SlideShare a Scribd company logo
1 of 17
Download to read offline
6. SOME IMPORTANT QUESTION - ANSWER FOR IGNOU BIOCHEMISTRY [CHE 9]
ENZYMES
Q. 1(A). What is the chemical nature of enzymes? [Enzymes рдХрд╛ рд░рд╛рд╕рд╛рдпрдирд┐рдХ рд╕реНрд╡рднрд╛рд╡ рдХ
реИ рд╕рд╛ рд╣реЛрддрд╛
рд╣реИ?]
Ans. Enzymes are a specialized class of proteins (ribozymes are the exception which are RNA
molecules) which act as biocatalysts in the metabolic reactions to speed up the rate of a specific
chemical reaction. The enzyme is not destroyed during the reaction and is used over and over.
Though many enzyme molecules are the true catalyst by themselves, some enzymes require
the presence of additional nonprotein molecules for the full expression of their catalytic function
and such enzymes are conjugated protein molecules. The protein part of an enzyme molecule is
called apoenzyme and the nonprotein part is called a cofactor. Thus the combination of an
apoenzyme and the cofactor is called holoenzyme.
Apoenzyme + Cofactor тАФ---> Holoenzyme
[Enzymes proteins рдХрд╛ рдПрдХ рд╡рд┐рд╢реЗрд╖реАрдХреГ рдд (specialized) рд╡рд░реНрдЧ рд╣реИрдВ (ribozymes рдХреЛ рдЫреЛреЬ рдХрд░, рдЬреЛ RNA molecules
рд╣реИрдВ) рдЬреЛ metabolic reactions рдореЗрдВ biocatalysts рдХрд╛ рдХрд╛рдо рдХрд░рддреЗ рд╣реИрдВ рдФрд░ рд╡рд┐рд╢реЗрд╖ chemical reactions рдХреА speed
рдмреЭрд╛рддреЗ рд╣реИрдВ I chemical reactions рдХ
реЗ рджреМрд░рд╛рди enzymes рдирд╖реНрдЯ рдирд╣реАрдВ рд╣реЛрддреЗ рдФрд░ рдмрд╛рд░ - рдмрд╛рд░ рдЗрд╕реНрддреЗрдорд╛рд▓ рд╣реЛрддреЗ рд╣реИрдВ I рдпрджреНрдпрдкрд┐
рдмрд╣реБрдд рд╕реЗ enzyme molecules рдЦреБрдж рд╣реА true catalyst рд╣реЛрддреЗ рд╣реИрдВ рдХрд┐рдиреНрддреБ рдХ
реБ рдЫ enzymes рдХреЛ рдкреВрд░реНрдг catalytic function
рд╣реЗрддреБ рдХ
реБ рдЫ рдЕрдиреНрдп molecules рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ рдФрд░ рдРрд╕реЗ enzymes conjugated protein molecules рд╣реЛрддреЗ
рд╣реИрдВ рдПрдХ enzyme molecule рдХрд╛ protein part apoenzyme рдФрд░ nonprotein cofactor рдХрд╣рд▓рд╛рддрд╛ рд╣реИ I рдЗрд╕ рдкреНрд░рдХрд╛рд░
рдПрдХ apoenzyme рдФрд░ рдПрдХ cofactor рдХрд╛ рд╕рдВрдпреЛрдЬрди holoenzyme рдХрд╣рд▓рд╛рддрд╛ рд╣реИ I
Apoenzyme + Cofactor тАФ---> Holoenzyme
Q. 1(B).Define the following terms (рдЗрди рд╢рдмреНрджрд╛рд╡рд▓реА рдХреЛ рдкрд░рд┐рднрд╛рд╖рд┐рдд рдХрд░реЗрдВ):
Enzyme, apoenzyme, holoenzyme, cofactor, coenzyme, prosthetic group, active site,
substrate, enzyme activity
Ans.
Enzymes - are a group of specialized proteins which act as biocatalysts in the metabolic
reactions to speed up the rate of a specific chemical reaction. The enzyme is not destroyed
during the reaction and is used over and over.
[Enzymes - proteins рдХрд╛ рдПрдХ рд╡рд┐рд╢реЗрд╖реАрдХреГ рдд (specialized) рд╡рд░реНрдЧ рд╣реИрдВ рдЬреЛ metabolic reactions рдореЗрдВ biocatalysts рдХрд╛
рдХрд╛рдо рдХрд░рддреЗ рд╣реИрдВ рдФрд░ рд╡рд┐рд╢реЗрд╖ chemical reactions рдХреА speed рдмреЭрд╛рддреЗ рд╣реИрдВ I chemical reactions рдХ
реЗ рджреМрд░рд╛рди enzymes
рдирд╖реНрдЯ рдирд╣реАрдВ рд╣реЛрддреЗ рдФрд░ рдмрд╛рд░ - рдмрд╛рд░ рдЗрд╕реНрддреЗрдорд╛рд▓ рд╣реЛрддреЗ рд╣реИрдВ I]
Apoenzyme - is the enzymatically inactive protein part of an enzyme, which requires a cofactor
for its activity.
[Apoenzyme - рдХрд┐рд╕реА enzyme рдХ
реЗ enzymatically inactive protein part рдХреЛ apoenzyme рдХрд╣рддреЗ рд╣реИрдВ I рдЗрд╕
inactive part рдХреЛ activate рдХрд░рдиреЗ рд╣реЗрддреБ рдПрдХ cofactor рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ I]
Holoenzyme - The combination of an Apoenzyme and the cofactor is called holoenzyme and is
a complete, functional enzyme, which is catalytically active.
[Holoenzyme - Apoenzyme рдФрд░ cofactor рдХ
реЗ рд╕рдВрдпреЛрдЬрди рд╕реЗ holoenzyme рдмрдирддрд╛ рд╣реИ рдФрд░ рдпрд╣реА рдПрдХ complete,
functional рдФрд░ catalytically active enzyme рд╣реЛрддрд╛ рд╣реИ I]
Cofactor - is the non protein part of an enzyme which is required for enzyme activity. e.g. Mg2+,
Zn++, NAD.
1
[Cofactor - рдпрд╣ enzyme рдХрд╛ non protein part рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕рдХреА enzyme activity рдХ
реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ
I рдЬреИрд╕реЗ - Mg++, Zn++, NAD]
Coenzyme - The non protein organic cofactor molecule is called coenzyme, such as vitamins of
B group.
[Coenzymes - рд╡реЛ organic compounds рд╣реЛрддреЗ рд╣реИрдВ рдЬрд┐рдирдХреА рдХрдИ enzymes рдХреЛ рдЙрдирдХреА catalytic activity рдХ
реЗ рд▓рд┐рдП
рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ I]
Prosthetic group - The tightly bound cofactor is called prosthetic group, such as heme group in
hemoglobin.
[Prosthetic group - рдЬрдм рдПрдХ cofactor рдПрдХ protein рдпрд╛ enzyme рд╕реЗ tightly bound рд╣реЛрддрд╛ рд╣реИ рддреЛ рдЙрд╕ cofactor
рдХреЛ prosthetic group рдХрд╣рддреЗ рд╣реИрдВ, рдЬреИрд╕реЗ - hemoglobin рдХрд╛ heme group ]
Active site - The part of an enzyme where all the events of the catalytic process occur is called
its active site.
[Active site - Enzyme рдХрд╛ рд╡реЛ рд╣рд┐рд╕реНрд╕рд╛ рдЬрд╣рд╛рдБ catalytic рдкреНрд░рдХреНрд░рд┐рдпрд╛ рдХ
реЗ рд╕рд╛рд░реЗ events рд╣реЛрддреЗ рд╣реИрдВ, active site рдХрд╣рд▓рд╛рддрд╛ рд╣реИ I]
Substrate - is the chemical substance which is transformed in a chemical reaction catalyzed by
an enzyme.
[Substrate - рд╡реЛ chemical substance рдЬрд┐рд╕рдХрд╛ transformation рдПрдХ enzyme рджреНрд╡рд╛рд░рд╛ catalyze рд╣реЛрддрд╛ рд╣реИ I]
Enzyme activity - The quantity or concentration of an enzymes is expressed in terms of activity
in enzyme units. An enzyme unit (activity as U or IU) is the amount of enzyme that will catalyse
the transformation of 1 ╬╝mol of substrate/min under specified conditions of pH and temperature.
[Enzyme activity - рдПрдХ enzyme рдХреА quantity рдпрд╛ concentration рдХреЛ enzyme activity рдХ
реЗ рд░реВрдк рдореЗрдВ рдЕрднрд┐рд╡реНрдпрдХреНрдд
рдХрд░рддреЗ рд╣реИрдВ рдФрд░ рдЗрд╕ activity рдХреЛ enzyme units рдореЗрдВ рджрд░реНрд╢рд╛рддреЗ рд╣реИрдВ I An enzyme unit (activity as U or IU) is the
amount of enzyme that will catalyse the transformation of 1 ╬╝mol of substrate/min under
specified conditions of pH and temperature.]
Q.2(A). Name the different classes of enzymes and describe any one with the help of an
example. [Enzymes рдХ
реЗ рд╡рд┐рднрд┐рдиреНрди рд╡рд░реНрдЧреЛрдВ рдХ
реЗ рдирд╛рдо рд▓рд┐рдЦреЗрдВ рдФрд░ рдХрд┐рд╕реА рдПрдХ рдХрд╛ рдЙрджрд╛рд╣рд░рдг рд╕рд╣рд┐рдд рд╡рд░реНрдгрди рдХрд░реЗрдВ I
Ans. The International Union of Biochemistry and Molecular Biology (IUBMB) has classified the
enzymes into six major classes on the basis of the type of reactions they catalyze. These six
classes are:
Class 1: Oxidoreductases
Class 2: Transferases
Class 3: Hydrolases
Class 4: Lyases
Class 5: Isomerases
Class 6: Ligases
These six major classes have sub classes, sub-subclasses.
Class 2: Transferases - The enzymes of this class catalyze the transfer of functional groups
between donors and acceptors. The transferred groups may be amino, acyl, phosphate, alkyl,
methyl, suphate etc. A typical example is ATP:D-hexose 6- phosphotransferase (trivial name -
hexokinase) which indicates that ATP is the phosphate donor, D-hexose is the phosphate group
acceptor and the transfer occurs to the hydroxyl group on 6-carbon position of hexose.
ATP + D-hexose тЗМ ADP + D-hexose 6-phosphate
2
[International Union of Biochemistry and Molecular Biology (IUBMB) рдиреЗ enzymes рдХреЛ рдЙрдирдХ
реЗ рджреНрд╡рд╛рд░рд╛
catalyze рдХрд┐рдпреЗ рдЧрдП reactions рдХ
реЗ рдкреНрд░рдХрд╛рд░ рдХ
реЗ рдЖрдзрд╛рд░ рдкрд░ рдЫрдГ рдкреНрд░рдореБрдЦ рд╡рд░реНрдЧреЛрдВ (major classes) рдореЗрдВ рд╡рд░реНрдЧреАрдХреГ рдд рдХрд┐рдпрд╛ рд╣реИ I рдпреЗ
six classes рд╣реИрдВ :
Class 1: Oxidoreductases
Class 2: Transferases
Class 3: Hydrolases
Class 4: Lyases
Class 5: Isomerases
Class 6: Ligases
рдЗрди six major classes рдХреЛ subclasses, sub-subclasses рдореЗрдВ рднреА рд╡рд░реНрдЧреАрдХреГ рдд рдХрд┐рдпрд╛ рдЧрдпрд╛ рд╣реИ I
Class 2: Transferases - рдЗрд╕ рд╡рд░реНрдЧ рдХ
реЗ enzymes donors рдФрд░ acceptors рдХ
реЗ рдордзреНрдп functional groups рдХреЛ
transfer рдХрд░рддреЗ рд╣реИрдВ I рдпреЗ transfer рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ groups amino, acyl, phosphate, alkyl, methyl, suphate
рдЖрджрд┐ рд╣реЛ рд╕рдХрддреЗ рд╣реИрдВ I рдПрдХ рд╡рд┐рд╢рд┐рд╖реНрдЯ рдЙрджрд╛рд╣рд░рдг рдХ
реЗ рддреМрд░ рдкрд░ enzyme ATP:D-hexose 6- phosphotransferase
(trivial name - hexokinase) рдХреЛ рд▓реЗ рд╕рдХрддреЗ рд╣реИрдВ рдЬреЛ рдпрд╣ рджрд░реНрд╢рд╛рддрд╛ рд╣реИ рдХрд┐ ATP phosphate donor рд╣реИ, D-hexose
phosphate group acceptor рд╣реИ рдФрд░ phosphate group рдХрд╛ transfer hexose рдХ
реЗ рдЫрдареЗ carbon рдХ
реЗ hydroxyl
group рдкрд░ рд╣реЛрддрд╛ рд╣реИ I
ATP + D-hexose тЗМ ADP + D-hexose 6-phosphate
Q. 2(B). How are enzymes given number, explain with the help of an example. [Enzymes
рдХреЛ рдХрд┐рд╕ рдЖрдзрд╛рд░ рдкрд░ рдирдореНрдмрд░ рджрд┐рдП рдЬрд╛рддреЗ рд╣реИрдВ, рдПрдХ рдЙрджрд╛рд╣рд░рдг рджреЗрдХрд░ рд╕рдордЭрд╛рдпреЗрдВ ]
Ans. The enzymes are given some recommended name for everyday use.. Likewise, enzymes
are assigned systematic names which identify the reactions they catalyze. In addition, each
enzyme is given a classification number which is used for accurate and unambiguous
identification of an enzyme which is required in international research journals, abstracts and
indexes. Example -
ATP + creatine тЗМ ADP + phosphocreatine
This reaction is catalyzed by the enzyme which has been assigned a recommended name
creatine kinase and a systematic name ATP:creatine phosphotransferase. Its classification
number is EC 2.7.3.2, where EC stands for Enzyme Commission, the first digit (2) for the class
name (Transferases), the second digit (7) for the subclass (phosphotransferases), the third digit
(3) for the sub-subclass (phosphotransferases with a nitrogenous group as acceptor) and the
fourth digit (2) designates creatine kinase (the recommended name of the enzyme).
