Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
EXAFS for Structural Characterization
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Why Extended X-ray Absorption Fine Structure ?
Diffraction XAFS
Diffraction XAFS
• Range of probe • Probes average, long
range structure ( > 10 nm)
• Probes local structural
environment ( < 1nm)
• Probes crystalline phase
only
• Probes local environment of
element irrespective of
crystallite particle size, of
crystalline/amorphous solids,
solutions, gases, etc.
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
XAS (X-ray Absorption Spectroscopy)
This is a general purpose term used to describe any experiment involving absorbed photons. It includes all of the acronyms below.
XANES (X-ray Absorption Near Edge Structure)
This is the portion of the X-ray absorption spectrum that extends from below the Fermi energy to about 20 volts above the Fermi
energy. It is purported to contain a wealth of structural and electronic information about the measured material.
NEXAFS (Near-Edge X-ray Absorption Fine Structure)
This is a synonym for XANES. There is no difference between the two. XANES should be used instead of NEXAFS.
EXAFS (Extended X-ray Absorption Fine Structure)
This is the portion of the absorption spectrum which starts about 20 volts above the Fermi energy. Typically the EXAFS is analyzed
by removing a background function with AUTOBK or a similar program. The resulting oscillatory function is the Fourier transformed.
XAFS (X-ray Absorption Fine Structure)
This is sometimes used a synonym for EXAFS, but is more appropriately used to mean the entire absorption spectrum. That is,
XAFS = XANES+EXAFS, thus XAFS is more a synonym for XAS than for EXAFS.
SEXAFS (Surface Extended X-ray Absorption Fine Structure)
This is EXAFS performed at a glancing angle so that only the region near the surface of the sample if probed.
DAFS (Diffraction Anomalous Fine Structure)
This is a resonant diffraction technique which combines the short range sensitivity of XAFS with the crystallographic sensitivity of
diffraction. This acronym was chosen to emphasize the similarity in theory and analysis of this technique with XAFS.
XAFS Acronyms
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Synchrotron radiation (SR) is ideal source for EXAFS
Intense, directional and spectrally monotonous
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Beamline status of PAL
From
http://pal.postech.ac.kr/
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
9B High Resolution Powder Diffraction
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
7D and 8C : XAFS and nano XAFS
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Why laboratory EXAFS spectrometer ?
[1] Ease of experiments
[2] Unlimited use of instrument
[3] Special samples, in-situ etc.
[1] Synchrotronlike resolution, 3 eV of much low
intensity, 106 cps vs. 109 cps from SR
[2] S/N ~ 1000: EXAFS oscillation is less than 10% of
background (accuracy better than 0.1%)
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Main problems in EXAFS measurement
[1] low intensity of X-ray flux
[2] degradation of the spectrum by 2nd and 3rd harmonics
[3] effect of non-smooth spectra distribution
[1] an extremely high tube current, e.g. 1,000 mA
(100 mA)
[2] narrow line focus, e.g. 0.1 mm at 6 deg take off
[3] low tube voltage operation, 10 ~ 30 kV (~ 40 kV)
[4] LaB6 or other-tungsten filament
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Typical arrangement in Lab-EXAFS measurement
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Rowland circle: Johann crystal
nλ=2dsinθ, θ1 =θ2= θ3= θ4= θ
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Principle of a linear spectrometer
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Type of monochromator crystals
[1] Effective utilization of X-rays
[2] Elimination of unnecessary X-rays originating
from different order reflections
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
R-EXAFS 3000V laboratory EXAFS spectrometer
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
R-EXAFS 2100S laboratory EXAFS spectrometer
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
X
Transmitted x-rays
Incident x-rays
Scattered x-rays
Fluorescence x-rays
If Photoelectrons
I
I0
μ X = ln
I0
I
Arrangement in R-XAS (Rigaku)
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Photograph of R-XAS (3 kw X-ray generator)
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
109
Mt
(266)
108
Hs
(265)
107
Bh
(262)
106
Sg
(263)
105
Db
(260)
104
Rf
(257)
89
Ac~
(227)
88
Ra
(226)
87
Fr
(223)
86
Rn
(222)
85
At
(210)
84
Po
(210)
83
Bi
209.0
82
Pb
207.2
81
Tl
204.4
80
Hg
200.5
79
Au
197.0
78
Pt
195.
77
Ir
190.2
76
Os
190.2
75
Re
186.2
74
W
183.9
73
Ta
180.9
72
Hf
178.
57
La*
138.
56
Ba
137.3
55
Cs
132.9
54
Xe
131.3
53
I
126.9
52
Te
127.6
51
Sb
121.8
50
Sn
118.7
49
In
114.8
48
Cd
112.4
47
Ag
107.9
46
Pd
106.
45
Rh
102.9
44
Ru
101.1
43
Tc
(98)
42
Mo
95.94
41
Nb
92.91
40
Zr
91.2
39
Y
88.9
38
Sr
87.62
37
Rb
85.47
36
Kr
83.80
35
Br
79.90
34
Se
78.96
33
As
74.92
32
Ge
72.59
31
Ga
69.72
30
Zn
65.39
29
Cu
63.55
28
Ni
58.6
27
Co
58.47
26
Fe
55.85
25
Mn
54.94
24
Cr
52.00
23
V
50.94
22
Ti
47.8
21
Sc
44.9
20
Ca
40.08
19
K
39.10
------- VIII -------
------- 8 -------
18
Ar
39.95
17
Cl
35.45
16
S
32.07
15
P
30.97
14
Si
28.09
13
Al
26.98
12
IIB
2B
11
IB
1B
10
9
8
7
VIIB
7B
6
VIB
6B
5
VB
5B
4
IVB
4B
3
IIIB
3B
12
Mg
24.31
11
Na
22.99
10
Ne
20.18
9
F
19.00
8
O
16.00
7
N
14.01
6
C
12.01
5
B
10.81
4
Be
9.012
3
Li
6.941
2
He
4.003
2
IIA
2A
1
H
1.008
71
Lu
175.0
70
Yb
173.0
69
Tm
168.9
68
Er
167.3
67
Ho
164.9
66
Dy
162.5
65
Tb
158.9
64
Gd
157.3
63
Eu
152.0
62
Sm
150.4
61
Pm
(147)
60
Nd
144.2
59
Pr
140.9
58
Ce
140.1
109
Mt
(266)
108
Hs
(265)
107
Bh
(262)
106
Sg
(263)
105
Db
(260)
104
Rf
(257)
89
Ac~
(227)
88
Ra
(226)
87
Fr
(223)
86
Rn
(222)
85
At
(210)
84
Po
(210)
83
Bi
209.0
82
Pb
207.2
81
Tl
204.4
80
Hg
200.5
79
Au
197.0
78
Pt
195.
