Activity
1 3 2
8
7 4
6
5
9
Activity:
1 3 2
8 7 4
6
5
9
Activity:
1 3 2
8
7
4
6
5
9
Activity:
1 3 2
8
7
4
6
5
9
Activity:
1 3 2
8
7
4
6
5 9
Activity:
1 3 2
8
7
4
6
5 9
Activity:
1 3 2
8
7
4
6
5
SOLVING
CORRESPONDING
CONGRUENT
TRIANGLE
Welcome To
Class!
Today’s Objectives:
When we can say that the
triangle are congruent?
Two triangle are congruent when their
corresponding sides are equal in length,
and their corresponding angles are equal
in measure.
TYPES OF MOTION
TYPE OF MOTION
1 3
8
7
6
2
TYPE OF MOTION
1 3
8
7
6
2
TYPE OF MOTION
1 3 7
7
6
8
2
TYPE OF MOTION
1 3
7
6
8
2
TYPE OF MOTION
1 3
7
6
8
2
TYPE OF MOTION
1 3
7
6
8
2
CONGRUENT TRIANGLE
B
A
C F
E
D
∠A↔ _____
∠𝐵 ↔_____
∠𝐶 ↔ _____
CORRESPONDING
ANGLES
CORRESPONDING SIDES
∠D
∠E
∠F
𝐴𝐵 ↔ ______
𝐵𝐶 ↔ ______
𝐴𝐶 ↔ ______
𝐷𝐸
𝐸𝐹
𝐷𝐹
∠A ≅ ∠D
∠𝐵 ≅ ∠E
∠𝐶 ≅ ∠F
𝐴𝐵 ≅ 𝐷𝐸
𝐵𝐶 ≅ 𝐸𝐹
𝐴𝐶 ≅ 𝐷𝐹
Congruence Statement: ∆ 𝐴𝐵𝐶 ≅ ∆ 𝐷𝐸𝐹
Example 1:
B
A
C
F
E
D
∠A ≅ ∠D
∠𝐵 ≅ ∠E
∠𝐶 ≅ ∠F
𝐴𝐵 ≅ 𝐷𝐸
𝐵𝐶 ≅ 𝐸𝐹
𝐴𝐶 ≅ 𝐷𝐹
CORRESPONDING
ANGLES
CORRESPONDING
SIDES
Congruence Statement:
∆ 𝐴𝐵𝐶 ≅ ∆ 𝐷𝐸𝐹
∠A = 80° ∠𝐃 = 80°
∠𝑩 = 60° ∠𝑬 = 60°
∠𝐂 = 40° ∠𝑭 = 40°
𝐴𝐵 𝐷𝐸
𝐵𝐶 𝐸𝐹
𝐷𝐹 𝐴𝐶
𝟖𝟎°
𝟖𝟎°
60°
60°
40°
40°
Example 2:
∆𝐑𝐎𝐒 ≅ ∆𝑪𝑨𝑵, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙.
C
N
A
∠𝐑 ≅ 𝑅𝑂 ≅
∠𝑶 ≅ 𝑂𝑆 ≅
∠𝐒 ≅ 𝑅𝑆 ≅
∠𝑨
∠𝑵
𝑪𝑨
𝑨𝑵
𝑪𝑵
30°
110°
∠𝑥 + 30° + 110° =
Triangle Sum Theorem
180°
∠𝑥 + 140° =180°
∠𝑥 =𝟏𝟖𝟎° − 140°
∠𝒙 = 𝟒𝟎°
∠𝑪
R
S
O
30°
110°
∠𝒔 = 𝟒𝟎°
Example 3
∆𝐒𝐈𝐓 ≅ ∆𝑹𝑼𝑵, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒏.