[рдкреНрд░рддреНрдпреЗрдХ enzyme рдХрд╛ рд╕рд╛рдорд╛рдиреНрдп рддреМрд░ рдкрд░ рд░реЛреЫ рдЗрд╕реНрддреЗрдорд╛рд▓ рдХрд╛ рдПрдХ recommended name рд╣реЛрддрд╛ рд╣реИ I рдЗрд╕реА рдкреНрд░рдХрд╛рд░
рдкреНрд░рддреНрдпреЗрдХ enzyme рдХреЛ рдПрдХ systematic name рджрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ рдЬреЛ рдЙрд╕ enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдХреА
рдкрд╣рдЪрд╛рди рдХрд░рд╛рддрд╛ рд╣реИ I рдЗрд╕рдХ
реЗ рд╕рд╛рде - рд╕рд╛рде рдкреНрд░рддреНрдпреЗрдХ enzyme рдХрд╛ рдПрдХ classification number рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕рдХрд╛
рдЗрд╕реНрддреЗрдорд╛рд▓ enzyme рдХ
реЗ рдмрд┐рд▓реНрдХ
реБ рд▓ accurate рдФрд░ рд╕реНрдкрд╖реНрдЯ рд░реВрдк рд╕реЗ рдкрд╣рдЪрд╛рди рдХрд░рдиреЗ рд╣реЗрддреБ рд╣реЛрддрд╛ рд╣реИ рдЬреЛ international
research journals, abstracts рдФрд░ indexes рдХ
реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХ рд╣реЛрддрд╛ рд╣реИ I
рдЙрджрд╛рд╣рд░рдг :
ATP + creatine тЗМ ADP + phosphocreatine
рдпрд╣ reaction рдЬрд┐рд╕ enzyme рджреНрд╡рд╛рд░рд╛ catalyze рд╣реЛрддрд╛ рд╣реИ рдЙрд╕рдХрд╛ recommended name creatine kinase рд╣реИ рдФрд░
systematic name ATP:creatine phosphotransferase рд╣реИ I рдЗрд╕рдХрд╛ classification number EC 2.7.3.2 рд╣реИ
рдЬрд┐рд╕рдореЗрдВ EC рдХрд╛ рдорддрд▓рдм Enzyme commission рд╣реИ, рдкрд╣рд▓рд╛ рдЕрдВрдХ (2) class name (Transferases) рдХ
реЗ рд▓рд┐рдП, рджреВрд╕рд░рд╛
рдЕрдВрдХ (7) subclass (phosphotransferases) рдХ
реЗ рд▓рд┐рдП, рддреАрд╕рд░рд╛ рдЕрдВрдХ (3) sub-subclass
3
(phosphotransferases with a nitrogenous group as acceptor) рдХ
реЗ рд▓рд┐рдП рдФрд░ рдЪреМрдерд╛ рдЕрдВрдХ (2)
recommended name creatine kinase рдХреЛ рджрд░реНрд╢рд╛рддрд╛ рд╣реИ I
Q.3. What is catalytic efficiency of an enzyme?[рдПрдХ enzyme рдХреА catalytic efficiency рдХреНрдпрд╛ рд╣реЛрддреА
рд╣реИ?]
Ans. The catalytic efficiency of an enzyme means how efficiently the enzyme catalyzes the
conversion of the substrate into the product(s). It is expressed in terms of its turnover number
which indicates the number of substrate molecules which are transformed in one unit of time by
one molecule of an enzyme under optimal conditions of temperature and pH. Example: The
turnover number of carbonic anhydrase is 600000 per second and that of Lactate
dehydrogenase is 1000 per second. It means the catalytic efficiency of carbonic anhydrase is
much higher than that of Lactate dehydrogenase. In other words carbonic anhydrase catalyzes
the reaction much faster than lactate dehydrogenase.
[рдХрд┐рд╕реА enzyme рдХреА catalytic efficiency рдХрд╛ рдорддрд▓рдм рд╣реЛрддрд╛ рд╣реИ рдХрд┐ рд╡реЛ enzyme рдХрд┐рддрдиреА рджрдХреНрд╖рддрд╛ (efficiency) рдХ
реЗ
рд╕рд╛рде substrate рдХреЛ product(s) рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рдХрд░рддрд╛ рд╣реИ I рдЗрд╕рдХреЛ turnover рдХ
реЗ рд░реВрдк рдореЗрдВ рджрд░реНрд╢рд╛рддреЗ рд╣реИрдВ рдЬреЛ рд╣реЛрддрд╛ рд╣реИ
substrate рдХ
реЗ molecules рдХреА рд╕рдВрдЦреНрдпрд╛ рдЬреЛ enzyme рдХ
реЗ рдПрдХ molecule рджреНрд╡рд╛рд░рд╛ рд╕рдордп рдХреА рдПрдХ рдЗрдХрд╛рдИ рдореЗрдВ рдФрд░
рдЕрдиреБрдХ
реВ рд▓рддрдо pH рдПрд╡рдВ рддрд╛рдкрдорд╛рди рдкрд░ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рд╣реЛрддреЗ рд╣реИрдВ I рдЙрджрд╛рд╣рд░рдг - Carbonic anhydrase рдХрд╛ turnover number
600000 рдкреНрд░рддрд┐ рд╕реЗрдХ
рдВ рдб рд╣реИ рдФрд░ Lactate dehydrogenase рдХрд╛ 1000 рдкреНрд░рддрд┐ рд╕реЗрдХ
рдВ рдб рд╣реИ, рддреЛ рдЗрд╕рдХрд╛ рдЕрд░реНрде рд╣реБрдЖ рдХрд┐
carbonic anhydrase рдХреА catalytic efficiency lactate dehydrogenase рд╕реЗ рдмрд╣реБрдд рдЕрдзрд┐рдХ рд╣реИ I рджреВрд╕рд░реЗ рд╢рдмреНрджреЛрдВ рдореЗрдВ
carbonic anhydrase lactate dehydrogenase рдХреА рдЕрдкреЗрдХреНрд╖рд╛ рдЕрдзрд┐рдХ рддреЗрдЬреА рд╕реЗ reaction рдХреЛ catalyze рдХрд░рддрд╛ рд╣реИ I]
Q.4. Enzymes are highly specific in their action. Explain. [Enzymes рдЕрдкрдиреЗ action рдореЗрдВ рдЕрддреНрдпрдзрд┐рдХ
specific рд╣реЛрддреЗ рд╣реИрдВ, рд╡реНрдпрд╛рдЦреНрдпрд╛ рдХрд░реЗрдВ ] // What do you understand by enzyme specificity?[Enzyme рдХреА
specificity рд╕реЗ рдЖрдк рдХреНрдпрд╛ рд╕рдордЭрддреЗ рд╣реИрдВ?]
Ans. Enzyme specificity means selectivity of enzymes to their substrates i.e. to choose exact
substrate from a mixture of different chemical molecules. Thus enzymes are highly specific in
their action, both with respect to the substrate they act upon and the kind of reaction they
catalyse. And it involves strength of binding of the substrate to the enzyme and the velocity of
the enzyme catalyzed reaction. The degree of specificity varies from one enzyme to another.
The enzymes which are specific to a particular bond such as peptide bond, phosphodiester
bond or carboxylic ester bond are low in specificity. e.g. peptidases, phosphatases or esterases.
The enzymes which are specific to a particular group are intermediate in specificity such as
carboxypeptidase A specific for removal of C-terminal amino acids containing a free carboxyl
group or hexokinase which catalyzes the phosphorylation of a variety of D-hexoses. Urease is
an example of absolute enzyme specificity because it hydrolyses only urea. Some enzymes
have stereochemical specificity such as D-amino acid oxidase is specific for D-amino acids only.
The specificity of an enzyme with respect to its substrate or a bond to be broken, is determined
by the shape of the active site, it's topographical features and the proper disposition in space of
the amino acid residues participating in the process of substrate binding and catalysis. This
could be explained by " lock and key " hypothesis and the " induced fit " theory.
[Enzyme specificity рдХрд╛ рдЕрд░реНрде рд╣реИ enzymes рдХрд╛ рдЕрдкрдиреЗ substrate рдХ
реЗ рдкреНрд░рддрд┐ рдЪрдпрдирд╛рддреНрдордХрддрд╛ рдпрд╛рдирд┐ рд╡рд┐рднрд┐рдиреНрди рдХ
реЗ рдорд┐рдХрд▓
рдореЛрд▓реЗрдХреНрдпреВрд▓реНрд╕ рдХ
реЗ рдПрдХ рдорд┐рд╢реНрд░рдг рд╕реЗ рдПрдХрджрдо рд╕рд╣реА substrate рдЪреБрдирдирд╛ I рдЗрд╕ рдкреНрд░рдХрд╛рд░ enzymes рдЕрдкрдиреА рдХреНрд░рд┐рдпрд╛ рдореЗрдВ рдЕрддреНрдпрдзрд┐рдХ
рдЪрдпрдирд╛рддреНрдордХ рд╣реЛрддреЗ рд╣реИрдВ, рди рдХ
реЗ рд╡рд▓ substrate рдХ
реЗ рдкреНрд░рддрд┐ рдмрд▓реНрдХрд┐ рдЙрдирдХ
реЗ рджреНрд╡рд╛рд░рд╛ catalyze рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ reaction рдХ
реЗ рдкреНрд░рдХрд╛рд░
рдХ
реЗ рдкреНрд░рддрд┐ рднреА I рдФрд░ рдЗрд╕рдореЗрдВ enzyme рдХреА substrate рдХ
реЗ рд╕рд╛рде binding рдХреА рд╢рдХреНрддрд┐ рдФрд░ enzyme рджреНрд╡рд╛рд░рд╛ catalyzed
reaction рдХреА рдЧрддрд┐ рд╢рд╛рдорд┐рд▓ рд╣реЛрддреА рд╣реИ I рдЗрд╕ рд╡рд┐рд╢рд┐рд╖реНрдЯрддрд╛ (specificity) рдХрд╛ рдкрд░рд┐рдорд╛рдг рдПрдХ enzyme рд╕реЗ рджреВрд╕рд░реЗ enzyme рдореЗрдВ
4
рднрд┐рдиреНрди рд╣реЛ рд╕рдХрддрд╛ рд╣реИ I рд╡реЛ enzymes рдЬреЛ рдПрдХ реЩрд╛рд╕ bond, рдЬреИрд╕реЗ - peptide bond, phosphodiester bond рдпрд╛
carboxylic ester bond, рдХ
реЗ рд▓рд┐рдП specific рд╣реЛрддреЗ рд╣реИрдВ, рдЙрдирдХреА specificity рдХрдо рд╣реЛрддреА рд╣реИ, рдЙрджрд╛рд╣рд░рдг - peptidases,
phosphatases рдпрд╛ esterases рдЖрджрд┐ I рд╡реЛ enzymes рдЬреЛ рдПрдХ реЩрд╛рд╕ group рдХ
реЗ рд▓рд┐рдП specific рд╣реЛрддреЗ рд╣реИрдВ рдЙрдирдХреА
specificity рдордзреНрдпрдо рд╢реНрд░реЗрдгреА рдХреА рд╣реЛрддреА рд╣реИ, рдЬреИрд╕реЗ - carboxypeptidase A рдЬреЛ free carboxyl group рд╡рд╛рд▓реЗ C-terminal
amino acids рдХ
реЗ removal рдХ
реЗ рд▓рд┐рдП specific рд╣реЛрддрд╛ рд╣реИ I рдЗрд╕реА рдкреНрд░рдХрд╛рд░ enzyme hexokinase рд╣реИ рдЬреЛ рд╡рд┐рднрд┐рдиреНрди
D-hexoses рдХ
реЗ phosphorylation рдХреЛ catalyze рдХрд░рддрд╛ рд╣реИ I Urease absolute enzyme specificity рдХрд╛ рдПрдХ
рдЙрджрд╛рд╣рд░рдг рд╣реИ рдХреНрдпреЛрдВрдХрд┐ рдпрд╣ рдХ
реЗ рд╡рд▓ urea рдХреЛ рд╣реА hydrolyze рдХрд░рддрд╛ рд╣реИ I рдХ
реБ рдЫ enzymes stereochemical specificity
рд░рдЦрддреЗ рд╣реИрдВ, рдЬреИрд╕реЗ - D-amino acid oxidase рдХ
реЗ рд╡рд▓ D-amino acids рдХ
реЗ рд▓рд┐рдП specific рд╣реИ I
рдХрд┐рд╕реА substrate рдпрд╛ bond рдХ
реЗ рд▓рд┐рдП enzyme рдХреА specificity enzyme рдХреА active site рдХреА рд░рдЪрдирд╛ рдФрд░ рдЙрд╕рдХ
реЗ
amino acids рдХреА рд╡рд┐рд╢реЗрд╖рддрд╛рдУрдВ рджреНрд╡рд╛рд░рд╛ рдирд┐рд░реНрдзрд╛рд░рд┐рдд рд╣реЛрддреА рд╣реИ рдФрд░ рдЗрд╕рдХреА рд╡реНрдпрд╛рдЦреНрдпрд╛ " lock and key " hypothesis рдФрд░ "
induced fit " theory рджреНрд╡рд╛рд░рд╛ рдХреА рдЬрд╛ рд╕рдХрддреА рд╣реИ I]
Lock and key model Induced fit model
Q.5. Describe the mechanism of enzyme action.[Enzyme рдХреА mechanism of action рдХрд╛ рд╡рд░реНрдгрди
рдХрд░реЗрдВ ]
Ans. The basic steps of an enzyme catalyzed reaction are shown in the figure below :
The binding of substrate to the enzyme occurs at the active site present on the surface of the
enzyme molecule. The active site is a specific area in the enzyme molecule where the suitable
substrate molecule binds to it and the chemical reaction occurs by breaking or formation of the
bonds. The active site has hydrophobic and hydrophilic amino acids which bind to the substrate
by hydrophobic interactions, electrostatic and hydrogen bonded interactions. Two hypotheses
for the binding of substrate to the enzyme are 'lock(enzyme) and key(substrate)' and 'Induced
fit'. In the lock and key model the shape of the active site of the enzyme is complementary to the
shape of the substrate. In an induced fit model the enzyme changes the shape of its active site
(in presence of the substrate ) complementary to the shape of the substrate to fit correctly to
each other.