77
Ir
190.2
76
Os
190.2
75
Re
186.2
74
W
183.9
73
Ta
180.9
72
Hf
178.
57
La*
138.
56
Ba
137.3
55
Cs
132.9
54
Xe
131.3
53
I
126.9
52
Te
127.6
51
Sb
121.8
50
Sn
118.7
49
In
114.8
48
Cd
112.4
47
Ag
107.9
46
Pd
106.
45
Rh
102.9
44
Ru
101.1
43
Tc
(98)
42
Mo
95.94
41
Nb
92.91
40
Zr
91.2
39
Y
88.9
38
Sr
87.62
37
Rb
85.47
36
Kr
83.80
35
Br
79.90
34
Se
78.96
33
As
74.92
32
Ge
72.59
31
Ga
69.72
30
Zn
65.39
29
Cu
63.55
28
Ni
58.6
27
Co
58.47
26
Fe
55.85
25
Mn
54.94
24
Cr
52.00
23
V
50.94
22
Ti
47.8
21
Sc
44.9
20
Ca
40.08
19
K
39.10
------- VIII -------
------- 8 -------
18
Ar
39.95
17
Cl
35.45
16
S
32.07
15
P
30.97
14
Si
28.09
13
Al
26.98
12
IIB
2B
11
IB
1B
10
9
8
7
VIIB
7B
6
VIB
6B
5
VB
5B
4
IVB
4B
3
IIIB
3B
12
Mg
24.31
11
Na
22.99
10
Ne
20.18
9
F
19.00
8
O
16.00
7
N
14.01
6
C
12.01
5
B
10.81
4
Be
9.012
3
Li
6.941
2
He
4.003
2
IIA
2A
1
H
1.008
71
Lu
175.0
70
Yb
173.0
69
Tm
168.9
68
Er
167.3
67
Ho
164.9
66
Dy
162.5
65
Tb
158.9
64
Gd
157.3
63
Eu
152.0
62
Sm
150.4
61
Pm
(147)
60
Nd
144.2
59
Pr
140.9
58
Ce
140.1
Ge(220) bent crystal, K edge
(4492 – 11866 eV) LIII edge
Ge(220) bent crystal, K edge
(4492 – 11866 eV) LIII edge
Ge(840) bent crystal, K edge
(14325 – 25514 eV)
Ge(840) bent crystal, K edge
(14325 – 25514 eV)
Si(400) (8947 – 16716 ev)
K edge
LIII edge
Crystal and energy range of R-XAS
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
0 1 2 3 4 5 6
0
10
20
30
40
50
60
LiMnCoNiO2
(Co)-Pohang Accelerator
Fourier
trasform
R (A)
Exp.
Fitting
7400 7600 7800 8000 8200 8400
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
Normalized
Absorbance
(a.u.)
Energy (eV)
LiMnCoNiO2
(Co)-Pohang Accelerator
-6.9
E0/eV
0 (0.0004)
33(0.0004)
σ2 (pm2)c
12.0
Rf(%)d
12.28(0.6529)
11.49(0.7219)
1.916(0.0276)
2.846(0.0025)
Co-O
Co-Co
Co
Nb
R (Å)a
Atomic pair
-6.9
E0/eV
0 (0.0004)
33(0.0004)
σ2 (pm2)c
12.0
Rf(%)d
12.28(0.6529)
11.49(0.7219)
1.916(0.0276)
2.846(0.0025)
Co-O
Co-Co
Co
Nb
R (Å)a
Atomic pair
Structure parameters of LiMnCoNiO2(Co)
7200 7400 7600 7800 8000 8200 8400
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
Energy (eV)
Normalized
Absorbance
(a.u.)
LiMnCoNiO2
(Co)-CDFC
0 1 2 3 4 5
0
10
20
30
40
50
60
R (A)
Exp.
Fitting
LiMnCoNiO2
(Co)-CDFC
-5.47
E0/eV
0
32(0.0006)
σ2 (pm2)c
15
Rf(%)d
12.79(0.7)
10.56(0.7)
1.915(0.0030)
2.844(0.0027)
Co-O
Co-Co
Co
Nb
R (Å)a
Atomic pair
-5.47
E0/eV
0
32(0.0006)
σ2 (pm2)c
15
Rf(%)d
12.79(0.7)
10.56(0.7)
1.915(0.0030)
2.844(0.0027)
Co-O
Co-Co
Co
Nb
R (Å)a
Atomic pair
Data comparison: R-XAS vs. Synchrotron EXAFS
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Data comparison: R-XAS vs. Synchrotron EXAFS
0 1 2 3 4 5 6
0
10
20
30
40
50
R (A)
Fourier
trasform
Exp.
Fitting
LiMnCoNiO2
(Mn)-Pohang Accelerator
6200 6400 6600 6800 7000 7200 7400 7600
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2 LiMnCoNiO2
(Mn)-Pohang Accelerator
Normalized
Absorbance
(a.u.)
