.pdf
ย 
The key differences between the MDR and IVDR in the EU
The key differences between the MDR and IVDR in the EUThe key differences between the MDR and IVDR in the EU
The key differences between the MDR and IVDR in the EU
ย 
LA HUG - Video Testimonials with Chynna Morgan - June 2024
LA HUG - Video Testimonials with Chynna Morgan - June 2024LA HUG - Video Testimonials with Chynna Morgan - June 2024
LA HUG - Video Testimonials with Chynna Morgan - June 2024
ย 
Discover the innovative and creative projects that highlight my journey throu...
Discover the innovative and creative projects that highlight my journey throu...Discover the innovative and creative projects that highlight my journey throu...
Discover the innovative and creative projects that highlight my journey throu...
ย 
Call 7735293663 Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta...
Call 7735293663 Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta...Call 7735293663 Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta...
Call 7735293663 Satta Matka Dpboss Matka Guessing Satta batta Matka 420 Satta...
ย 
The Parable of the Pipeline a book every new businessman or business student ...
The Parable of the Pipeline a book every new businessman or business student ...The Parable of the Pipeline a book every new businessman or business student ...
The Parable of the Pipeline a book every new businessman or business student ...
ย 
Evgen Osmak: Methods of key project parameters estimation: from the shaman-in...
Evgen Osmak: Methods of key project parameters estimation: from the shaman-in...Evgen Osmak: Methods of key project parameters estimation: from the shaman-in...
Evgen Osmak: Methods of key project parameters estimation: from the shaman-in...
ย 
Digital Transformation and IT Strategy Toolkit and Templates
Digital Transformation and IT Strategy Toolkit and TemplatesDigital Transformation and IT Strategy Toolkit and Templates
Digital Transformation and IT Strategy Toolkit and Templates
ย 
20240425_ TJ Communications Credentials_compressed.pdf
20240425_ TJ Communications Credentials_compressed.pdf20240425_ TJ Communications Credentials_compressed.pdf
20240425_ TJ Communications Credentials_compressed.pdf
ย 
Brand Analysis for an artist named Struan
Brand Analysis for an artist named StruanBrand Analysis for an artist named Struan
Brand Analysis for an artist named Struan
ย 
Company Valuation webinar series - Tuesday, 4 June 2024
Company Valuation webinar series - Tuesday, 4 June 2024Company Valuation webinar series - Tuesday, 4 June 2024
Company Valuation webinar series - Tuesday, 4 June 2024
ย 
5 Things You Need To Know Before Hiring a Videographer
5 Things You Need To Know Before Hiring a Videographer5 Things You Need To Know Before Hiring a Videographer
5 Things You Need To Know Before Hiring a Videographer
ย 
Business Valuation Principles for Entrepreneurs
Business Valuation Principles for EntrepreneursBusiness Valuation Principles for Entrepreneurs
Business Valuation Principles for Entrepreneurs
ย 
The-McKinsey-7S-Framework. strategic management
The-McKinsey-7S-Framework. strategic managementThe-McKinsey-7S-Framework. strategic management
The-McKinsey-7S-Framework. strategic management
ย 
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdfMeas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
Meas_Dylan_DMBS_PB1_2024-05XX_Revised.pdf
ย 
ikea_woodgreen_petscharity_cat-alogue_digital.pdf
ikea_woodgreen_petscharity_cat-alogue_digital.pdfikea_woodgreen_petscharity_cat-alogue_digital.pdf
ikea_woodgreen_petscharity_cat-alogue_digital.pdf
ย 

Galvanometer

  • 1. Galvanometer<br />The galvanometer, a device used to measure extremely small electrical currents, traces its origin back to 1820. In that year Hans Christian Oersted (1777-1851) discovered that an electric current flowing in a wire created a magnetic field around it, deflecting a magnetized needle. This effect became the basic principle behind the galvanometer. In the same year Andrรฉ Ampรจre (1775-1836) used the effect to invent a device to measure electric current. He suggested it be called the galvanometer, in honor of Luigi Galvani (1737-1798), a pioneer in the investigation of electricity.<br />The first practical use of the galvanometer was made by Karl Friedrich Gauss in 1832. Gauss built a telegraph that sent signals by deflecting a magnetic needle. This style is known as a moving-magnet galvanometer. More commonly used today is the moving-coil or moving-mirror galvanometer, sometimes called a D'Arsonval galvanometer.<br />The invention of the moving-coil galvanometer is credited to Johann Schweigger in 1825, three years later Italian physicist C. L. Nobilli designed an astatic type. It consists of a coil that has been wound with very fine wire mounted between the poles of a permanent magnet. Attached to the coil is a pointer. When electric current is turned on, the coil turns and the deflection angle is measured as the pointer moves along a graduated scale.<br />In the case of a moving-mirror galvanometer, a mirror is attached to the coil, and illuminated with light. When the coil moves the deflection of the light is measured along a scale. The mirror galvanometer was of major use in laying the transatlantic telegraph cable between the United States and Europe in 1866. William Thomson, later known as Lord Kelvin, used it to keep track of how much electric current was coursing through the cable. Thomson also invented a quot; siphon recorder,quot; which was a more sensitive galvanometer. Ink was siphoned through a thin glass tube that was attached to the coil of wire which was mounted between the poles of a horseshoe magnet. The moving tube carried the ink onto a paper tape where it traced a line.<br />Galvanometers come in a variety of types. Ultraviolet recorders use light-sensitive paper and ultraviolet light in place of ink. A photoelectric galvanometer amplifies the signal using a photocell. The ballistic galvanometer is used to measure an electric pulse or burst. A cousin of the galvanometer is the direct current ammeter, which is a calibrated galvanometer that measures larger currents. Another cousin still is the direct-current voltmeter, which uses Ohm's Law to measure voltage. Digital display galvanometers, the best of which can measure a current as small as one hundredth billionth (10-11) of an amp, have almost entirely replaced the early analog galvanometers of yore. <br />Mirror galvanometer<br />From Wikipedia, the free encyclopedia<br />A mirror galvanometer<br />A mirror galvanometer is a mechanical meter that senses electric current, except that instead of moving a needle, it moves a mirror. The mirror reflects a beam of light, which projects onto a meter, and acts as a long, weightless, massless pointer. In 1826, Johann Christian Poggendorff developed the mirror galvanometer for detecting electric currents. The apparatus is also known as a spot galvanometer after the spot of light produced in some models.