5
The interactions between the enzyme and substrate are non covalent or weak covalent so that
the Enzyme-product complex could break easily to release the product and regenerate the
enzyme.
The usual reactions in the transformation of substrate in enzyme catalyzed reactions are
nucleophilic, electrophilic, homolytic and rearrangements etc. In a chemical reaction for
conversion of reactants to products, the reactant molecules have to overcome a free energy
barrier called ' activation energy '. At the peak position (transition state) of this barrier the
probability of the formation or breaking of chemical bonds is very high. The amount of energy
required to bring all the molecules in one mole of a substance at a given temperature to
transition state at the top of the activation barrier is called 'free energy of activation (тИЖG*). The
enzymes decrease this free energy of activation as compared to the free energy of activation of
a nonenzymatic reaction so that more and more molecules pass the energy barrier to form the
product. Thus enzymes merely speed up the rate at which the equilibrium point is reached.
The lowering of activation energy by enzymes is accomplished at the active site of the enzyme
by:
1. increasing the collision rate of the reactant molecules by bringing them close enough to react
(proximity effect),
2. by bringing about proper orientation of reacting groups with respect to each other (orientation
effect),
3. by bringing about conformational change in the substrate which produces strain in the form of
distortion of bond angle and bond length which brings it closer to the transition state,
4. and also the functional groups at the active site provide proton donors and acceptors in high
local concentration in a proper position to bring about the reaction.
[рдПрдХ enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдХ
реЗ basic steps рдиреАрдЪреЗ рдЪрд┐рддреНрд░ рдореЗрдВ рджрд░реНрд╢рд╛рдпрд╛ рдЧрдпрд╛ рд╣реИ :
Substrate рдХреА enzyme рд╕реЗ binding enzyme molecule рдХреА surface рдкрд░ рдЙрдкрд╕реНрдерд┐рдд тАШactive siteтАЩ рдкрд░ рд╣реЛрддреА рд╣реИ I
рдпрд╣ active site enzyme molecule рдХреА surface рдкрд░ рд╡реЛ рд╕реНрдерд╛рди рд╣реЛрддрд╛ рд╣реИ рдЬрд╣рд╛рдБ рдЙрдЪрд┐рдд substrate enzyme рд╕реЗ bind
рдХрд░рддрд╛ рд╣реИ рдФрд░ рдлрд┐рд░ рдпрд╣рд╛рдБ bond рдЯреВрдЯрдиреЗ рдпрд╛ bond рдмрдирдиреЗ рджреНрд╡рд╛рд░рд╛ chemical reaction рд╣реЛрддрд╛ рд╣реИ I рдЗрд╕ active site рдореЗрдВ
hydrophobic рдФрд░ hydrophilic amino acids рд╣реЛрддреЗ рд╣реИрдВ рдЬреЛ hydrophobic interactions, electrostatic and
hydrogen bonded interactions рджреНрд╡рд╛рд░рд╛ substrate рдХреЛ bind рдХрд░рддреЗ рд╣реИрдВ I enzyme рдФрд░ substrate рдХреА рдЗрд╕
binding рдХ
реЗ рд▓рд┐рдП рджреЛ рдкрд░рд┐рдХрд▓реНрдкрдирд╛рдпреЗрдВ рд╣реИрдВ - 'lock (enzyme) and key (substrate)' рдФрд░ 'Induced fit' l Lock and
key model рдореЗрдВ enzyme рдХреА active site рдХрд╛ рдЖрдХрд╛рд░ рдФрд░ substrate рдХрд╛ рдЖрдХрд╛рд░ рдПрдХ рджреВрд╕рд░реЗ рдХ
реЗ рдкреВрд░рдХ
(complementary) рд╣реЛрддреЗ рд╣реИрдВ рдЬрдмрдХрд┐ induced fit model рдореЗрдВ enzyme рдЕрдкрдирд╛ рдЖрдХрд╛рд░ substrate рдХ
реЗ рдЖрдХрд╛рд░ рдХ
реЗ
6
рдЕрдиреБрд░реВрдк рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдмрджрд▓ рд▓реЗрддрд╛ рд╣реИ (substrate рдХреА рдЙрдкрд╕реНрдерд┐рддрд┐ рдореЗрдВ) рдХрд┐ substrate active site рдореЗрдВ рдареАрдХ рд╕реЗ fit рд╣реЛ рдЬрд╛рдпреЗ I
Enzyme рдФрд░ substrate рдХ
реЗ рдмреАрдЪ рдкрд╛рд░рд╕реНрдкрд░рд┐рдХ рдХреНрд░рд┐рдпрд╛ (interactions) non covalent рдпрд╛ weak covalent рд╣реЛрддреА рд╣реИрдВ
рддрд╛рдХрд┐ Enzyme-product complex рдЖрд╕рд╛рдиреА рд╕реЗ рдЯреВрдЯ рд╕рдХ
реЗ рдФрд░ product рдЖрд╕рд╛рдиреА рд╕реЗ enzyme рд╕реЗ рдореБрдХреНрдд рд╣реЛ рдЬрд╛рдпреЗ
рддрдерд╛ enzyme рдирдП catalysis рдХ
реЗ рд▓рд┐рдП regenerate рд╣реЛ рдЬрд╛рдП I
Enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдореЗрдВ substrate рдХрд╛ transformation nucleophilic, electrophilic,
homolytic рдФрд░ rearrangements рдЖрджрд┐ reactions рджреНрд╡рд╛рд░рд╛ рд╣реЛрддрд╛ рд╣реИ I Reactants рдХ
реЗ products рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрди рдХ
реЗ
chemical reaction рдореЗрдВ reactant molecules рдХреЛ рдПрдХ free energy barrier, рдЬрд┐рд╕реЗ ' activation energy ' рдХрд╣рддреЗ
рд╣реИрдВ, рдХреЛ рдкрд╛рд░ рдХрд░рдирд╛ рд╣реЛрддрд╛ рд╣реИ I рдЗрд╕ barrier рдХ
реЗ рд╢рд┐рдЦрд░ (transition state) рдкрд░ chemical bonds рдХ
реЗ рдЯреВрдЯрдиреЗ рдФрд░ рдмрдирдиреЗ рдХреА
рд╕рдВрдореНрднрд╛рд╡рдирд╛ рдЕрддреНрдпрдзрд┐рдХ рд╣реЛрддреА рд╣реИ I рдЗрд╕ transition state рдкрд░ рдПрдХ рдирд┐рд╢реНрдЪрд┐рдд рддрд╛рдкрдорд╛рди рдкрд░ рдПрдХ рдкрджрд╛рд░реНрде рдХ
реЗ рдПрдХ mole рдХ
реЗ
рд╕рднреА molecules рдХреЛ рдПрдХ рд╕рд╛рде рд▓рд╛рдиреЗ рдХ
реЗ рд▓рд┐рдП рдЬрд┐рддрдиреА energy рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ рдЙрд╕реЗ 'free energy of
activation (тИЖG*) рдХрд╣рддреЗ рд╣реИрдВ I Enzymes рдЗрд╕ free energy of activation рдХреА рдорд╛рддреНрд░рд╛ рдХреЛ рдХрдо рдХрд░рддреЗ рд╣реИрдВ (рдмрд┐рдирд╛
enzyme рдХ
реЗ рд╣реЛрдиреЗ рд╡рд╛рд▓реЗ reaction рдХреА рддреБрд▓рдирд╛ рдореЗрдВ) рдЬрд┐рд╕рд╕реЗ рдЕрдзрд┐рдХ рд╕реЗ рдЕрдзрд┐рдХ molecules рдЗрд╕ energy barrier рдХреЛ
рдкрд╛рд░ рдХрд░рдХ
реЗ рдЖрд╕рд╛рдиреА рд╕реЗ product рдмрдирд╛ рд╕рдХ
реЗрдВ I рдЗрд╕рдкреНрд░рдХрд╛рд░ enzymes reaction рдХ
реЗ equilibrium point рддрдХ рдкрд╣реБрдБрдЪрдиреЗ рдХ
реЗ
рд▓рд┐рдП рдХ
реЗ рд╡рд▓ reaction рдХреА speed рдмреЭрд╛рддреЗ рд╣реИрдВ I
Enzymes рджреНрд╡рд╛рд░рд╛ active site рдкрд░ рдпрд╣ activation energy рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдХрдо рдХреА рдЬрд╛рддреА рд╣реИ :
1. Reactant molecules рдХреЛ рдмрд╣реБрдд рдиреЫрджреАрдХ рд▓рд╛рдХрд░ рдЙрдирдХ
реЗ рдмреАрдЪ рдЯрдХреНрдХрд░ рдХреА рджрд░ рдХреЛ рдмреЭрд╛ рдХрд░ рддрд╛рдХрд┐ рд╡реЗ рдЖрд╕рд╛рдиреА рд╕реЗ
react рдХрд░ рд╕рдХ
реЗрдВ (рдЗрд╕реЗ proximity effect рдХрд╣рддреЗ рд╣реИрдВ),
2. Reacting groups рдХрд╛ рдПрдХ рджреВрд╕рд░реЗ рдХ
реЗ рд╕рд╛рде рдЙрдЪрд┐рдд рдЕрднрд┐рд╡рд┐рдиреНрдпрд╛рд╕ рдХрд░рд╛ рдХрд░ (рдЗрд╕реЗ orientation effect рдХрд╣рддреЗ рд╣реИрдВ),
3. Substrate рдореЗрдВ рдЕрдиреБрд░реВрдкрддрд╛ рдкрд░рд┐рд╡рд░реНрддрди рд▓рд╛рдХрд░ рдЬрд┐рд╕рдХ
реЗ рдХрд╛рд░рдг bond angle рдФрд░ bond length рдореЗрдВ рддрдирд╛рд╡ рдФрд░ рддреЛреЬ -
рдорд░реЛреЬ рд╣реЛрдХрд░ рдпреЗ transition state рдХ
реЗ рдиреЫрджреАрдХ рдЖ рд╕рдХ
реЗрдВ ,
4. рдФрд░ Enzyme рдХреА active site рдХ
реЗ functional groups reaction рдХ
реЗ рд▓рд┐рдП proton donors рдФрд░ acceptors рдХреА
proper position рдореЗрдВ рдЕрдзрд┐рдХ рд╕реНрдерд╛рдиреАрдп рдорд╛рддреНрд░рд╛ рдЙрдкрд▓рдмреНрдз рдХрд░рд╛ рдХрд░ I]
Q.6. What is the effect of enzyme concentration, substrate concentration, pH and
temperature on an enzyme catalyzed reaction?[Enzyme concentration, substrate
concentration, pH рдФрд░ temperature рдХрд╛ enzyme catalyzed reaction рдкрд░ рдХреНрдпрд╛ рдкреНрд░рднрд╛рд╡ рдкреЬрддрд╛ рд╣реИ?]
Or
What are the factors responsible affecting enzyme catalyzed reaction?[Enzyme catalyzed
reaction рдХреЛ рдкреНрд░рднрд╛рд╡рд┐рдд рдХрд░рдиреЗ рд╡рд╛рд▓реЗ рдХреМрди рд╕реЗ рдХрд╛рд░рдХ рд╣реИрдВ?]
Ans. There are some factors that affect the enzyme catalyzed reaction :
Enzyme concentration: The rate of enzyme catalyzed reaction is directly proportional to the
concentration of the enzyme if a purified enzyme is used , the substrate concentration is very
high and the conditions of the reaction remain constant.
[Enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдХреА рджрд░ enzyme рдХ
реЗ concentration рдХ
реЗ рд╕реАрдзрд╛ рд╕рдорд╛рдиреБрдкрд╛рддреА рд╣реЛрддреА рд╣реИ рдпрджрд┐
enzyme pure рд╣реИ, substrate рдХрд╛ concentration рдЕрддреНрдпрдзрд┐рдХ рдФрд░ reaction рдХреА рдкрд░рд┐рд╕реНрдерд┐рддрд┐рдпрд╛рдБ рд╕реНрдерд┐рд░ рд╣реЛрдВ I]
Substrate concentration: In an enzyme catalyzed reaction if the enzyme concentration is kept
constant then at low substrate concentration the initial reaction rate is nearly proportional to the
7
substrate concentration and the reaction is thus approximately first order with respect to the
substrate. However, as the substrate concentration is increased further the increase in initial
rate is no longer nearly proportional to the substrate concentration and the reaction in this zone
is of mixed order. With a further increase in the substrate concentration the reaction becomes
essentially independent of the substrate concentration and approaches a constant rate and in
this range the reaction is zero order. Thus the reaction curve becomes hyperbolic.