R
N
U I
T
S
40°
90°
50°
(2n + 10)°
∠𝑺 ≅ 𝑆𝐼 ≅
∠𝑰 ≅ 𝐼𝑇 ≅
∠𝑻 ≅ 𝑆𝑇 ≅
∠𝑹
∠𝑼
∠𝑵
𝑹𝑼
𝑼𝑵
𝑹𝑵
∠𝑵 ≅ ∠𝑻
∠𝑵 = ∠𝑻
2𝒏 + 𝟏𝟎 = 𝟓𝟎
2𝒏 = 𝟓𝟎 − 𝟏𝟎
2𝒏 = 𝟒𝟎
𝒏 = 𝟐𝟎
∠𝑵 = (2𝒏 + 𝟏𝟎)°
∠𝑵 = 𝟐(𝟐𝟎) + 𝟏𝟎 °
∠𝑵 = 𝟒𝟎 + 𝟏𝟎 °
∠𝑁 = 50°
Example 4
∆𝑳𝑬𝑻 ≅ ∆𝑵𝑶𝑾, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙.
30 cm
4x-2 cm
∠𝑳 ≅ 𝐿𝐸 ≅
∠𝑬 ≅ 𝐸𝑇 ≅
∠𝑻 ≅ 𝑇𝐿 ≅
∠𝑵
∠𝑶
∠𝑾
𝑵𝑶
𝑶𝑾
𝑾𝑵
Solve for x:
𝑳𝑬 ≅ 𝑵𝑶
𝐿𝐸 = 𝑁𝑂
3𝑥 − 5 = 70
3𝑥 = 70 + 5
3𝑥 = 75
Divide it both side by 3
𝒙 = 𝟐𝟓
𝑬𝑻 ≅ 𝑶𝑾
𝐸𝑇 = 𝑂𝑊
30 = 4𝑥 − 2
30 + 2 = 4𝑥
32 = 4𝑥
Divide it, both side by 4
X=8
L
E T
N
O W
Example 4
∆𝑳𝑬𝑻 ≅ ∆𝑵𝑶𝑾, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙.
30 cm
4x-2 cm
∠𝑳 ≅ 𝐿𝐸 ≅
∠𝑬 ≅ 𝐸𝑇 ≅
∠𝑻 ≅ 𝑇𝐿 ≅
∠𝑵
∠𝑶
∠𝑾
𝑵𝑶
𝑶𝑾
𝑾𝑵
Solve for x:
𝑳𝑬 ≅ 𝑵𝑶
𝐿𝐸 = 𝑁𝑂
3𝑥 − 5 = 70
3𝑥 = 70 + 5
3𝑥 = 75
Divide it both side by three
𝒙 = 𝟐𝟓
𝑬𝑻 ≅ 𝑶𝑾
𝐸𝑇 = 𝑂𝑊
30 = 4𝑥 − 2
30 + 2 = 4𝑥
32 = 4𝑥
Divide it, both side by 4
X=8
𝑻𝑳 ≅ 𝑾𝑵
𝑻𝑳 = 𝑾𝑵
19 = 6𝑥 − 5
19 + 5 = 6𝑥
24 = 6𝑥
Divide it, both side by 6
𝒙 = 𝟒
L
E T
N
O W
N
O W
Activity Time!
∆𝐁𝐄𝐂 ≅ ∆𝑩𝑶𝑪, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙.
CORRESPONDING
CONGRUENT ANGLES
CORRESPONDING
CONGRUENT SIDES
(2n + 5)°
35
45
100
Activity Time!
∆𝐑𝐈𝐄 ≅ ∆𝑹𝑳𝑬, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙.
CORRESPONDING
CONGRUENT ANGLES
CORRESPONDING
CONGRUENT SIDES
70 cm
Assignment:
∆𝐌𝐎𝐀 ≅ ∆𝑨𝑹𝑬, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒏.
Activity Time!
∆𝐌𝐀𝐍 ≅ ∆𝑫𝑬𝑵, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙.
CORRESPONDING
CONGRUENT ANGLES
CORRESPONDING
CONGRUENT SIDES
M
E
D
N
N
A
130°
20° x°
Activity:
∆𝐌𝐎𝐀 ≅ ∆𝑨𝑹𝑬, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒏.
R
E
A
M
A
O
70°
20°
50°
(2n + 10)°
CORRESPONDING
CONGRUENT ANGLES
CORRESPONDING
CONGRUENT SIDES
Assessment:
∆𝐌𝐎𝐀 ≅ ∆𝑨𝑹𝑬, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒂𝒏𝒈𝒍𝒆 𝒏, 𝒙 𝒂𝒏𝒅 𝒔𝒊𝒅𝒆 𝒙 .