Energy (eV)
-5.1
E0/eV
0 (0.0005)
18(0.0005)
σ2 (pm2)c
14.0
Rf(%)d
10.23(0.7041
)
6.41(0.6497)
1.9030.0037)
2.877(0.0036)
Mn-O
Mn-Mn
Mn
Nb
R (Å)a
Atomic pair
-5.1
E0/eV
0 (0.0005)
18(0.0005)
σ2 (pm2)c
14.0
Rf(%)d
10.23(0.7041
)
6.41(0.6497)
1.9030.0037)
2.877(0.0036)
Mn-O
Mn-Mn
Mn
Nb
R (Å)a
Atomic pair
Structure parameters of LiMnCoNiO2(Mn)
6300 6400 6500 6600 6700 6800 6900 7000 7100
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
Normalized
Absorbance
(a.u.)
Energy (eV)
LiMnCoNiO2
(Mn)-CDFC
0 1 2 3 4 5 6
0
10
20
30
40
50
R (A)
LiMnCoNiO2
(Mn)-CDFC
Exp.
Fitting
-2.95
E0/eV
23(0.0001)
21(0.0002)
σ2 (pm2)c
19.0
Rf(%)d
8.12(0.6)
5.41(0.6)
1.905(0.0044)
2.874(0.0045)
Mn-O
Mn-Mn
Mn
Nb
R (Å)a
Atomic pair
-2.95
E0/eV
23(0.0001)
21(0.0002)
σ2 (pm2)c
19.0
Rf(%)d
8.12(0.6)
5.41(0.6)
1.905(0.0044)
2.874(0.0045)
Mn-O
Mn-Mn
Mn
Nb
R (Å)a
Atomic pair
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
6520 6540 6560 6580 6600 6620
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Mn K edge
Absorbance
(a.u.)
Energy (eV)
5-1(Mn)
5-2(Mn)
5-3(Mn)
5-4(Mn)
5-5(Mn)
Mn2
O3
MnO2
0 1 2 3 4 5 6
0
10
20
30
Fourier
transform
R (A)
5-1(Mn)
5-2(Mn)
5-3(Mn)
5-4(Mn)
5-5(Mn)
Analysis Result in LiNi1/3 Co1/3 Mn1/3O2 for Cathode Materials
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Redox property of LiFePO4 electrodes by in-situ XAS
A. Deb et al. Electrochemica Acta 50 (2005) 5200
Normalized XANES data at the Fe K edge during charge. Radial distribution function obtained after Fourier
transformation of kχ(k) observed at the stages (a) A,
(b) B, (c) C, (d) D and (e) E. The solid line and circle
indicate the theoretical fit and experimental data,
respectively.
Fe2+ → Fe3+
in LiFePO4 in FePO4
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Structural parameter change during cell cycling
First shell average metal-oxygen and second shell average metal-
phosphorus bond length changes during Li/LixFePO4 cell cycling
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Electronic structure change upon charge-discharge
for LiNi1/3 Co1/3 Mn1/3O2 (H. Kobayashi et al. J. Power Sources 146 (2005) 640)
Ni K-edge XANES spectra for Li1-yNi1/3Mn1/3Co1/3O2 (y=0-0.7)
Ni2+ → Ni3+ → Ni4+
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Metal-O bond length as evidence for change of valence state
Co3+ → Co4+
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Preparation of Mn-substituted LiFeO2
with advanced battery performance
XRD patterns of (a) 10%, (b) 30%, (c) 50% Mn-substituted LiFeO2 and
LixMnO2. These materials were calcined at 350 °C for 15 h in argon.
Y. S. Lee et al. Electrochemistry Communications 5 (2003) 359
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Specific discharge capacity versus cycle number for Li/Mn-substituted
LiFeO2 cells. (a) 10%, (b) 30%, (c) 50% Mn-substituted LiFeO2. The test
conditions were current density of 0.4 mA/cm2 between 1.5-4.5 V at 25 °C.
Cycle property of Mn-substituted LiFeO2
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
10 20 30 40 50 60 70 80
LiFe0.8
Ni0.2
O2
-Lix
MnO2
(60%)
LiFe0.6
Ni0.4
O2
-Lix
MnO2
(60%)
LiFe0.7
Ni0.3
O2
-Lix
MnO2
(60%)
LiFe0.9
Ni0.1
O2
-Lix
MnO2
(60%)
LiFeO2
-Lix
MnO2
(60%)
Intensity
/
arb.unit
2theta/degree
Preparation of Ni-substituted LiFeO2-LixMnO2
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
1
2
3
4
5
1
2
3
4
1
2
3
4
0 50 100 150 200
1
2
3
4
1
2
3
4
y=0.0
y=0.1
y=0.3
y=0.4
Cell
voltage
(V)
Capacity(mAh/g)
Cell
voltage
(V)
Cell
voltage
(V)
Cell
voltage
(V)
Cell
voltage
(V)
y=0.2
Charge-discharge capacity of Ni-substituted LiFeO2-LixMnO2
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
0 10 20 30 40 50
0
50
100
150
200
Capacity(mAh/g)
Cycle Number
LiFeO2
-Lix
MnO2
(60%)
LiFe0.9
Ni0.1
O2
-Lix
MnO2
(60%)
LiFe0.8
Ni0.2
O2
-Lix
MnO2
(60%)
LiFe0.7
Ni0.3
O2
-Lix
MnO2
(60%)
LiFe0.6
Ni0.4
O2
-Lix
MnO2
(60%)
Cycle property of Ni-substituted LiFeO2-LixMnO2
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
XPS analysis of electrode before and after charge-discharge test
Li1-xFeO2LixMnO2 Li1-xFe0.8Ni0.2O2LixMnO2
Fe: +3 +3
Ni: +2
Mn: +4 +4
Li/Li1-xFeO2LixMnO2 Li/Li1-xFe0.8Ni0.2O2LixMnO2
Fe: +3 +3
Ni: +2 → +2, +3 → +3
Mn: +4 +4
Cycling
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Wave vector (nm-1)
0 20 40 60 80 100 120 140 160
k
3
χ(k)
Distance (nm)
0.0 0.1 0.2 0.3 0.4 0.5 0.6
FT
Intensity
XAFS data analysis at Fe K edge
Li1-xFe0.9Ni0.1O2LixMnO2