[Enzyme catalyzed reaction рдореЗрдВ рдпрджрд┐ enzyme concentration рдХреЛ рд╕реНрдерд┐рд░ рд░рдЦрд╛ рдЬрд╛рдП рддреЛ substrate рдХ
реЗ рдХрдо
concentration рдкрд░ reaction рдХреА initial reaction rate substrate concentration рдХ
реЗ рд▓рдЧрднрдЧ рд╕рдорд╛рдиреБрдкрд╛рддреА рд╣реЛрддреА
рд╣реИ рдФрд░ рдЗрд╕ рдкреНрд░рдХрд╛рд░ reaction substrate рдХ
реЗ рд╕рдиреНрджрд░реНрдн рдореЗрдВ рд▓рдЧрднрдЧ first order reaction рд╣реЛрддрд╛ рд╣реИ I рд╣рд╛рд▓рд╛рдВрдХрд┐, substrate
concentration рдХ
реЗ рдФрд░ рдмреЭрдиреЗ рдкрд░ initial rate рдореЗрдВ рд╡реГрджреНрдзрд┐ substrate concentration рдХ
реЗ рд▓рдЧрднрдЧ рд╕рдорд╛рдиреБрдкрд╛рддреА рдирд╣реАрдВ
рд░рд╣рддреА рдФрд░ рдЗрд╕ рдХреНрд╖реЗрддреНрд░ рдореЗрдВ reaction mixed order рдХрд╛ рд╣реЛрдВ рдЬрд╛рддрд╛ рд╣реИ I рдЬрдм substrate concentration рдФрд░ рдмреЭрддрд╛ рд╣реИ рддреЛ
reaction rate рдкрд░ substrate concentration рдХрд╛ рдХреЛрдИ рдкреНрд░рднрд╛рд╡ рдирд╣реАрдВ рдкреЬрддрд╛ рдФрд░ reaction рдХреА рджрд░ рд╕реНрдерд┐рд░ рд╣реЛ рдЬрд╛рддреА рд╣реИ
рдФрд░ reaction zero order рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдРрд╕реА рдкрд░рд┐рд╕реНрдерд┐рддрд┐ рдореЗрдВ reaction curve hyperbolic рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I]
pH: A small change in pH results in change in enzyme catalyzed reaction rate appreciably. The
curve showing rate of enzyme catalyzed reaction against pH of the reaction mixture is generally
bell shaped. The enzyme activity is maximum only in a narrow range of pH and decreases at
both higher and lower pH. The pH where an enzyme shows maximum reaction rate is called the
optimum pH. The effect of pH on enzyme activity is attributed to factors such as acid-base
behaviour of enzyme and substrate, denaturation of enzyme by change in pH , change in
ionisation state of a changed substrate, enzyme or both with change in pH affecting its binding
to the substrate.
[Reaction solution рдХ
реЗ pH рдореЗрдВ рдПрдХ рдЫреЛрдЯреЗ рд╕реЗ рдкрд░рд┐рд╡рд░реНрддрди рд╕реЗ рд╣реА reaction rate рдкрд░ рдкрд░реНрдпрд╛рдкреНрдд рд░реВрдк рд╕реЗ рдкреНрд░рднрд╛рд╡ рдкреЬрддрд╛ рд╣реИ I
Enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдХреА рджрд░ рдФрд░ pH рдХ
реЗ рдмреАрдЪ graph рд╕рд╛рдорд╛рдиреНрдпрддрдГ рдПрдХ рдШрдВрдЯреА (bell) рдХ
реЗ shape рдХрд╛
рд╣реЛрддрд╛ рд╣реИ I рдЕрдзрд┐рдХрддрдо enzyme activity pH рдХреА рдПрдХ narrow range рдореЗрдВ рд╣реЛрддреА рд╣реИ рдФрд░ рдЙрдЪреНрдЪрддрд░ рдФрд░ рдирд┐рдореНрдирддрд░ pH рдкрд░
рдпрд╣ рджрд░ рдХрдо рд╣реЛрддреА рдЬрд╛рддреА рд╣реИ I рд╡реЛ pH рдЬрд┐рд╕ рдкрд░ reaction рджрд░ рдЙрдЪреНрдЪрддрдо рд╣реЛрддреА рд╣реИ рдЙрд╕реЗ optimum pH рдХрд╣рддреЗ рд╣реИрдВ I Enzyme
activity рдкрд░ pH рдХ
реЗ рдЗрд╕ рдкреНрд░рднрд╛рд╡ рдХ
реЗ рд▓рд┐рдП реЫрд┐рдореНрдореЗрджрд╛рд░ рдХрд╛рд░рдХ рд╣реИрдВ - enzyme рдФрд░ substrate рдХрд╛ acid-base
behaviour, pH рдкрд░рд┐рд╡рд░реНрддрди рдХ
реЗ рдХрд╛рд░рдг enzyme рдХрд╛ denaturation, substrate рдПрд╡рдВ enzyme рдпрд╛ рджреЛрдиреЛрдВ рдХ
реЗ
ionisation state рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрди рдЬрд┐рд╕рд╕реЗ enzyme рдФрд░ substrate рдХ
реЗ рдмреАрдЪ binding рдкреНрд░рднрд╛рд╡рд┐рдд рд╣реЛрддреА рд╣реИ I]
Temperature: Most of the enzyme catalyzed reactions appear to have an optimum temperature,
the temperature at which the enzyme shows maximum reaction rate. The enzyme activity
increases with temperature due to increase in the number of collisions between the enzyme and
substrate molecules and also due to an increase in the energy of these collisions. The enzyme
8
activity decreases after a certain temperature (the optimum temperature) due to denaturation of
the enzyme protein i.e. the rate of inactivation also increases with rise in temperature.
[рдЕрдзрд┐рдХрддрд░ enzyme catalyzed reactions рдХрд╛ рдПрдХ optimum temperature рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕ рдкрд░ reaction rate
рдЕрдзрд┐рдХрддрдо рд╣реЛрддрд╛ рд╣реИ I Temperature рдмреЭрдиреЗ рдХ
реЗ рд╕рд╛рде enzyme activity рдмреЭрддреА рд╣реИ рдФрд░ рдРрд╕рд╛ enzyme рдФрд░ substrate
molecules рдХ
реЗ рдмреАрдЪ рдЯрдХреНрдХрд░ рдмреЭрдиреЗ рдПрд╡рдВ рдЗрди рдЯрдХреНрдХрд░реЛрдВ рдХреА рдКрд░реНрдЬрд╛ рдмреЭрдиреЗ рдХ
реЗ рдХрд╛рд░рдг рд╣реЛрддрд╛ рд╣реИ I рдХрд┐рдиреНрддреБ рдПрдХ рдирд┐рд╢реНрдЪрд┐рдд
temperature (optimum temperature) рдХ
реЗ рдмрд╛рдж enzyme activity рдШрдЯрдиреЗ рд▓рдЧрддреА рд╣реИ рдЬрд┐рд╕рдХрд╛ рдХрд╛рд░рдг рдмреЭрддреЗ
рддрд╛рдкрдорд╛рди рдХ
реЗ рд╕рд╛рде enzyme protein рдХрд╛ denaturation рд╣реЛрддрд╛ рд╣реИ I
Q.7. What is Km? What is its significance in enzyme catalyzed reactions?[Km рдХреНрдпрд╛ рд╣реЛрддрд╛ рд╣реИ
рдФрд░ enzyme catalyzed reaction рдореЗрдВ рдЗрд╕рдХрд╛ рдХреНрдпрд╛ рдорд╣рддреНрд╡ рд╣реИ?]
Ans. Km (Michaelis constant) is numerically equal to the concentration of the substrate (moles
per litre) at that stage of when the observed rate of the enzyme catalyzed reaction is half of the
maximum rate i.e. ┬╜ Vmax.
Significance of Km: It is a measure of the affinity of the enzyme for its substrate. A low value of
Km indicates the high affinity of the enzyme for its substrate as the reaction will approach Vmax
(and so ┬╜ Vmax too) rapidly because a low concentration of substrate would be needed to
saturate the enzyme. Likewise, a high Km would indicate a low affinity of the enzyme for its
substrate.
[Km (Michaelis constant) substrate рдХрд╛ рд╡рд╣ concentration (moles per litre) рдЬрд┐рд╕ рдкрд░ enzyme рджреНрд╡рд╛рд░рд╛
catalyzed reaction рдХреА рджрд░ рдЕрдзрд┐рдХрддрдо рджрд░ (Vmax) рдХреА рдЖрдзреА (┬╜ Vmax) рд╣реЛрддреА рд╣реИ I
Significance of Km: Km enzyme рдХреА substrate рдХ
реЗ рд▓рд┐рдП affinity (рдЖрдХрд░реНрд╖рдг) рдХрд╛ рдорд╛рдк рд╣реЛрддрд╛ рд╣реИ I Km рдХреА рдХрдо
value рджрд░реНрд╢рд╛рддреА рд╣реИ рдХрд┐ enzyme рдХреА substrate рдХ
реЗ рдкреНрд░рддрд┐ affinity рдЕрдзрд┐рдХ рд╣реИ рдХреНрдпреЛрдВрдХрд┐ substrate рдХреА рдПрдХ рдХрдо рдорд╛рддреНрд░рд╛ рд╣реА
enzyme рдХреЛ saturate (рд╕рдВрддреГрдкреНрдд) рдХрд░ рджреЗрддреА рд╣реИ рдЬрд┐рд╕рд╕реЗ reaction рдХрд╛ Vmax рдФрд░ ┬╜ Vmax рднреА рд╢реАрдШреНрд░ рдкреНрд░рд╛рдкреНрдд рд╣реЛ рдЬрд╛рддрд╛
рд╣реИ I рдЗрд╕реА рдкреНрд░рдХрд╛рд░, Km рдХреА high value enzyme рдХреА substrate рдХ
реЗ рдкреНрд░рддрд┐ рдХрдо affinity рдХреЛ рджрд░реНрд╢рд╛рддреА рд╣реИ I]
Q.8. What are antimetabolites? Explain with an example.[Antimetabolites рдХреНрдпрд╛ рд╣реЛрддреЗ рд╣реИрдВ? рдПрдХ
рдЙрджрд╛рд╣рд░рдг рджреНрд╡рд╛рд░рд╛ рд╡реНрдпрд╛рдЦреНрдпрд╛ рдХрд░реЗрдВ ]
Ans. Antimetabolites are competitive inhibitors of enzyme activity. These competitive inhibitors
have structural resemblance with the substrate of the enzyme, therefore they compete with
substrate for the binding to the active site of the enzyme. They are so called because the
substrates of enzymes are generally metabolites participating in metabolic transformations in
the cell.
Example:
9
Sulphanilamide -- It is used to inhibit the bacterial growth. It inhibits folic acid synthesis in
prokaryotes (bacteria). It functions by competitively inhibiting enzymatic reactions involving
p-aminobenzoate required for the synthesis of folic acid. Folic acid is required for the synthesis
of purine and pyrimidine in bacteria. In this way the bacteria are killed because now they can not
synthesise nucleotides (due to lack of purines and pyrimidines) required for their survival.