<br />Mirror galvanometers were used extensively in scientific instruments before reliable, stable electronic amplifiers were available. The most common uses were as recording equipment for seismometers and submarine cables used for telegraphy.<br />In modern times, high-speed mirror galvanometers are employed in laser light shows to move the laser beams and produce colorful geometric patterns in fog around the audience.<br />High speed mirror galvanometers have proved to be indispensable in industry for Laser engraving systems for everything from laser scribing hand tools, containers, and parts to batch-coding Semiconductor wafers in Semiconductor device fabrication. They typically control X and Y directions on Nd:YAG and CO2 laser markers to control the position of the infrared power laser spot. Laser cutting, Laser ablation, Laser beam machining and Wafer dicing are all industrial areas where high-speed mirror galvanometers can be found. Closer to home, mirror galvanometers are located in most retail outlets, warehouses, and parcel delivery service providers, in the form of Barcode readers for Universal Product Codes and other forms of Barcodes.<br />Kelvin's galvanometer<br />Thomson mirror galvanometer of tripod type, from around 1900.<br />Galvanometer by H.W. Sullivan, London. Late 19th or early 20th century. This galvanometer was used at the transatlantic cable station, Halifax, NS, Canada.<br />The mirror galvanometer was later improved by William Thomson, later to become Lord Kelvin. He would patent the device in 1858.<br />Thomson reacted to the need for an instrument that could indicate with sensibility all the variations of the current in a long cable. This instrument was far more sensitive than any which preceded it, enabling the detection of the slightest defect in the core of a cable during its manufacture and submersion. Moreover, it proved the best apparatus for receiving messages through a long cable.<br />The following is adapted from a contemporary account[1] of Thomson's instrument:<br />โ€œThe mirror galvanometer consists of a long fine coil of silk-covered copper wire. In the heart of that coil, within a little air-chamber, a small round mirror is hung by a single fibre of floss silk, with four tiny magnets cemented to its back. A beam of light is thrown from a lamp upon the mirror, and reflected by it upon a white screen or scale a few feet distant, where it forms a bright spot of light. When there is no current on the instrument, the spot of light remains stationary at the zero position on the screen; but the instant a current traverses the long wire of the coil, the suspended magnets twist themselves horizontally out of their former position, the mirror is of course inclined with them, and the beam of light is deflected along the screen to one side or the other, according to the nature of the current. If a positive electric current gives a deflection to the right of zero, a negative current will give a deflection to the left of zero, and vice versa. The air in the little chamber surrounding the mirror is compressed at will, so as to act like a cushion, and deaden the movements of the mirror. The needle is thus prevented from idly swinging about at each deflection, and the separate signals are rendered abrupt. At a receiving station the current coming in from the cable has simply to be passed through the coil before it is sent into the ground, and the wandering light spot on the screen faithfully represents all its variations to the clerk, who, looking on, interprets these, and cries out the message word by word. The small weight of the mirror and magnets which form the moving part of this instrument, and the range to which the minute motions of the mirror can be magnified on the screen by the reflected beam of light, which acts as a long impalpable hand or pointer, render the mirror galvanometer marvellously sensitive to the current, especially when compared with other forms of receiving instruments. Messages could be sent from the UK to the USA through one Atlantic cable and back again through another, and there received on the mirror galvanometer, the electric current used being that from a toy battery made out of a lady's silver thimble, a grain of zinc, and a drop of acidulated water.The practical advantage of this extreme delicacy is that the signal waves of the current may follow each other so closely as almost entirely to coalesce, leaving only a very slight rise and fall of their crests, like ripples on the surface of a flowing stream, and yet the light spot will respond to each. The main flow of the current will of course shift the zero of the spot, but over and above this change of place the spot will follow the momentary fluctuations of the current which form the individual signals of the message. What with this shifting of the zero and the very slight rise and fall in the current produced by rapid signalling, the ordinary land line instruments are quite unserviceable for work upon long cables.โ€<br />Moving coil galvanometer was developed independently by Marcel Deprez and Jacques-Arsรจne d'Arsonval about 1880. Deprez's galvanometer was developed for high currents, while D'Arsonval designed his to measure weak currents. Unlike in the Kelvin's galvanometer, in this type of galvanometer the magnet is stationary and the coil is suspended in the magnet gap. The mirror attached to the coil frame rotates together with it. This form of instrument can be more sensitive and accurate and it replaced the Kelvin's galvanometer in most applications. The moving coil galvanometer is practically immune to ambient magnetic fields. Another important feature is self-damping generated by the electro-magnetic forces due to the currents induced in the coil by its movements the magnetic field. These are proportional to the angular velocity of the coil.<br />