Li1-xFeO2LixMnO2
Li1-xFe0.8Ni0.2O2LixMnO2
Li1-xFe0.7Ni0.3O2LixMnO2
Li1-xFe0.6Ni0.4O2LixMnO2
Li1-xFe0.5Ni0.5O2LixMnO2
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Wave vector (nm-1)
0 20 40 60 80 100 120 140
k
3
χ(k)
Distance (nm)
0.0 0.1 0.2 0.3 0.4 0.5 0.6
FT
Intensity
XAFS data analysis at Mn K edge
Li1-xFe0.9Ni0.1O2LixMnO2
Li1-xFeO2LixMnO2
Li1-xFe0.8Ni0.2O2LixMnO2
Li1-xFe0.7Ni0.3O2LixMnO2
Li1-xFe0.6Ni0.4O2LixMnO2
Li1-xFe0.5Ni0.5O2LixMnO2
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
XAFS data analysis at Ni K edge
Wave vector (nm-1)
0 20 40 60 80 100 120 140
k
3
χ(k)
Distance (nm)
0.0 0.1 0.2 0.3 0.4 0.5 0.6
FT
Intensity Li1-xFe0.9Ni0.1O2LixMnO2
Li1-xFe0.8Ni0.2O2LixMnO2
Li1-xFe0.7Ni0.3O2LixMnO2
Li1-xFe0.6Ni0.4O2LixMnO2
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
y, Ni/(Fe+Ni) 0 0.1 0.2 0.3 0.4
RFe-O (nm) 0.197 0.196 0.197 0.194 0.198
RMn-O (nm) 0.190 0.190 0.190 0.190 0.190
RNi-O (nm) 0.204 0.205 0.207 0.204
NFe-O 6.1 6.0 6.2 6.1 6.3
NMn-O 3.4 3.4 3.4 3.0 3.4
NNi-O 4.5 6.7 4.7 5.3
RFe-Fe (nm) 0.299 0.299 0.298 0.297 0.300
RMn-Mn (nm) 0.287 0.288 0.288 0.288 0.288
RNi-(Ni)(nm) 0.292 0.292 0.295 0.293
NFe-Fe 6.1 5.4 4.3 6.6 6.0
NMn-Mn 2.6 2.8 2.8 2.7 2.7
NNi-(Ni) 4.6 9.2 7.8 7.2
Structural parameters of the Li1-xFe1-yNiyO2LixMnO2
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
In-situ Cell Unit Low-temperature Cell Unit
Special Cell Units for Various Needs
Field of applications can be broadened
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
장비명 : X-ray Absorption Spectroscopy
모델명 : R-XAS (Rigaku, Japan)
In-situ cell system and Lab-EXAFS
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
대기중 분석
•온 도 : R.T.
•압 력 : 1bar
•기 체 : Air
•온 도 : R.T. ~ 600 ℃
•진공도 : 10-3 torr
•기 체 : H2, O2, N2, He
in-situ 분석
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
1단계 : in-situ cell 분해 2단계 : 시료홀더에 시료 삽입
3단계 : 시료홀더 장착 4단계 : 조립
In-situ cell assembly
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
본체
내부 시스템
In-situ cell controller
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
In-situ Electrochemical cell
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Electrochemical capacitor: RuO2/Carbon-CNT
SEM images of nanocomposite: (a) Electrospun PAN web, (b) Electrospun PAN-CNT web, (c)
Activated PAN web, (d) Activated PAN-CNT web, (e) RuO2/carbon, and (f) RuO2/carbon-CNT.
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
0 5 10 15 20
100
150
200
250
300
350
400
450
500
550
600
Carbon-CNT
Carbon
Specific
Capacitance
(F/g)
Content of RuO2
(wt%)
0.0 0.2 0.4 0.6 0.8 1.0
-0.025
-0.020
-0.015
-0.010
-0.005
0.000
0.005
0.010
0.015
0.020
0.025
0.030
Current
(A)
Potential (V)
RuO2
/Carbon-CNT
RuO2
/Carbon
Carbon-CNT
Carbon
Preparation of RuO2/Carbon-CNT
1. Impregnation of RuCl3 solution onto the carbon or the carbon-CNT
2. Reduction of ruthenium oxide with NaBH4 solution
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Photon Energy (eV)
21800 22000 22200 22400 22600 22800 23000
Absorption
Intensity
Wave Vector (nm-1
)
0 20 40 60 80 100 120 140
k
3
χ(k)
Distance (nm)
0.0 0.1 0.2 0.3 0.4 0.5
FT
Intensity
Data analysis of the XAFS obtained at Ru K edge
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Distance (nm)
0.0 0.1 0.2 0.3 0.4 0.5
FT
Intensity
Curve fitting of the XAFS obtained at Ru K edge
Pair N R (nm) σ2 (pm2)
Ru-O 2 1.833 14.5
Ru-O 4 2.014 21.0
Ru-Ru 1 3.095 79.6
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
R (A)
0 1 2 3 4 5
FT
Intensity
0
1
2
3
4
5
Wave vector (k
-1
)
0 2 4 6 8 10 12 14
k
3
χ(k)
-4
-3
-2
-1
0
1
2
3
4
Extended X-ray absorption fine structure at Pd
K edge of 8 wt% Pd nanoporous carbon
Pd in the carbon framework contained the Pd-Pd and
Pd-C coordination, which indicated the formation of
Pd/PdC nanoparticles.
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
X-ray absorption energy, E-E0 (eV)
-100 -80 -60 -40 -20 0 20 40 60 80 100
X-ray
absorption
(a.u.)
2 wt% Pd in carbon
4 wt% Pd in carbon
8 wt% Pd in carbon
Edge shift ~ 5 eV
X-ray absorption near edge structure at Pd K
edge as function of Pd concentration
Clean Energy Technology Laboratory, Department of Applied Chemical Engineering
Structural parameters of Pd incorporated
nanoporous carbon from the curve fit
Pd wt% Pair CN R σ2 (pm2)a
4 Pd-Pd 1.6 2.71 48
Pd-C 1.6 2.77 -
8 Pd-Pd 1.6 2.75 66
Pd-C 1.3 2.56 -
aThe Debye-Waller factor. The many reduction factor was assumed
to be 0.9.