[Antimetabolites enzyme activity рдХ
реЗ competitive inhibitors рд╣реЛрддреЗ рд╣реИрдВ I рдпреЗ competitive inhibitors enzyme
рдХ
реЗ substrate рд╕реЗ рд╕рдВрд░рдЪрдирд╛рддреНрдордХ рд░реВрдк рд╕реЗ рдорд┐рд▓рддреЗ - рдЬреБрд▓рддреЗ рд╣реИрдВ, рдЗрд╕рд▓рд┐рдП enzyme рдХреА active site рд╕реЗ bind рдХрд░рдиреЗ рдХ
реЗ рд▓рд┐рдП
substrate рдХ
реЗ рд╕рд╛рде рдкреНрд░рддрд┐рд╕реНрдкрд░реНрдзрд╛ (compete) рдХрд░рддреЗ рд╣реИрдВ I рдЗрдирдХреЛ Antimetabolites рдЗрд╕рд▓рд┐рдП рдХрд╣рддреЗ рд╣реИрдВ рдХреНрдпреЛрдВрдХрд┐
enzymes рдХ
реЗ substrates рдЖрдорддреМрд░ рдкрд░ cell рдХ
реЗ рдЕрдВрджрд░ рд╣реЛрдиреЗ рд╡рд╛рд▓реЗ metabolic transformations рдореЗрдВ рднрд╛рдЧ рд▓реЗрдиреЗ рд╡рд╛рд▓реЗ
metabolites рд╣реЛрддреЗ рд╣реИрдВ I рдЙрджрд╛рд╣рд░рдг - Sulphanilamide -- рдЗрд╕рдХрд╛ рдЙрдкрдпреЛрдЧ bacterial growth рдХреЛ inhibit рдХрд░рдиреЗ рдХ
реЗ
рд▓рд┐рдП рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ I рдпрд╣ prokaryotes (bacteria) рдореЗрдВ folic acid рдХреА synthesis рдХреЛ inhibit рдХрд░рддрд╛ рд╣реИ I рдпрд╣ folic
acid рдХреА synthesis рдХ
реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХ enzymatic reactions, рдЬрд┐рд╕рдореЗрдВ p-aminobenzoate рд╢рд╛рдорд┐рд▓ рд╣реЛрддрд╛ рд╣реИ, рдХреЛ
competitively inhibit рдХрд░рддрд╛ рд╣реИ I Bacteria рдореЗрдВ folic acid рдХреА purine рдФрд░ pyrimidine synthesis рдХ
реЗ рд▓рд┐рдП
рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ I рдЗрд╕ рдкреНрд░рдХрд╛рд░, purines рдФрд░ pyrimidines рдХреА рдХрдореА рдХ
реЗ рдХрд╛рд░рдг nucleotides рдХреА synthesis рднреА
рдирд╣реАрдВ рд╣реЛ рдкрд╛рддреА рдЬреЛ bacteria рдХ
реЗ рдЬреАрд╡рд┐рдд рд░рд╣рдиреЗ рдХ
реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХ рд╣реЛрддреЗ рд╣реИрдВ рдФрд░ рдЗрд╕ рдХрд╛рд░рдг bacteria рдорд░ рдЬрд╛рддреЗ рд╣реИрдВ I]
Q.9. Define coenzyme with an example.[Coenzyme рдХреЛ рдПрдХ рдЙрджрд╛рд╣рд░рдг рдХ
реЗ рд╕рд╛рде рдкрд░рд┐рднрд╛рд╖рд┐рдд рдХрд░реЗрдВ ]
Ans. The non protein organic molecule which is a part of an enzyme and required for enzyme
activity is called coenzyme. It binds to the active site of the enzyme and helps the enzyme in
catalysis. Coenzymes are often vitamins or derivatives of vitamins and play a crucial role in the
regulation of most enzyme activities e.g. Flavin mononucleotide (FMN) and Flavin adenine
dinucleotide (FAD), which are derivatives of riboflavin (vitamin B2). FMN and FAD are
coenzymes for some oxidation-reduction enzymes called flavoenzymes. Coenzyme
Nicotinamide adenine dinucleotide (NAD) activates the lactic dehydrogenase enzyme in the
dehydrogenation of pyruvate to lactate,
[Coenzyme рдПрдХ non protein organic molecule рд╣реЛрддрд╛ рд╣реИ рдЬреЛ enzyme рдХрд╛ рдПрдХ рд╣рд┐рд╕реНрд╕рд╛ рд╣реЛрддрд╛ рд╣реИ рдФрд░ рдЬреЛ
enzyme activity рдХ
реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХ рд╣реЛрддрд╛ рд╣реИ I Coenzymes рдЕрдХреНрд╕рд░ vitamins рдпрд╛ рдЙрдирдХ
реЗ derivatives рд╣реЛрддреЗ рд╣реИрдВ рдФрд░
рдмрд╣реБрдд рд╕реЗ enzymes рдХреА activity рдХреЛ рдирд┐рдпрдВрддреНрд░рдг рдХрд░рдиреЗ рдореЗрдВ рдорд╣рддреНрд╡рдкреВрд░реНрдг рднреВрдорд┐рдХрд╛ рдирд┐рднрд╛рддреЗ рд╣реИрдВ, рдЬреИрд╕реЗ - Flavin
mononucleotide (FMN) рдФрд░ Flavin adenine dinucleotide (FAD) рдЬреЛ riboflavin (vitamin B2) рдХ
реЗ
derivatives рд╣реИрдВ I FMN рдФрд░ FAD рдХ
реБ рдЫ oxidation-reduction enzymes (flavoenzymes) рдХ
реЗ coenzymes рд╣реИрдВ I
Nicotinamide adenine dinucleotide (NAD) рднреА рдПрдХ coenzyme рд╣реИ рдЬреЛ pyruvate рдХ
реЗ lactate рдореЗрдВ
dehydrogenation рд╣реЗрддреБ рдЖрд╡рд╢реНрдпрдХ enzyme lactic dehydrogenase enzyme рдХреЛ activate рдХрд░рддрд╛ рд╣реИ I]
Q.10. How does an oxidoreductase enzyme differ from a transferase? Illustrate with an
example.[рдПрдХ oxidoreductase enzyme рдПрдХ transferase рд╕реЗ рдХрд┐рд╕ рдкреНрд░рдХрд╛рд░ рднрд┐рдиреНрди рд╣реЛрддрд╛ рд╣реИ, рдПрдХ рдЙрджрд╛рд╣рд░рдг
рджреЗрдХрд░ рд╕рдордЭрд╛рдпреЗрдВ ]
Ans. Oxidoreductase enzyme catalyzes the electron transfer in oxidation-reduction process e.g.
alcohol:NAD oxidoreductase which catalyzes the electron transfer from ethyl alcohol to NAD+ to
form acetaldehyde and NADH.
Ethyl alcohol + NAD+ тЗМ Acetaldehyde + NADH
On the other hand a transferase enzyme catalyzes the transfer of a chemical group such as
amino, methyl, alkyl, phosphate etc. from one molecule to another. Example: ATP:D-hexose
6-phosphotransferase (Hexokinase) catalyzes the transfer of phosphate group from ATP to
D-hexose.
ATP + D-hexose тЗМ D-hexose 6-phosphate + ADP
10
[Oxidoreductase enzyme oxidation - reduction process рдореЗрдВ electron рдХ
реЗ transfer рдореЗрдВ catalyst рдХрд╛ рдХрд╛рдо
рдХрд░рддреЗ рд╣реИрдВ, рдЬреИрд╕реЗ - alcohol:NAD oxidoreductase ethyl alcohol рд╕реЗ NAD+ рдХреЛ electron transfer рдХрд░рдиреЗ рдореЗрдВ
catalyst рдХрд╛ рдХрд╛рдо рдХрд░рддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ acetaldehyde рдФрд░ NADH рдмрдирддреЗ рд╣реИрдВ I
Ethyl alcohol + NAD+ тЗМ Acetaldehyde + NADH
рдЬрдмрдХрд┐ рдПрдХ transferase enzyme рдПрдХ chemical group рдЬреИрд╕реЗ - amino, methyl, alkyl, phosphate рдЖрджрд┐ рдХреЛ
рдПрдХ molecule рд╕реЗ рджреВрд╕рд░реЗ molecule рдХреЛ transfer рдХрд░рдиреЗ рдореЗрдВ catalyst рдХрд╛ рдХрд╛рд░реНрдп рдХрд░рддрд╛ рд╣реИ I рдЬреИрд╕реЗ - ATP:D-hexose
6-phosphotransferase (Hexokinase) phosphate group рдХреЛ ATP рд╕реЗ D-hexose рдХреЛ transfer рдХрд░рдиреЗ рдореЗрдВ
catalyst рдХрд╛ рдХрд╛рдо рдХрд░рддрд╛ рд╣реИ I]
ATP + D-hexose тЗМ D-hexose 6-phosphate + ADP
Q.11. Compare competitive and non-competitive inhibition of enzyme activity.[Enzyme
activity рдХ
реЗ competitive рдФрд░ non-competitive inhibition рдХреА рддреБрд▓рдирд╛ рдХрд░реЗрдВ I]
Ans.
тЧП The structure of competitive inhibitor molecule resembles to that of the substrate
molecule whereas the structure of non-competitive inhibitor molecule is entirely different.
[competitive inhibitor molecule рдХреА рд╕рдВрд░рдЪрдирд╛ substrate molecule рд╕реЗ рдорд┐рд▓рддреА - рдЬреБрд▓рддреА рд╣реИ рдЬрдмрдХрд┐
non-competitive inhibitor molecule рдХреА рд╕рдВрд░рдЪрдирд╛ substrate рдХреА рд╕рдВрд░рдЪрдирд╛ рд╕реЗ рдмрд┐рд▓реНрдХ
реБ рд▓ рднрд┐рдиреНрди рд╣реЛрддреА рд╣реИ I]
тЧП The competitive inhibitor competes with the substrate for binding to the active site of the
enzyme whereas the non-competitive inhibitor forms a complex with the enzyme by
binding at a site other than the active site.
[Competitive inhibitor enzyme рдХреА active site рд╕реЗ binding рдХ
реЗ рд▓рд┐рдП substrate рдХ
реЗ рд╕рд╛рде рдкреНрд░рддрд┐рд╕реНрдкрд░реНрдзрд╛
рдХрд░рддрд╛ рд╣реИ рдЬрдмрдХрд┐ non-competitive inhibitor enzyme рдХ
реЗ рд╕рд╛рде bind рдХрд░рдХ
реЗ рдПрдХ complex рдмрдирд╛рддрд╛ рд╣реИ рдФрд░
рдпрд╣ binding enzyme рдХреА active site рдХ
реЗ рд╕реНрдерд╛рди рдПрдХ рдЕрдиреНрдп site рдкрд░ рд╣реЛрддреА рд╣реИ I]
тЧП The competitive inhibitor does not alter the structure of the enzyme whereas the
non-competitive inhibitor alters the enzyme molecule in such a way that the substrate
may get attached to the active site but the products are not formed.
[Competitive inhibitor enzyme рдХреА рд╕рдВрд░рдЪрдирд╛ рдХреЛ рдирд╣реАрдВ рдмрджрд▓рддрд╛ рдЬрдмрдХрд┐ non-competitive inhibitor
enzyme molecule рдХреЛ рдХ
реБ рдЫ рдЗрд╕ рддрд░рд╣ рдмрджрд▓ рджреЗрддрд╛ рд╣реИ рдХрд┐ substrate active site рд╕реЗ bind рддреЛ рд╣реЛрддрд╛ рд╣реИ
рдХрд┐рдиреНрддреБ product рдирд╣реАрдВ рдмрди рдкрд╛рддрд╛ I]
тЧП The competitive inhibition can be reversed by increasing the substrate concentration
whereas the non-competitive inhibition can be overcomed by increasing the enzyme
concentration.
[competitive inhibition рдХреЛ substrate concentration рдХреЛ рдмреЭрд╛ рдХрд░ рдкрд▓реНрдЯрд╛ (reverse) рдЬрд╛ рд╕рдХрддрд╛ рд╣реИ
рдЬрдмрдХрд┐ non-competitive inhibition рдХреЛ рдкрд▓рдЯрдиреЗ (reverse) рдХ
реЗ рд▓рд┐рдП enzyme concentration рдХреЛ
рдмреЭрд╛рдирд╛ рдкреЬрддрд╛ рд╣реИ I]
тЧП Vmax in presence of competitive inhibitor remains unchanged but Km is increased
whereas in presence of non-competitive inhibitor Vmax is affected (decreased) but Km is
unaffected.
[Competitive inhibitor рдХреА рдЙрдкрд╕реНрдерд┐рддрд┐ рдореЗрдВ Vmax рдирд╣реАрдВ рдмрджрд▓рддрд╛ рдХрд┐рдиреНрддреБ Km рдмреЭ рдЬрд╛рддрд╛ рд╣реИ рдЬрдмрдХрд┐
non-competitive inhibitor рдХреА рдЙрдкрд╕реНрдерд┐рддрд┐ рдореЗрдВ Vmax рддреЛ рдХрдо рд╣реЛрддрд╛ рд╣реИ рдХрд┐рдиреНрддреБ Km рдкреНрд░рднрд╛рд╡рд┐рдд рдирд╣реАрдВ рд╣реЛрддрд╛ I]
тЧП The effect of a competitive inhibitor is temporary but that of non-competitive inhibitor is
permanent.
[Competitive inhibitor рдХрд╛ рдкреНрд░рднрд╛рд╡ рдЕрд╕реНрдерд╛рдИ рд╣реЛрддрд╛ рд╣реИ рдЬрдмрдХрд┐ non-competitive inhibitor рдХрд╛ рдкреНрд░рднрд╛рд╡ рд╕реНрдерд╛рдИ
рд╣реЛрддрд╛ рд╣реИ I]
11
Q.12. Explain allosteric enzymes. What is allosteric regulation?[Allosteric enzymes рдХреА
рд╡реНрдпрд╛рдЦреНрдпрд╛ рдХрд░реЗрдВ I Allosteric regulation рдХреНрдпрд╛ рд╣реЛрддрд╛ рд╣реИ?]
Ans. Allosteric enzymes are enzymes which have an additional binding site for effector
molecules other than the substrate binding site. The binding of effector molecule brings about
conformational changes in the enzyme , thereby changing catalytic properties of the enzyme.
Allosteric enzymes are involved in allosteric regulation which is an important mechanism of
enzyme regulation. In allosteric regulation the first enzyme of a biosynthetic pathway is strongly
inhibited by the end product of that pathway. This regulatory molecule called an 'effector' has no
structural resemblance to the substrate or product of the first enzyme. This effector molecule
binds to a site other than the active site of the enzyme and brings about a reversible
conformational change in the active site leading to alteration in enzyme activity of allosteric
enzyme. The allosteric enzymes do not exhibit normal Michaelis-Menton or hyperbolic kinetics
but rather show a sigmoidal behavior. A classical example is aspartate carbamoyl transferase
which catalyzes the first step in pyrimidine biosynthesis in E.coli. It is inhibited by the final
product of the pathway which is Cytidine triphosphate (CTP), a pyrimidine nucleotide.
In allosteric regulation the effector may be an activator also. When an activator binds, it
increases the function of active sites and results in increased binding of substrate molecules.
Example - binding of oxygen to hemoglobin.