R
E
A
M
A
O
75
50°
(2n + 10)°
CORRESPONDING
CONGRUENT ANGLES
CORRESPONDING
CONGRUENT SIDES
x
20 cm
7x - 3 cm
90 cm
Thank You.

FOR TOMORROW- Solving Corresponding Congruent Triangle.pptx

  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
    When we cansay that the triangle are congruent?
  • 14.
    Two triangle arecongruent when their corresponding sides are equal in length, and their corresponding angles are equal in measure.
  • 15.
  • 16.
  • 17.
  • 18.
    TYPE OF MOTION 13 7 7 6 8 2
  • 19.
  • 20.
  • 21.
  • 22.
    CONGRUENT TRIANGLE B A C F E D ∠A↔_____ ∠𝐵 ↔_____ ∠𝐶 ↔ _____ CORRESPONDING ANGLES CORRESPONDING SIDES ∠D ∠E ∠F 𝐴𝐵 ↔ ______ 𝐵𝐶 ↔ ______ 𝐴𝐶 ↔ ______ 𝐷𝐸 𝐸𝐹 𝐷𝐹 ∠A ≅ ∠D ∠𝐵 ≅ ∠E ∠𝐶 ≅ ∠F 𝐴𝐵 ≅ 𝐷𝐸 𝐵𝐶 ≅ 𝐸𝐹 𝐴𝐶 ≅ 𝐷𝐹 Congruence Statement: ∆ 𝐴𝐵𝐶 ≅ ∆ 𝐷𝐸𝐹
  • 23.
    Example 1: B A C F E D ∠A ≅∠D ∠𝐵 ≅ ∠E ∠𝐶 ≅ ∠F 𝐴𝐵 ≅ 𝐷𝐸 𝐵𝐶 ≅ 𝐸𝐹 𝐴𝐶 ≅ 𝐷𝐹 CORRESPONDING ANGLES CORRESPONDING SIDES Congruence Statement: ∆ 𝐴𝐵𝐶 ≅ ∆ 𝐷𝐸𝐹 ∠A = 80° ∠𝐃 = 80° ∠𝑩 = 60° ∠𝑬 = 60° ∠𝐂 = 40° ∠𝑭 = 40° 𝐴𝐵 𝐷𝐸 𝐵𝐶 𝐸𝐹 𝐷𝐹 𝐴𝐶 𝟖𝟎° 𝟖𝟎° 60° 60° 40° 40°
  • 24.
    Example 2: ∆𝐑𝐎𝐒 ≅∆𝑪𝑨𝑵, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙. C N A ∠𝐑 ≅ 𝑅𝑂 ≅ ∠𝑶 ≅ 𝑂𝑆 ≅ ∠𝐒 ≅ 𝑅𝑆 ≅ ∠𝑨 ∠𝑵 𝑪𝑨 𝑨𝑵 𝑪𝑵 30° 110° ∠𝑥 + 30° + 110° = Triangle Sum Theorem 180° ∠𝑥 + 140° =180° ∠𝑥 =𝟏𝟖𝟎° − 140° ∠𝒙 = 𝟒𝟎° ∠𝑪 R S O 30° 110° ∠𝒔 = 𝟒𝟎°
  • 25.
    Example 3 ∆𝐒𝐈𝐓 ≅∆𝑹𝑼𝑵, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒏. R N U I T S 40° 90° 50° (2n + 10)° ∠𝑺 ≅ 𝑆𝐼 ≅ ∠𝑰 ≅ 𝐼𝑇 ≅ ∠𝑻 ≅ 𝑆𝑇 ≅ ∠𝑹 ∠𝑼 ∠𝑵 𝑹𝑼 𝑼𝑵 𝑹𝑵 ∠𝑵 ≅ ∠𝑻 ∠𝑵 = ∠𝑻 2𝒏 + 𝟏𝟎 = 𝟓𝟎 2𝒏 = 𝟓𝟎 − 𝟏𝟎 2𝒏 = 𝟒𝟎 𝒏 = 𝟐𝟎 ∠𝑵 = (2𝒏 + 𝟏𝟎)° ∠𝑵 = 𝟐(𝟐𝟎) + 𝟏𝟎 ° ∠𝑵 = 𝟒𝟎 + 𝟏𝟎 ° ∠𝑁 = 50°
  • 26.