Identification of Pd-C bond was direct evidence for the
formation of PdC in the nanoporous carbon framework.

EXAFS for Structural Characterization, Extended X-ray Absorption Fine Structure

  • 1.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering EXAFS for Structural Characterization
  • 2.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Why Extended X-ray Absorption Fine Structure ? Diffraction XAFS Diffraction XAFS • Range of probe • Probes average, long range structure ( > 10 nm) • Probes local structural environment ( < 1nm) • Probes crystalline phase only • Probes local environment of element irrespective of crystallite particle size, of crystalline/amorphous solids, solutions, gases, etc.
  • 3.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering XAS (X-ray Absorption Spectroscopy) This is a general purpose term used to describe any experiment involving absorbed photons. It includes all of the acronyms below. XANES (X-ray Absorption Near Edge Structure) This is the portion of the X-ray absorption spectrum that extends from below the Fermi energy to about 20 volts above the Fermi energy. It is purported to contain a wealth of structural and electronic information about the measured material. NEXAFS (Near-Edge X-ray Absorption Fine Structure) This is a synonym for XANES. There is no difference between the two. XANES should be used instead of NEXAFS. EXAFS (Extended X-ray Absorption Fine Structure) This is the portion of the absorption spectrum which starts about 20 volts above the Fermi energy. Typically the EXAFS is analyzed by removing a background function with AUTOBK or a similar program. The resulting oscillatory function is the Fourier transformed. XAFS (X-ray Absorption Fine Structure) This is sometimes used a synonym for EXAFS, but is more appropriately used to mean the entire absorption spectrum. That is, XAFS = XANES+EXAFS, thus XAFS is more a synonym for XAS than for EXAFS. SEXAFS (Surface Extended X-ray Absorption Fine Structure) This is EXAFS performed at a glancing angle so that only the region near the surface of the sample if probed. DAFS (Diffraction Anomalous Fine Structure) This is a resonant diffraction technique which combines the short range sensitivity of XAFS with the crystallographic sensitivity of diffraction. This acronym was chosen to emphasize the similarity in theory and analysis of this technique with XAFS. XAFS Acronyms
  • 4.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Synchrotron radiation (SR) is ideal source for EXAFS Intense, directional and spectrally monotonous
  • 5.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering
  • 6.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Beamline status of PAL From http://pal.postech.ac.kr/
  • 7.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 9B High Resolution Powder Diffraction
  • 8.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 7D and 8C : XAFS and nano XAFS
  • 9.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Why laboratory EXAFS spectrometer ? [1] Ease of experiments [2] Unlimited use of instrument [3] Special samples, in-situ etc. [1] Synchrotronlike resolution, 3 eV of much low intensity, 106 cps vs. 109 cps from SR [2] S/N ~ 1000: EXAFS oscillation is less than 10% of background (accuracy better than 0.1%)
  • 10.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering
  • 11.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Main problems in EXAFS measurement [1] low intensity of X-ray flux [2] degradation of the spectrum by 2nd and 3rd harmonics [3] effect of non-smooth spectra distribution [1] an extremely high tube current, e.g. 1,000 mA (100 mA) [2] narrow line focus, e.g. 0.1 mm at 6 deg take off [3] low tube voltage operation, 10 ~ 30 kV (~ 40 kV) [4] LaB6 or other-tungsten filament
  • 12.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Typical arrangement in Lab-EXAFS measurement
  • 13.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Rowland circle: Johann crystal nλ=2dsinθ, θ1 =θ2= θ3= θ4= θ
  • 14.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Principle of a linear spectrometer
  • 15.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Type of monochromator crystals [1] Effective utilization of X-rays [2] Elimination of unnecessary X-rays originating from different order reflections
  • 16.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering R-EXAFS 3000V laboratory EXAFS spectrometer
  • 17.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering R-EXAFS 2100S laboratory EXAFS spectrometer