[Allosteric enzymes рд╡реЛ enzymes рд╣реЛрддреЗ рд╣реИрдВ рдЬрд┐рдирдореЗрдВ substrate binding site рдХ
реЗ рдЕрддрд┐рд░рд┐рдХреНрдд рдПрдХ рдФрд░ binding
site рд╣реЛрддреА рд╣реИ рдЬрд┐рд╕рдореЗрдВ effector molecule bind рд╣реЛрддрд╛ рд╣реИ I Effector molecule рдХреА binding рдХ
реЗ рдХрд╛рд░рдг enzyme рдореЗрдВ
рдХ
реБ рдЫ conformational changes рд╣реЛ рдЬрд╛рддреЗ рд╣реИрдВ рдЬрд┐рд╕рд╕реЗ enzyme рдХреА catalytic properties рдмрджрд▓ рдЬрд╛рддреА рд╣реИрдВ I рдпреЗ
Allosteric enzymes allosteric regulation рдореЗрдВ рд╢рд╛рдорд┐рд▓ рд╣реЛрддреЗ рд╣реИрдВ рдЬреЛ enzyme regulation рдХреА рдПрдХ рдорд╣рддреНрд╡рдкреВрд░реНрдг
mechanism рд╣реИ I рдЗрд╕ allosteric regulation рдореЗрдВ рдПрдХ biosynthetic pathway рдХрд╛ рдкрд╣рд▓рд╛ enzyme, pathway рдХ
реЗ
end product рджреНрд╡рд╛рд░рд╛ рдмрд╣реБрдд рдЕрдзрд┐рдХрддрд╛ рд╕реЗ inhibit рд╣реЛрддрд╛ рд╣реИ I рдпрд╣ рдЬреЛ regulatory molecule (end product) рд╣реЛрддрд╛ рд╣реИ,
рдЬрд┐рд╕реЗ 'effector' рдХрд╣рддреЗ рд╣реИрдВ, рдЙрд╕рдХреА рдкрд╣рд▓реЗ enzyme рдХ
реЗ substrate рдпрд╛ product рд╕реЗ рдХреЛрдИ рд╕рдВрд░рдЪрдирд╛рддреНрдордХ рд╕рдорд╛рдирддрд╛ рдирд╣реАрдВ
рд╣реЛрддреА рд╣реИ I рдЗрд╕рд▓рд┐рдП рдпрд╣ effector molecule active site рд╕реЗ bind рдирд╣реАрдВ рдХрд░рддрд╛ рд╣реИ рдмрд▓реНрдХрд┐ enzyme рд╕реЗ рдПрдХ рдЕрдиреНрдп site
рдкрд░ bind рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ active site рдХреА рдмрдирд╛рд╡рдЯ (conformation) рдореЗрдВ рдПрдХ рдкреНрд░рддрд┐рд╡рд░реНрддреА (reversible) рдкрд░рд┐рд╡рд░реНрддрди рдХрд░
рджреЗрддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ allosteric enzyme рдХреА catalytic activity рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрди рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдпреЗ allosteric enzymes
normal Michaelis-Menton рдпрд╛ hyperbolic kinetics рдирд╣реАрдВ рджрд░реНрд╢рд╛рддреЗ рд╣реИрдВ рдмрд▓реНрдХрд┐ рдПрдХ sigmoidal reaction curve
рджреЗрддреЗ рд╣реИрдВ I рдЗрд╕рдХрд╛ рдПрдХ рд╢реНрд░реЗрд╖реНрдЯ рдЙрджрд╛рд╣рд░рдг рд╣реИ - aspartate carbamoyl transferase рдЬреЛ рдП. coli рдореЗрдВ pyrimidine
biosynthesis рдХрд╛ рдкрд╣рд▓рд╛ step catalyze рдХрд░рддрд╛ рд╣реИ рдФрд░ рдпрд╣ рдЗрд╕ pathway рдХ
реЗ final product Cytidine
triphosphate (CTP), рдЬреЛ рдПрдХ pyrimidine nucleotide рд╣реИ, рджреНрд╡рд╛рд░рд╛ рдмрд╛рдзрд┐рдд (inhibit) рд╣реЛрддрд╛ рд╣реИ I
Allosteric regulation рдореЗрдВ effector рдПрдХ activator рдХреА рддрд░рд╣ рднреА рдХрд╛рдо рдХрд░ рд╕рдХрддрд╛ рд╣реИ I рдпрд╣ activator bind рдХрд░рдХ
реЗ
active site рдХ
реЗ рдХрд╛рд░реНрдп рдХреЛ рдмреЭрд╛рддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ substrate molecules рдХреА binding рдФрд░ рдмреЭ рдЬрд╛рддреА рд╣реИ I рдЙрджрд╛рд╣рд░рдг -
binding of oxygen to hemoglobin]
12
O2 - Hb dissociation curve
Q.13. Write the mechanism of enzyme regulation by covalent modification.[Covalent
modification рджреНрд╡рд╛рд░рд╛ enzyme regulation рдХреА mechanism рд▓рд┐рдЦреЗрдВ I]
Ans. Covalent modification of enzyme results in reversible modification of the amino acid side
chains of the enzyme resulting in activation or inactivation of the enzyme. This can be explained
by two enzymes viz. glycogen phosphorylase and glycogen synthase. The enzyme glycogen
phosphorylase catalyzes the reaction:
(Glycogen)n + orthophosphate --------> (Glycogen)n-1 + ╬▒-D-Glucose-1-phosphate
The enzyme glycogen phosphorylase has two forms viz. form a(active) and from b(inactive).
The inactive form b is converted into active form a by the enzyme phosphorylase kinase in
presence of ATP and Mg++ which phosphorylates the side chain of serine present in the
inactive form b( covalent modification). The active form a degrades glycogen. When degradation
of glycogen is not required then the active form a is converted back to inactive form b by
enzyme phosphorylase phosphatase which dephosphorylates the side chain of serine residue.
Likewise, the enzyme glycogen synthase, which catalyzes glycogen synthesis, is converted into
an inactive form by phosphorylation (as oppose to glycogen phosphorylase which gets activated
by phosphorylation). In this way by activation and inactivation of these enzymes the glycogen
metabolism is regulated.
[Enzyme рдХ
реЗ covalent modification рдореЗрдВ enzyme рдХ
реЗ amino acid side chains рдХрд╛ reversible modification
рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ enzyme рдХрд╛ activation рдпрд╛ inactivation рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдЗрд╕рдХреА рд╡реНрдпрд╛рдЦреНрдпрд╛ рджреЛ enzymes -
glycogen phosphorylase рдФрд░ glycogen synthase рджреНрд╡рд╛рд░рд╛ рдХреА рдЬрд╛ рд╕рдХрддреА рд╣реИ I enzyme glycogen
phosphorylase рджреНрд╡рд╛рд░рд╛ catalyze рдХрд┐рдпрд╛ рдЬрд╛рдиреЗ рд╡рд╛рд▓рд╛ reaction рд╣реИ :
(Glycogen)n + orthophosphate --------> (Glycogen)n-1 + ╬▒-D-Glucose-1-phosphate
Glycogen phosphorylase enzyme рдХ
реЗ рджреЛ рд░реВрдк рд╣реЛрддреЗ рд╣реИрдВ - form a (active) рдФрд░ from b (inactive) I
Phosphorylase kinase enzyme ATP рдФрд░ Mg++ рдХреА рдЙрдкрд╕реНрдерд┐рддрд┐ рдореЗрдВ inactive form b рдХреА serine residue
рдХреА side chain рдХреЛ phosphorylate рдХрд░рддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ inactive form b active form a рдореЗрдВ рдмрджрд▓ рдЬрд╛рддрд╛ рд╣реИ (рдпрд╣
covalent modification рдХрд╣рд▓рд╛рддрд╛ рд╣реИ) I Enzyme рдХрд╛ active form a glycogen рдХреЛ degrade рдХрд░рддрд╛ рд╣реИ I рдЬрдм
glycogen рдХ
реЗ degradation рдХреА реЫрд░реВрд░рдд рдирд╣реАрдВ рд╣реЛрддреА рд╣реИ рддреЛ phosphorylase phosphatase enzyme active
form a рдХ
реЗ serine residue рдХреА side chain рдХреЛ dephosphorylate рдХрд░рдХ
реЗ рдЗрд╕реЗ inactive form b рдореЗрдВ рдмрджрд▓ рджреЗрддрд╛ рд╣реИ I
рдЗрд╕реА рдкреНрд░рдХрд╛рд░, glycogen рдХ
реЗ рд╕рдВрд╢реНрд▓реЗрд╖рдг (synthesis) рдХреЛ catalyze рдХрд░рдиреЗ рд╡рд╛рд▓рд╛ enzyme glycogen synthase рдПрдХ
inactive form рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдХрд┐рдиреНрддреБ phosphorylation рджреНрд╡рд╛рд░рд╛ (рдЬрдмрдХрд┐ glycogen phosphorylase
phosphorylation рджреНрд╡рд╛рд░рд╛ activate рд╣реЛрддрд╛ рд╣реИ) I рдЗрд╕ рддрд░рд╣, рдЗрди enzymes (glycogen phosphorylase рдФрд░
glycogen synthase) рдХ
реЗ activation рдФрд░ inactivation рджреНрд╡рд╛рд░рд╛ glycogen metabolism рдирд┐рдпрдВрддреНрд░рд┐рдд рд╣реЛрддреА рд╣реИ I]
13
Covalent regulation
Q. 14. How is allosteric regulation different from regulation by reversible covalent
modification of the enzyme?[Allosteric regulation reversible covalent modification рд╕реЗ рдХрд┐рд╕
рдкреНрд░рдХрд╛рд░ рднрд┐рдиреНрди рд╣реИ?]
Ans.
тЧП In allosteric modification an effector molecule binds to a site other than the active site of
the enzyme and brings about a reversible conformational change in the active site
leading to alteration in enzyme activity of allosteric enzyme while covalent modification of
enzyme results in reversible modification of the amino acid side chains of the enzyme
resulting in activation or inactivation of the enzyme.
[Allosteric modification рдореЗрдВ рдПрдХ effector molecule active site рд╕реЗ bind рдирд╣реАрдВ рдХрд░рддрд╛ рд╣реИ рдмрд▓реНрдХрд┐ рдПрдХ
рдЕрдиреНрдп site рдкрд░ bind рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ active site рдХреА рдмрдирд╛рд╡рдЯ (conformation) рдореЗрдВ рдПрдХ рдкреНрд░рддрд┐рд╡рд░реНрддреА
(reversible) рдкрд░рд┐рд╡рд░реНрддрди рдХрд░ рджреЗрддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ allosteric enzyme рдХреА catalytic activity рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрди рд╣реЛ
рдЬрд╛рддрд╛ рд╣реИ рдЬрдмрдХрд┐ enzyme рдХ
реЗ covalent modification рдореЗрдВ enzyme рдХреА amino acid side chains рдореЗрдВ
reversible modification рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ enzyme рдХрд╛ activation рдпрд╛ inactivation рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I]
Q.15. What are isoenzymes? Give an example.[Isoenzymes рдХреНрдпрд╛ рд╣реЛрддреЗ рд╣реИрдВ? рдПрдХ рдЙрджрд╛рд╣рд░рдг рднреА рджреЗрдВ I]
Ans. Isoenzymes are the different forms of an enzyme catalysing the same reaction but differing
in physico-chemical properties such as amino acid sequence, different combination of subunits,
heat stability electrophoretic mobility and sensitivity to inhibition by excess of substrate. These
variants are genetically determined. These isoenzymes also differ in their kinetic and regulatory
properties and their distribution in tissues which is attributed to the metabolic requirements of a
particular tissue. These are numbered based on their electrophoretic mobility towards anode.
Example: Lactate dehydrogenase (LDH) has five isoenzymes with LDH-5 having the lowest
mobility towards anode and LDH-1 having the highest mobility. LDH-1 is present in highest
concentration in heart while LDH-5 is present in highest concentration in skeletal muscles and
liver.