    Example 4 ∆𝑳𝑬𝑻 ≅∆𝑵𝑶𝑾, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙. 30 cm 4x-2 cm ∠𝑳 ≅ 𝐿𝐸 ≅ ∠𝑬 ≅ 𝐸𝑇 ≅ ∠𝑻 ≅ 𝑇𝐿 ≅ ∠𝑵 ∠𝑶 ∠𝑾 𝑵𝑶 𝑶𝑾 𝑾𝑵 Solve for x: 𝑳𝑬 ≅ 𝑵𝑶 𝐿𝐸 = 𝑁𝑂 3𝑥 − 5 = 70 3𝑥 = 70 + 5 3𝑥 = 75 Divide it both side by 3 𝒙 = 𝟐𝟓 𝑬𝑻 ≅ 𝑶𝑾 𝐸𝑇 = 𝑂𝑊 30 = 4𝑥 − 2 30 + 2 = 4𝑥 32 = 4𝑥 Divide it, both side by 4 X=8 L E T N O W
  • 27.
    Example 4 ∆𝑳𝑬𝑻 ≅∆𝑵𝑶𝑾, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙. 30 cm 4x-2 cm ∠𝑳 ≅ 𝐿𝐸 ≅ ∠𝑬 ≅ 𝐸𝑇 ≅ ∠𝑻 ≅ 𝑇𝐿 ≅ ∠𝑵 ∠𝑶 ∠𝑾 𝑵𝑶 𝑶𝑾 𝑾𝑵 Solve for x: 𝑳𝑬 ≅ 𝑵𝑶 𝐿𝐸 = 𝑁𝑂 3𝑥 − 5 = 70 3𝑥 = 70 + 5 3𝑥 = 75 Divide it both side by three 𝒙 = 𝟐𝟓 𝑬𝑻 ≅ 𝑶𝑾 𝐸𝑇 = 𝑂𝑊 30 = 4𝑥 − 2 30 + 2 = 4𝑥 32 = 4𝑥 Divide it, both side by 4 X=8 𝑻𝑳 ≅ 𝑾𝑵 𝑻𝑳 = 𝑾𝑵 19 = 6𝑥 − 5 19 + 5 = 6𝑥 24 = 6𝑥 Divide it, both side by 6 𝒙 = 𝟒 L E T N O W N O W
  • 28.
    Activity Time! ∆𝐁𝐄𝐂 ≅∆𝑩𝑶𝑪, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙. CORRESPONDING CONGRUENT ANGLES CORRESPONDING CONGRUENT SIDES (2n + 5)° 35 45 100
  • 29.
    Activity Time! ∆𝐑𝐈𝐄 ≅∆𝑹𝑳𝑬, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙. CORRESPONDING CONGRUENT ANGLES CORRESPONDING CONGRUENT SIDES 70 cm
  • 30.
    Assignment: ∆𝐌𝐎𝐀 ≅ ∆𝑨𝑹𝑬,𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒏.
  • 31.
    Activity Time! ∆𝐌𝐀𝐍 ≅∆𝑫𝑬𝑵, 𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒙. CORRESPONDING CONGRUENT ANGLES CORRESPONDING CONGRUENT SIDES M E D N N A 130° 20° x°
  • 32.
    Activity: ∆𝐌𝐎𝐀 ≅ ∆𝑨𝑹𝑬,𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒏. R E A M A O 70° 20° 50° (2n + 10)° CORRESPONDING CONGRUENT ANGLES CORRESPONDING CONGRUENT SIDES
  • 34.
    Assessment: ∆𝐌𝐎𝐀 ≅ ∆𝑨𝑹𝑬,𝒔𝒐𝒍𝒗𝒆 𝒇𝒐𝒓 𝒂𝒏𝒈𝒍𝒆 𝒏, 𝒙 𝒂𝒏𝒅 𝒔𝒊𝒅𝒆 𝒙 . R E A M A O 75 50° (2n + 10)° CORRESPONDING CONGRUENT ANGLES CORRESPONDING CONGRUENT SIDES x 20 cm 7x - 3 cm 90 cm
  • 35.