  • 18.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering X Transmitted x-rays Incident x-rays Scattered x-rays Fluorescence x-rays If Photoelectrons I I0 μ X = ln I0 I Arrangement in R-XAS (Rigaku)
  • 19.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Photograph of R-XAS (3 kw X-ray generator)
  • 20.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 109 Mt (266) 108 Hs (265) 107 Bh (262) 106 Sg (263) 105 Db (260) 104 Rf (257) 89 Ac~ (227) 88 Ra (226) 87 Fr (223) 86 Rn (222) 85 At (210) 84 Po (210) 83 Bi 209.0 82 Pb 207.2 81 Tl 204.4 80 Hg 200.5 79 Au 197.0 78 Pt 195. 77 Ir 190.2 76 Os 190.2 75 Re 186.2 74 W 183.9 73 Ta 180.9 72 Hf 178. 57 La* 138. 56 Ba 137.3 55 Cs 132.9 54 Xe 131.3 53 I 126.9 52 Te 127.6 51 Sb 121.8 50 Sn 118.7 49 In 114.8 48 Cd 112.4 47 Ag 107.9 46 Pd 106. 45 Rh 102.9 44 Ru 101.1 43 Tc (98) 42 Mo 95.94 41 Nb 92.91 40 Zr 91.2 39 Y 88.9 38 Sr 87.62 37 Rb 85.47 36 Kr 83.80 35 Br 79.90 34 Se 78.96 33 As 74.92 32 Ge 72.59 31 Ga 69.72 30 Zn 65.39 29 Cu 63.55 28 Ni 58.6 27 Co 58.47 26 Fe 55.85 25 Mn 54.94 24 Cr 52.00 23 V 50.94 22 Ti 47.8 21 Sc 44.9 20 Ca 40.08 19 K 39.10 ------- VIII ------- ------- 8 ------- 18 Ar 39.95 17 Cl 35.45 16 S 32.07 15 P 30.97 14 Si 28.09 13 Al 26.98 12 IIB 2B 11 IB 1B 10 9 8 7 VIIB 7B 6 VIB 6B 5 VB 5B 4 IVB 4B 3 IIIB 3B 12 Mg 24.31 11 Na 22.99 10 Ne 20.18 9 F 19.00 8 O 16.00 7 N 14.01 6 C 12.01 5 B 10.81 4 Be 9.012 3 Li 6.941 2 He 4.003 2 IIA 2A 1 H 1.008 71 Lu 175.0 70 Yb 173.0 69 Tm 168.9 68 Er 167.3 67 Ho 164.9 66 Dy 162.5 65 Tb 158.9 64 Gd 157.3 63 Eu 152.0 62 Sm 150.4 61 Pm (147) 60 Nd 144.2 59 Pr 140.9 58 Ce 140.1 109 Mt (266) 108 Hs (265) 107 Bh (262) 106 Sg (263) 105 Db (260) 104 Rf (257) 89 Ac~ (227) 88 Ra (226) 87 Fr (223) 86 Rn (222) 85 At (210) 84 Po (210) 83 Bi 209.0 82 Pb 207.2 81 Tl 204.4 80 Hg 200.5 79 Au 197.0 78 Pt 195. 77 Ir 190.2 76 Os 190.2 75 Re 186.2 74 W 183.9 73 Ta 180.9 72 Hf 178. 57 La* 138. 56 Ba 137.3 55 Cs 132.9 54 Xe 131.3 53 I 126.9 52 Te 127.6 51 Sb 121.8 50 Sn 118.7 49 In 114.8 48 Cd 112.4 47 Ag 107.9 46 Pd 106. 45 Rh 102.9 44 Ru 101.1 43 Tc (98) 42 Mo 95.94 41 Nb 92.91 40 Zr 91.2 39 Y 88.9 38 Sr 87.62 37 Rb 85.47 36 Kr 83.80 35 Br 79.90 34 Se 78.96 33 As 74.92 32 Ge 72.59 31 Ga 69.72 30 Zn 65.39 29 Cu 63.55 28 Ni 58.6 27 Co 58.47 26 Fe 55.85 25 Mn 54.94 24 Cr 52.00 23 V 50.94 22 Ti 47.8 21 Sc 44.9 20 Ca 40.08 19 K 39.10 ------- VIII ------- ------- 8 ------- 18 Ar 39.95 17 Cl 35.45 16 S 32.07 15 P 30.97 14 Si 28.09 13 Al 26.98 12 IIB 2B 11 IB 1B 10 9 8 7 VIIB 7B 6 VIB 6B 5 VB 5B 4 IVB 4B 3 IIIB 3B 12 Mg 24.31 11 Na 22.99 10 Ne 20.18 9 F 19.00 8 O 16.00 7 N 14.01 6 C 12.01 5 B 10.81 4 Be 9.012 3 Li 6.941 2 He 4.003 2 IIA 2A 1 H 1.008 71 Lu 175.0 70 Yb 173.0 69 Tm 168.9 68 Er 167.3 67 Ho 164.9 66 Dy 162.5 65 Tb 158.9 64 Gd 157.3 63 Eu 152.0 62 Sm 150.4 61 Pm (147) 60 Nd 144.2 59 Pr 140.9 58 Ce 140.1 Ge(220) bent crystal, K edge (4492 – 11866 eV) LIII edge Ge(220) bent crystal, K edge (4492 – 11866 eV) LIII edge Ge(840) bent crystal, K edge (14325 – 25514 eV) Ge(840) bent crystal, K edge (14325 – 25514 eV) Si(400) (8947 – 16716 ev) K edge LIII edge Crystal and energy range of R-XAS
  • 21.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 0 1 2 3 4 5 6 0 10 20 30 40 50 60 LiMnCoNiO2 (Co)-Pohang Accelerator Fourier trasform R (A) Exp. Fitting 7400 7600 7800 8000 8200 8400 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Normalized Absorbance (a.u.) Energy (eV) LiMnCoNiO2 (Co)-Pohang Accelerator -6.9 E0/eV 0 (0.0004) 33(0.0004) σ2 (pm2)c 12.0 Rf(%)d 12.28(0.6529) 11.49(0.7219) 1.916(0.0276) 2.846(0.0025) Co-O Co-Co Co Nb R (Å)a Atomic pair -6.9 E0/eV 0 (0.0004) 33(0.0004) σ2 (pm2)c 12.0 Rf(%)d 12.28(0.6529) 11.49(0.7219) 1.916(0.0276) 2.846(0.0025) Co-O Co-Co Co Nb R (Å)a Atomic pair Structure parameters of LiMnCoNiO2(Co) 7200 7400 7600 7800 8000 8200 8400 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 Energy (eV) Normalized Absorbance (a.u.) LiMnCoNiO2 (Co)-CDFC 0 1 2 3 4 5 0 10 20 30 40 50 60 R (A) Exp. Fitting LiMnCoNiO2 (Co)-CDFC -5.47 E0/eV 0 32(0.0006) σ2 (pm2)c 15 Rf(%)d 12.79(0.7) 10.56(0.7) 1.915(0.0030) 2.844(0.0027) Co-O Co-Co Co Nb R (Å)a Atomic pair -5.47 E0/eV 0 32(0.0006) σ2 (pm2)c 15 Rf(%)d 12.79(0.7) 10.56(0.7) 1.915(0.0030) 2.844(0.0027) Co-O Co-Co Co Nb R (Å)a Atomic pair Data comparison: R-XAS vs. Synchrotron EXAFS