[Isoenzymes рдХрд┐рд╕реА enzyme рдХ
реЗ рд╡рд┐рднрд┐рдиреНрди рд░реВрдк рд╣реЛрддреЗ рд╣реИрдВ рдЬреЛ same reaction рдХреЛ catalyze рдХрд░рддреЗ рд╣реИрдВ рдХрд┐рдиреНрддреБ рдЙрдирдХреА
physico-chemical properties рдЬреИрд╕реЗ - amino acid sequence, subunits рдХрд╛ рд╡рд┐рднрд┐рдиреНрди рд╕рдВрдпреЛрдЬрди, рддрд╛рдк рдХ
реЗ рдкреНрд░рддрд┐
рд╕реНрдерд┐рд░рддрд╛, electrophoretic mobility рдФрд░ substrate рдХреА рдЕрдзрд┐рдХрддрд╛ рджреНрд╡рд╛рд░рд╛ рдЕрд╡рд░реЛрдзрди (inhibition) рдХреА
рд╕рдВрд╡реЗрджрдирд╢реАрд▓рддрд╛ рдЖрджрд┐ рднрд┐рдиреНрди рд╣реЛрддреА рд╣реИрдВ I рдпреЗ рднрд┐рдиреНрдирд░реВрдк (variants) рдЖрдиреБрд╡рдВрд╢рд┐рдХ рд░реВрдк рд╕реЗ рдирд┐рд░реНрдзрд╛рд░рд┐рдд рд╣реЛрддреЗ рд╣реИрдВ I Isoenzymes
рдЕрдкрдиреА kinetic рдФрд░ regulatory properties рдПрд╡рдВ tissues рдореЗрдВ рдЙрдирдХ
реЗ distribution рдореЗрдВ рднреА рднрд┐рдиреНрди рд╣реЛрддреЗ рд╣реИрдВ рдЬрд┐рд╕рдХ
реЗ рд▓рд┐рдП
рд╡рд┐рд╢рд┐рд╖реНрдЯ рдКрддрдХреЛрдВ рдХреА рдЪрдпрд╛рдкрдЪрдп рдЕрд╡рд╢реНрдпрдХрддрд╛рдпреЗрдВ (metabolic requirements) рдЬрд┐рдореНрдореЗрджрд╛рд░ рд╣реЛрддреА рд╣реИрдВ I Isoenzymes рдХреЛ
рдЙрдирдХреА anode рдХреА рдУрд░ electrophoretic mobility рдХ
реЗ рдЖрдзрд╛рд░ рдкрд░ рд╕рдВрдЦреНрдпрд╛рдВрдХрд┐рдд рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ I рдЙрджрд╛рд╣рд░рдг : Lactate
dehydrogenase (LDH) рдХ
реЗ рдкрд╛рдБрдЪ isoenzymes рд╣реЛрддреЗ рд╣реИрдВ рдЬрд┐рдирдореЗрдВ LDH-5 рдХреА anode рдХреА рддрд░рдл mobility рд╕рдмрд╕реЗ рдХрдо
рд╣реЛрддреА рд╣реИ рдФрд░ LDH-1 рдХреА рд╕рдмрд╕реЗ рдЕрдзрд┐рдХ I LDH-1 рдХреА рдорд╛рддреНрд░рд╛ heart рдореЗрдВ рд╕рдмрд╕реЗ рдЕрдзрд┐рдХ рд╣реЛрддреА рд╣реИ рдЬрдмрдХрд┐ LDH-5 рдХреА рд╕рдмрд╕реЗ
рдЕрдзрд┐рдХ рдорд╛рддреНрд░рд╛ skeletal muscles рдФрд░ liver рдореЗрдВ рд╣реЛрддреА рд╣реИ I]
14
Q.16. Name two enzymes used in medical diagnosis. Explain the use of enzymes in
diagnosis of heart attack. [Medical diagnosis рд╣реЗрддреБ рдЙрдкрдпреЛрдЧ рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ рджреЛ enzymes рдХ
реЗ рдирд╛рдо рд▓рд┐рдЦреЗрдВ
I Heart attack рдХреА diagnosis рд╣реЗрддреБ рдЙрдкрдпреЛрдЧ рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ enzymes рдХреА рд╡реНрдпрд╛рдЦреНрдпрд╛ рдХрд░реЗрдВ I]
Ans. Creatine kinase (CK), used in the determination of myocardial infarction and muscle
diseases and acid phosphatase used in the determination of prostate cancer, are two important
enzymes used in medical diagnosis.
Diagnostic enzymes in heart attack: The blockage in the artery or arteries supplying the blood to
the heart results in heart attack or myocardial infarction (MI). This results in death of some of the
cells of heart muscles, thereby, release of enzymes such as creatine kinase, glutamate
oxaloacetate transaminase and lactate dehydrogenase into the blood. The pattern of release of
these enzymes in blood helps in diagnosis and severity of heart attack. CK level in blood
increases within 6 hours after myocardial infarction, reaches peak level at about 24 hours and
then normalizes in 2-3 days. Similarly, GOT begins to increase 3-8 hrs. after myocardial injury,
reaches peak level after about 24 and normalizes in 3-6 days. Likewise LDH level in blood begin
to increase within 6-12 hrs. after MI , reach maximum level at about 48 hrs. which remains
elevated for 4-14 days before coming down to normal levels. The rise and fall pattern of these
enzymes were used for diagnosis of MI. However, these enzymes have become obsolete as
some new more specific biochemical markers for diagnosis of MI have come up, e.g. isoenzyme
of creatine kinase (CKMB), cardiac troponin I and troponin T.
[Medical diagnosis (рдирд┐рджрд╛рди) рд╣реЗрддреБ рдЙрдкрдпреЛрдЧ рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ enzymes рдореЗрдВ рд╕реЗ рджреЛ enzymes рд╣реИрдВ - Creatine kinase
(CK) рдЬрд┐рд╕рдХрд╛ рдЙрдкрдпреЛрдЧ myocardial infarction (heart attack) рдХ
реЗ рдирд┐рджрд╛рди рд╣реЗрддреБ рдФрд░ Acid phosphatase рдЬрд┐рд╕рдХрд╛
рдЙрдкрдпреЛрдЧ prostate cancer рдХ
реЗ рдирд┐рджрд╛рди рд╣реЗрддреБ рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ I
Coronary (рдХреЛрд░реЛрдирд░реА) artery (рдзрдордиреА), рдЬреЛ heart рдХреЛ blood supply рдХрд░рддреА рд╣реИрдВ, рдореЗрдВ рдЬрдм рдХрд┐рд╕реА рдХрд╛рд░рдгрд╡рд╢ blood рдХ
реЗ
рдкреНрд░рд╡рд╛рд╣ рдореЗрдВ рд░реБрдХрд╛рд╡рдЯ рд╣реЛрддреА рд╣реИ рддреЛ myocardium рдХреЛ рдЖрд╡рд╢реНрдпрдХрддрд╛рдиреБрд╕рд╛рд░ рдСрдХреНрд╕реАрдЬрди рдирд╣реАрдВ рдорд┐рд▓ рдкрд╛рддреА рдФрд░ рдЬрдм рдпрд╣ рд╕реНрдерд┐рддрд┐
рдЕрдзрд┐рдХ рд╕рдордп рдХ
реЗ рд▓рд┐рдП рдФрд░ рдЕрдкрд░рд┐рд╡рд░реНрддрдиреАрдп рд╣реЛрддреА рд╣реИ рддреЛ myocardial cell рдХреА death рдФрд░ necrosis (рдЧрд▓ рдЬрд╛рдирд╛) рд╣реЛрдиреЗ
рд▓рдЧрддреА рд╣реИ I рдФрд░ рдЗрд╕реЗ myocardial infarction (рд░реЛрдзрдЧрд▓рди,MI) рдпрд╛ рддреАрд╡реНрд░ рд░реЛрдзрдЧрд▓рди (acute myocardial infarction,
AMI) рдХрд╣рддреЗ рд╣реИрдВ рдФрд░ рдЬрд┐рд╕реЗ рдЖрдорддреМрд░ рдкрд░ рд╣реГрджрдпрд╛рдШрд╛рдд (рд╣рд╛рд░реНрдЯ рдЕрдЯреИрдХ) рдпрд╛ рджрд┐рд▓ рдХ
реЗ рджреМрд░реЗ рдХ
реЗ рд░реВрдк рдореЗрдВ рдЬрд╛рдирд╛ рдЬрд╛рддрд╛ рд╣реИ I Heart рдХ
реЗ
muscles рдХреА death рдФрд░ necrosis рдХ
реЗ рдХрд╛рд░рдг рдХ
реБ рдЫ enzymes release рд╣реЛрдХрд░ blood рдореЗрдВ рдЖ рдЬрд╛рддреЗ рд╣реИрдВ I рдЗрди
enzymes рдХ
реЗ release рд╣реЛрдиреЗ рдХ
реЗ pattern рджреНрд╡рд╛рд░рд╛ myocardial infarction рдХреА diagnosis (рдирд┐рджрд╛рди) рдореЗрдВ рдорджрдж рдорд┐рд▓рддреА
рд╣реИ I рдпреЗ enzymes рд╣реИрдВ - creatine kinase (CK), glutamate oxaloacetate transaminase (GOT) рдФрд░ lactate
dehydrogenase I Blood рдореЗрдВ CK рдХрд╛ рд╕реНрддрд░ MI рд╣реЛрдиреЗ рдХ
реЗ 6 рдШрдВрдЯреЛрдВ рдХ
реЗ рдЕрдВрджрд░ рдмреЭрдирд╛ рд╢реБрд░реВ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ, 24 рдШрдВрдЯреЗ рдореЗрдВ peak
level рдкрд╣реБрдБрдЪ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдлрд┐рд░ 2-3 рджрд┐рдиреЛрдВ рдореЗрдВ рд╕рд╛рдорд╛рдиреНрдп рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдЗрд╕реАрдкреНрд░рдХрд╛рд░, GOT рдХрд╛ рд╕реНрддрд░ MI рдХ
реЗ 3-8 рдШрдВрдЯреЗ рдмрд╛рдж
рдмреЭрдиреЗ рд▓рдЧрддрд╛ рд╣реИ, 24 рдШрдВрдЯреЗ рдореЗрдВ peak level рдкрд╣реБрдБрдЪ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдлрд┐рд░ 3-6 рджрд┐рдиреЛрдВ рдореЗрдВ рд╕рд╛рдорд╛рдиреНрдп рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдЗрд╕реА рддрд░рд╣,
blood рдореЗрдВ LDH level 6-12 рдШрдВрдЯреЛрдВ рдореЗрдВ MI рдХ
реЗ рдмрд╛рдж рдмреЭрддрд╛ рд╣реИ, рд▓рдЧрднрдЧ 48 рдШрдВрдЯреЛрдВ рдореЗрдВ peak рд╕реНрддрд░ рдорд┐рд▓рддрд╛ рдЬреЛ 4-14 рджрд┐рдиреЛрдВ
рддрдХ рдмреЭрд╛ рд░рд╣рддрд╛ рд╣реИ рдФрд░ рдЙрд╕рдХ
реЗ рдмрд╛рдж рдзреАрд░реЗ - рдзреАрд░реЗ рд╕рд╛рдорд╛рдиреНрдп рд╣реЛрддрд╛ рд╣реИ I рдЗрди enzymes рдХ
реЗ рдмреЭрдиреЗ рдФрд░ рдШрдЯрдиреЗ рдХрд╛ рдпрд╣ pattern
рд╣реА MI рдХ
реЗ рдирд┐рджрд╛рди (diagnosis) рдореЗрдВ рдЙрдкрдпреЛрдЧ рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ I рд╣рд╛рд▓рд╛рдВрдХрд┐, рдЖрдЬрдХрд▓ рдЗрди enzymes рдХрд╛ рдЪрд▓рди рдХрдо рд╣реЛ
рдЧрдпрд╛ рд╣реИ рдФрд░ рдЗрдирдХреА рдЬрдЧрд╣ рдХ
реБ рдЫ рдирдП рдФрд░ рдЕрдзрд┐рдХ рд╡рд┐рд╢рд┐рд╖реНрдЯ biochemical markers рдХрд╛ рдЙрдкрдпреЛрдЧ рдЕрдзрд┐рдХ рд╣реЛрдиреЗ рд▓рдЧрд╛ рд╣реИ,
рдЬреИрд╕реЗ - creatine kinase рдХрд╛ isoenzyme (CKMB), Lactate dehydrogenase рдХрд╛ isoenzyme 1 (LDH 1)
cardiac troponin I рдФрд░ troponin T ]
15
Q. 17. Write a short note on active site of enzymes.[Enzyme рдХреА active site рдкрд░ рдПрдХ short
note рд▓рд┐рдЦреЗрдВ I]
Ans.
We know that the enzymes work as biocatalysts and the binding of substrate to the enzyme is a
prerequisite for an enzyme catalyzed reaction. The active site is a specific area in the enzyme
molecule where the suitable substrate molecule binds to it and the chemical reaction occurs by
breaking or formation of the bonds. It is a small area in the whole enzyme molecule and only a
few amino acid (their side chains) constitute this active site. The active site is specific for its
substrate which can be explained by 'Lock and Key' or 'Induced Fit' models.
The amino acid residues constituting the active site are basically of two types viz. binding
groups and catalytic groups. The binding groups are responsible for binding of the substrate
molecule(s) through non-covalent binding interactions such as hydrogen bonds, electrostatic or
hydrophobic interactions. The binding group amino acids may be polar or nonpolar. The binding
of substrate to binding groups results in the formation of enzyme - substrate complex and this
creates a chemical environment for further reaction. The catalytic groups amino acids are of
polar type. The catalytic groups bring about the actual catalytic reaction by lowering the free
energy of the transition state and stimulating the bond formation/breaking and also prevent
unwanted reactions. Some amino acid side chains take part in both binding and catalytic
functions of the active site.