  • 22.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Data comparison: R-XAS vs. Synchrotron EXAFS 0 1 2 3 4 5 6 0 10 20 30 40 50 R (A) Fourier trasform Exp. Fitting LiMnCoNiO2 (Mn)-Pohang Accelerator 6200 6400 6600 6800 7000 7200 7400 7600 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 LiMnCoNiO2 (Mn)-Pohang Accelerator Normalized Absorbance (a.u.) Energy (eV) -5.1 E0/eV 0 (0.0005) 18(0.0005) σ2 (pm2)c 14.0 Rf(%)d 10.23(0.7041 ) 6.41(0.6497) 1.9030.0037) 2.877(0.0036) Mn-O Mn-Mn Mn Nb R (Å)a Atomic pair -5.1 E0/eV 0 (0.0005) 18(0.0005) σ2 (pm2)c 14.0 Rf(%)d 10.23(0.7041 ) 6.41(0.6497) 1.9030.0037) 2.877(0.0036) Mn-O Mn-Mn Mn Nb R (Å)a Atomic pair Structure parameters of LiMnCoNiO2(Mn) 6300 6400 6500 6600 6700 6800 6900 7000 7100 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Normalized Absorbance (a.u.) Energy (eV) LiMnCoNiO2 (Mn)-CDFC 0 1 2 3 4 5 6 0 10 20 30 40 50 R (A) LiMnCoNiO2 (Mn)-CDFC Exp. Fitting -2.95 E0/eV 23(0.0001) 21(0.0002) σ2 (pm2)c 19.0 Rf(%)d 8.12(0.6) 5.41(0.6) 1.905(0.0044) 2.874(0.0045) Mn-O Mn-Mn Mn Nb R (Å)a Atomic pair -2.95 E0/eV 23(0.0001) 21(0.0002) σ2 (pm2)c 19.0 Rf(%)d 8.12(0.6) 5.41(0.6) 1.905(0.0044) 2.874(0.0045) Mn-O Mn-Mn Mn Nb R (Å)a Atomic pair
  • 23.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 6520 6540 6560 6580 6600 6620 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Mn K edge Absorbance (a.u.) Energy (eV) 5-1(Mn) 5-2(Mn) 5-3(Mn) 5-4(Mn) 5-5(Mn) Mn2 O3 MnO2 0 1 2 3 4 5 6 0 10 20 30 Fourier transform R (A) 5-1(Mn) 5-2(Mn) 5-3(Mn) 5-4(Mn) 5-5(Mn) Analysis Result in LiNi1/3 Co1/3 Mn1/3O2 for Cathode Materials
  • 24.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Redox property of LiFePO4 electrodes by in-situ XAS A. Deb et al. Electrochemica Acta 50 (2005) 5200 Normalized XANES data at the Fe K edge during charge. Radial distribution function obtained after Fourier transformation of kχ(k) observed at the stages (a) A, (b) B, (c) C, (d) D and (e) E. The solid line and circle indicate the theoretical fit and experimental data, respectively. Fe2+ → Fe3+ in LiFePO4 in FePO4
  • 25.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Structural parameter change during cell cycling First shell average metal-oxygen and second shell average metal- phosphorus bond length changes during Li/LixFePO4 cell cycling
  • 26.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Electronic structure change upon charge-discharge for LiNi1/3 Co1/3 Mn1/3O2 (H. Kobayashi et al. J. Power Sources 146 (2005) 640) Ni K-edge XANES spectra for Li1-yNi1/3Mn1/3Co1/3O2 (y=0-0.7) Ni2+ → Ni3+ → Ni4+
  • 27.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Metal-O bond length as evidence for change of valence state Co3+ → Co4+
  • 28.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Preparation of Mn-substituted LiFeO2 with advanced battery performance XRD patterns of (a) 10%, (b) 30%, (c) 50% Mn-substituted LiFeO2 and LixMnO2. These materials were calcined at 350 °C for 15 h in argon. Y. S. Lee et al. Electrochemistry Communications 5 (2003) 359
  • 29.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Specific discharge capacity versus cycle number for Li/Mn-substituted LiFeO2 cells. (a) 10%, (b) 30%, (c) 50% Mn-substituted LiFeO2. The test conditions were current density of 0.4 mA/cm2 between 1.5-4.5 V at 25 °C. Cycle property of Mn-substituted LiFeO2
  • 30.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 10 20 30 40 50 60 70 80 LiFe0.8 Ni0.2 O2 -Lix MnO2 (60%) LiFe0.6 Ni0.4 O2 -Lix MnO2 (60%) LiFe0.7 Ni0.3 O2 -Lix MnO2 (60%) LiFe0.9 Ni0.1 O2 -Lix MnO2 (60%) LiFeO2 -Lix MnO2 (60%) Intensity / arb.unit 2theta/degree Preparation of Ni-substituted LiFeO2-LixMnO2
  • 31.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 1 2 3 4 5 1 2 3 4 1 2 3 4 0 50 100 150 200 1 2 3 4 1 2 3 4 y=0.0 y=0.1 y=0.3 y=0.4 Cell voltage (V) Capacity(mAh/g) Cell voltage (V) Cell voltage (V) Cell voltage (V) Cell voltage (V) y=0.2 Charge-discharge capacity of Ni-substituted LiFeO2-LixMnO2
  • 32.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 0 10 20 30 40 50 0 50 100 150 200 Capacity(mAh/g) Cycle Number LiFeO2 -Lix MnO2 (60%) LiFe0.9 Ni0.1 O2 -Lix MnO2 (60%) LiFe0.8 Ni0.2 O2 -Lix MnO2 (60%) LiFe0.7 Ni0.3 O2 -Lix MnO2 (60%) LiFe0.6 Ni0.4 O2 -Lix MnO2 (60%) Cycle property of Ni-substituted LiFeO2-LixMnO2
  • 33.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering XPS analysis of electrode before and after charge-discharge test Li1-xFeO2LixMnO2 Li1-xFe0.8Ni0.2O2LixMnO2 Fe: +3 +3 Ni: +2 Mn: +4 +4 Li/Li1-xFeO2LixMnO2 Li/Li1-xFe0.8Ni0.2O2LixMnO2 Fe: +3 +3 Ni: +2 → +2, +3 → +3 Mn: +4 +4 Cycling
  • 34.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Wave vector (nm-1) 0 20 40 60 80 100 120 140 160 k 3 χ(k) Distance (nm) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 FT Intensity XAFS data analysis at Fe K edge Li1-xFe0.9Ni0.1O2LixMnO2 Li1-xFeO2LixMnO2 Li1-xFe0.8Ni0.2O2LixMnO2 Li1-xFe0.7Ni0.3O2LixMnO2 Li1-xFe0.6Ni0.4O2LixMnO2 Li1-xFe0.5Ni0.5O2LixMnO2
  • 35.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Wave vector (nm-1) 0 20 40 60 80 100 120 140 k 3 χ(k) Distance (nm) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 FT Intensity XAFS data analysis at Mn K edge Li1-xFe0.9Ni0.1O2LixMnO2 Li1-xFeO2LixMnO2 Li1-xFe0.8Ni0.2O2LixMnO2 Li1-xFe0.7Ni0.3O2LixMnO2 Li1-xFe0.6Ni0.4O2LixMnO2 Li1-xFe0.5Ni0.5O2LixMnO2
  • 36.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering XAFS data analysis at Ni K edge Wave vector (nm-1) 0 20 40 60 80 100 120 140 k 3 χ(k) Distance (nm) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 FT Intensity Li1-xFe0.9Ni0.1O2LixMnO2 Li1-xFe0.8Ni0.2O2LixMnO2 Li1-xFe0.7Ni0.3O2LixMnO2 Li1-xFe0.6Ni0.4O2LixMnO2
  • 37.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering y, Ni/(Fe+Ni) 0 0.1 0.2 0.3 0.4 RFe-O (nm) 0.197 0.196 0.197 0.194 0.198 RMn-O (nm) 0.190 0.190 0.190 0.190 0.190 RNi-O (nm) 0.204 0.205 0.207 0.204 NFe-O 6.1 6.0 6.2 6.1 6.3 NMn-O 3.4 3.4 3.4 3.0 3.4 NNi-O 4.5 6.7 4.7 5.3 RFe-Fe (nm) 0.299 0.299 0.298 0.297 0.300 RMn-Mn (nm) 0.287 0.288 0.288 0.288 0.288 RNi-(Ni)(nm) 0.292 0.292 0.295 0.293 NFe-Fe 6.1 5.4 4.3 6.6 6.0 NMn-Mn 2.6 2.8 2.8 2.7 2.7 NNi-(Ni) 4.6 9.2 7.8 7.2 Structural parameters of the Li1-xFe1-yNiyO2LixMnO2
  • 38.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering In-situ Cell Unit Low-temperature Cell Unit Special Cell Units for Various Needs Field of applications can be broadened
  • 39.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 장비명 : X-ray Absorption Spectroscopy 모델명 : R-XAS (Rigaku, Japan) In-situ cell system and Lab-EXAFS
  • 40.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 대기중 분석 •온 도 : R.T. •압 력 : 1bar •기 체 : Air •온 도 : R.T. ~ 600 ℃ •진공도 : 10-3 torr •기 체 : H2, O2, N2, He in-situ 분석
  • 41.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 1단계 : in-situ cell 분해 2단계 : 시료홀더에 시료 삽입 3단계 : 시료홀더 장착 4단계 : 조립 In-situ cell assembly
  • 42.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 본체 내부 시스템 In-situ cell controller
  • 43.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering In-situ Electrochemical cell
  • 44.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Electrochemical capacitor: RuO2/Carbon-CNT SEM images of nanocomposite: (a) Electrospun PAN web, (b) Electrospun PAN-CNT web, (c) Activated PAN web, (d) Activated PAN-CNT web, (e) RuO2/carbon, and (f) RuO2/carbon-CNT.
  • 45.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering 0 5 10 15 20 100 150 200 250 300 350 400 450 500 550 600 Carbon-CNT Carbon Specific Capacitance (F/g) Content of RuO2 (wt%) 0.0 0.2 0.4 0.6 0.8 1.0 -0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030 Current (A) Potential (V) RuO2 /Carbon-CNT RuO2 /Carbon Carbon-CNT Carbon Preparation of RuO2/Carbon-CNT 1. Impregnation of RuCl3 solution onto the carbon or the carbon-CNT 2. Reduction of ruthenium oxide with NaBH4 solution
  • 46.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Photon Energy (eV) 21800 22000 22200 22400 22600 22800 23000 Absorption Intensity Wave Vector (nm-1 ) 0 20 40 60 80 100 120 140 k 3 χ(k) Distance (nm) 0.0 0.1 0.2 0.3 0.4 0.5 FT Intensity Data analysis of the XAFS obtained at Ru K edge
  • 47.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Distance (nm) 0.0 0.1 0.2 0.3 0.4 0.5 FT Intensity Curve fitting of the XAFS obtained at Ru K edge Pair N R (nm) σ2 (pm2) Ru-O 2 1.833 14.5 Ru-O 4 2.014 21.0 Ru-Ru 1 3.095 79.6
  • 48.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering R (A) 0 1 2 3 4 5 FT Intensity 0 1 2 3 4 5 Wave vector (k -1 ) 0 2 4 6 8 10 12 14 k 3 χ(k) -4 -3 -2 -1 0 1 2 3 4 Extended X-ray absorption fine structure at Pd K edge of 8 wt% Pd nanoporous carbon Pd in the carbon framework contained the Pd-Pd and Pd-C coordination, which indicated the formation of Pd/PdC nanoparticles.
  • 49.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering X-ray absorption energy, E-E0 (eV) -100 -80 -60 -40 -20 0 20 40 60 80 100 X-ray absorption (a.u.) 2 wt% Pd in carbon 4 wt% Pd in carbon 8 wt% Pd in carbon Edge shift ~ 5 eV X-ray absorption near edge structure at Pd K edge as function of Pd concentration
  • 50.
    Clean Energy TechnologyLaboratory, Department of Applied Chemical Engineering Structural parameters of Pd incorporated nanoporous carbon from the curve fit Pd wt% Pair CN R σ2 (pm2)a 4 Pd-Pd 1.6 2.71 48 Pd-C 1.6 2.77 - 8 Pd-Pd 1.6 2.75 66 Pd-C 1.3 2.56 - aThe Debye-Waller factor. The many reduction factor was assumed to be 0.9. Identification of Pd-C bond was direct evidence for the formation of PdC in the nanoporous carbon framework.