[рд╣рдо рдЬрд╛рдирддреЗ рд╣реИрдВ рдХрд┐ enzymes biocatalysts рдХреА рддрд░рд╣ рдХрд╛рдо рдХрд░рддреЗ рд╣реИрдВ рдФрд░ enzyme рджреНрд╡рд╛рд░рд╛ catalysis рдХ
реЗ рд▓рд┐рдП рдкрд╣рд▓реА
рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реИ substrate рдХрд╛ enzyme рд╕реЗ bind рд╣реЛрдирд╛ I Active site enzyme рдХрд╛ рдПрдХ рд╡рд┐рд╢реЗрд╖ рд╣рд┐рд╕реНрд╕рд╛ рд╣реЛрддрд╛ рд╣реИ рдЬрд╣рд╛рдБ
рдЙрдЪрд┐рдд substrate enzyme рд╕реЗ bind рдХрд░рддрд╛ рд╣реИ рдФрд░ рдЬрд╣рд╛рдБ bonds рдмрдирдиреЗ рдФрд░ рдЯреВрдЯрдиреЗ рдХреА рдкреНрд░рдХреНрд░рд┐рдпрд╛ рджреНрд╡рд╛рд░рд╛ reaction рдкреВрд░рд╛
рд╣реЛрддрд╛ рд╣реИ I рдпрд╣ рдкреВрд░реЗ enzyme molecule рдХрд╛ рдПрдХ рдЫреЛрдЯрд╛ рд╕рд╛ рдХреНрд╖реЗрддреНрд░ рд╣реЛрддрд╛ рд╣реИ рдФрд░ рдХ
реЗ рд╡рд▓ рдХ
реБ рдЫ amino acids рдХреА side
chains рд╣реА рдЗрд╕ active site рдХрд╛ рдирд┐рд░реНрдорд╛рдг рдХрд░рддреА рд╣реИрдВ I рдпрд╣ active site рдЕрдкрдиреЗ substrate рдХ
реЗ рд▓рд┐рдП рд╡рд┐рд╢рд┐рд╖реНрдЯ рд╣реЛрддреА рд╣реИ
рдЬрд┐рд╕реЗ 'Lock and Key' рдпрд╛ 'Induced Fit' models рджреНрд╡рд╛рд░рд╛ рд╕рдордЭрд╛рдпрд╛ рдЬрд╛ рд╕рдХрддрд╛ рд╣реИ I
Active site рдХреЛ рдирд┐рд░реНрдорд┐рдд рдХрд░рдиреЗ рд╡рд╛рд▓реЗ amino acid residues рдореВрд▓рд░реВрдк рд╕реЗ рджреЛ рдкреНрд░рдХрд╛рд░ рдХ
реЗ рд╣реЛрддреЗ рд╣реИрдВ - рдПрдХ binding groups
рдФрд░ рджреВрд╕рд░реЗ catalytic groups I Binding groups реЫрд┐рдореНрдореЗрджрд╛рд░ рд╣реЛрддреЗ рд╣реИрдВ substrate molecules рдХреА hydrogen
bonds, electrostatic рдпрд╛ hydrophobic interactions рдЬреИрд╕реЗ interactions рджреНрд╡рд╛рд░рд╛ non-covalent binding рдХ
реЗ
рд▓рд┐рдП I рдпреЗ binding group amino acids polar рдпрд╛ nonpolar рд╣реЛ рд╕рдХрддреЗ рд╣реИрдВ I Substrate рдХреА binding groups рдХ
реЗ
рд╕рд╛рде binding рд╕реЗ enzyme - substrate complex рдмрдирддрд╛ рд╣реИ рдФрд░ рдЖрдЧреЗ рдХ
реЗ reaction рдХ
реЗ рд▓рд┐рдП рдПрдХ chemical
environment рдмрдирд╛рддрд╛ рд╣реИ I рджреВрд╕рд░реА рддрд░рдл catalytic groups рдХ
реЗ amino acids polar type рдХ
реЗ рд╣реЛрддреЗ рд╣реИрдВ рдФрд░ рдпреЗ
transition state рдХреА free energy рдХреЛ рдХрдо рдХрд░рдХ
реЗ , bond рдХ
реЗ рдмрдирдиреЗ рдФрд░ рдЯреВрдЯрдиреЗ рдХреА рдкреНрд░рдХреНрд░рд┐рдпрд╛ рдХреЛ рдкреНрд░реЗрд░рд┐рдд рдХрд░рдХ
реЗ рддрдерд╛
рдЕрд╡рд╛рдВрдЫрд┐рдд reactions рдХреЛ рд░реЛрдХ рдХрд░ рд╡рд╛рд╕реНрддрд╡рд┐рдХ reaction рдХреЛ рдкреВрд░реНрдг рдХрд░рддреЗ рд╣реИрдВ I рдХ
реБ рдЫ amino acid рдХреА side chains
active site рдХ
реЗ binding рдФрд░ catalytic рджреЛрдиреЛрдВ рд╣реА рдореЗрдВ рд╣рд┐рд╕реНрд╕рд╛ рд▓реЗрддреА рд╣реИрдВ I]
16
Q. 18. Fill in the blanks [рдЦрд╛рд▓реА рдЬрдЧрд╣ рднрд░реЗрдВ]:
(i) Chemical reactions рдХ
реЗ рджреМрд░рд╛рди enzymes ______ рдирд╣реАрдВ рд╣реЛрддреЗ рдФрд░ рдмрд╛рд░ - рдмрд╛рд░ рдЗрд╕реНрддреЗрдорд╛рд▓ рд╣реЛрддреЗ рд╣реИрдВ I
(ii) рдХрд┐рд╕реА enzyme рдХ
реЗ enzymatically inactive protein part рдХреЛ _______ рдХрд╣рддреЗ рд╣реИрдВ I
(iii) рдПрдХ enzyme рдХ
реЗ рдЙрд╕ nonprotein part рдХреЛ рдЬрд┐рд╕рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ enzyme activity рдХ
реЗ рд▓рд┐рдП рд╣реЛрддреА рд╣реИ, рдЙрд╕реЗ
________ рдХрд╣рддреЗ рд╣реИрдВ I
(iv) ______ enzyme рдХрд╛ non protein part рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕рдХреА enzyme activity рдХ
реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ I
(v) рдЬрдм рдПрдХ cofactor рдПрдХ protein рдпрд╛ enzyme рд╕реЗ tightly bound рд╣реЛрддрд╛ рд╣реИ рддреЛ рдЙрд╕ cofactor рдХреЛ _______
group рдХрд╣рддреЗ рд╣реИрдВ I
(vi) _________ рд╡реЛ chemical substance рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕рдХрд╛ transformation рдПрдХ enzyme рджреНрд╡рд╛рд░рд╛ catalyze
рд╣реЛрддрд╛ рд╣реИ I
(vii) Enzyme рдХрд╛ рд╡реЛ рд╣рд┐рд╕реНрд╕рд╛ рдЬрд╣рд╛рдБ catalytic рдкреНрд░рдХреНрд░рд┐рдпрд╛ рдХ
реЗ рд╕рд╛рд░реЗ events рд╣реЛрддреЗ рд╣реИрдВ, ______ site рдХрд╣рд▓рд╛рддрд╛ рд╣реИ I
(viii) Enzyme activity рдХреА traditional unit ____ рд╣реИ рдФрд░ SI unit ______ рд╣реИ I
(ix) рдХрд┐рд╕реА enzyme рдХ
реЗ рд╡рд┐рднрд┐рдиреНрди рд░реВрдк рдЬреЛ same reaction рдХреЛ catalyze рдХрд░рддреЗ рд╣реИрдВ рдХрд┐рдиреНрддреБ рдЙрдирдХреА
physico-chemical properties рднрд┐рдиреНрди рд╣реЛрддреА рд╣реИрдВ рдЙрдиреНрд╣реЗрдВ __________ рдХрд╣рддреЗ рд╣реИрдВ I
(x) Lactate dehydrogenase enzyme рдХ
реЗ _____ isoenzymes рд╣реЛрддреЗ рд╣реИрдВ I
(xi) LDH-1 рдХреА рдорд╛рддреНрд░рд╛ _____ рдореЗрдВ рд╕рдмрд╕реЗ рдЕрдзрд┐рдХ рд╣реЛрддреА рд╣реИ рдЬрдмрдХрд┐ LDH-5 рдХреА рд╕рдмрд╕реЗ рдЕрдзрд┐рдХ рдорд╛рддреНрд░рд╛ _______
muscles рдФрд░ _____ рдореЗрдВ рд╣реЛрддреА рд╣реИ I
(xii) Myocardium рдореЗрдВ рдкрд╛рдпрд╛ рдЬрд╛рдиреЗ рд╡рд╛рд▓рд╛ creatine kinase рдХрд╛ isoenzyme ________ рд╣реИ I
(xiii) Serum cardiac _______ рдХреЛ MI рдХреА diagnosis рд╣реЗрддреБ 'Gold standard' biochemical marker рдорд╛рдирд╛
рдЬрд╛рддрд╛ рд╣реИ I
(xiv) Blood рдФрд░ urine рдореЗрдВ sugar рдХреА рдЬрд╛рдБрдЪ рд╣реЗрддреБ рдЙрдкрдпреЛрдЧ рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ рджреЛ enzymes рд╣реИрдВ - ________ рдФрд░
______
(xv) _______ рдФрд░ _______ рдХрд╛ рдЙрдкрдпреЛрдЧ severe burn рдХ
реЗ рдЙрдкрдЪрд╛рд░ рдореЗрдВ рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ рдХреНрдпреЛрдВрдХрд┐ рдпреЗ рд╢рд░реАрд░ рдХ
реЗ рдЬрд▓реЗ рд╣реБрдП
рдХреНрд╖реЗрддреНрд░ рдХреА dead skin, clotted blood рдФрд░ pus рдХреА proteins рдХ
реЗ рдЕрдкрдШрдЯрди (decompose) рдореЗрдВ рдорджрдж рдХрд░рддреЗ рд╣реИрдВ I
Ans. (i) рдирд╖реНрдЯ, (ii) apoenzyme, (iii) cofactor, (iv) coenzyme, (v) prosthetic, (vi) substrate, ((vii)
active, (viii) U рдпрд╛ IU, katal, (ix) isoenzymes, (x) рдкрд╛рдБрдЪ, (xi) heart, skeletal, liver, (xxii) MB, (xiii)
Troponin, (xiv) glucose oxidase, peroxidase, (xv) trypsin, chymotrypsin.
REFERENCES:
1. IGNOU, CHE - 9 Biochemistry, Block 2
2. Lehninger Principles of biochemistry, seventh edition ; David L. Nelson & Michael M. Cox.
Disclaimer : The pictures given in the text have been downloaded from Google images and I am
thankful to the persons who have uploaded these pictures.
Dr. P. K. Nigam (Retired Biochemist)
17

More Related Content

More from PrabhatNigam6

More from PrabhatNigam6 (16)

DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Lipids (U. P. State Medi...
┬а
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...
DMLT 2nd YEAR - SOME BASIC CONCEPTS OF BIOCHEMISTRY- Carbohydrates (U. P. Sta...
┬а
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 7: hemoglobin & glucose estimat...
┬а
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 5: Laboratory equipments) FOR D...
┬а
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...
SOME BASIC CONCEPTS OF BIOCHEMISTRY (Lesson - 1: Biochemistry & its importanc...
┬а
Some Q & A Biotechnology & Immunology | IGNOU Biochemistry CHE-09 (in Englis...
Some Q & A Biotechnology &  Immunology | IGNOU Biochemistry CHE-09 (in Englis...Some Q & A Biotechnology &  Immunology | IGNOU Biochemistry CHE-09 (in Englis...
Some Q & A Biotechnology & Immunology | IGNOU Biochemistry CHE-09 (in Englis...
┬а
Some Q & A Gene expression (replication, transcription and protein synthesis)...
Some Q & A Gene expression (replication, transcription and protein synthesis)...Some Q & A Gene expression (replication, transcription and protein synthesis)...
Some Q & A Gene expression (replication, transcription and protein synthesis)...
┬а
Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Photosynthesis | IGNOU Biochemistry CHE-09 (in English /Hinglish)
┬а
Some Q & A Metabolic regulation | IGNOU Biochemistry CHE-09 (in English /Hing...
Some Q & A Metabolic regulation | IGNOU Biochemistry CHE-09 (in English /Hing...Some Q & A Metabolic regulation | IGNOU Biochemistry CHE-09 (in English /Hing...
Some Q & A Metabolic regulation | IGNOU Biochemistry CHE-09 (in English /Hing...
┬а
Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - II | IGNOU Biochemistry CHE-09 (in English /Hinglish)
┬а
Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Metabolism - I | IGNOU Biochemistry CHE-09 (in English /Hinglish)
┬а
Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Bioenergetics | IGNOU Biochemistry CHE-09 (in English /Hinglish)
┬а
Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...
Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...
Some Q & A Vitamins, coenzyme, minerals | IGNOU Biochemistry CHE9 (in English...
┬а
Some Q & A Proteins | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Proteins | IGNOU Biochemistry CHE-09 (in English /Hinglish)Some Q & A Proteins | IGNOU Biochemistry CHE-09 (in English /Hinglish)
Some Q & A Proteins | IGNOU Biochemistry CHE-09 (in English /Hinglish)
┬а
Some Q & A Nucleic acids | Biochemistry IGNOU CHE-09 (in English /Hinglish)
Some Q & A Nucleic acids | Biochemistry IGNOU CHE-09 (in English /Hinglish)Some Q & A Nucleic acids | Biochemistry IGNOU CHE-09 (in English /Hinglish)
Some Q & A Nucleic acids | Biochemistry IGNOU CHE-09 (in English /Hinglish)
┬а
Some Q & A Lipids | Biochemistry IGNOU CHE-09 (in English/Hinglish)
Some Q & A Lipids | Biochemistry IGNOU CHE-09 (in English/Hinglish)Some Q & A Lipids | Biochemistry IGNOU CHE-09 (in English/Hinglish)
Some Q & A Lipids | Biochemistry IGNOU CHE-09 (in English/Hinglish)
┬а

Recently uploaded

Email Marketing Kya Hai aur benefits of email marketing
Email Marketing Kya Hai aur benefits of email marketingEmail Marketing Kya Hai aur benefits of email marketing
Email Marketing Kya Hai aur benefits of email marketing
Digital Azadi
┬а
рдмрд╛рд▓ рд╕рд╛рд╣рд┐рддреНрдп: рдЗрд╕рдХреА рдкреНрд░рдореБрдЦ рд╡рд┐рд╢реЗрд╖рддрд╛рдПрдБ рдХреНрдпрд╛ рд╣реИрдВ?
рдмрд╛рд▓ рд╕рд╛рд╣рд┐рддреНрдп: рдЗрд╕рдХреА рдкреНрд░рдореБрдЦ рд╡рд┐рд╢реЗрд╖рддрд╛рдПрдБ рдХреНрдпрд╛ рд╣реИрдВ?рдмрд╛рд▓ рд╕рд╛рд╣рд┐рддреНрдп: рдЗрд╕рдХреА рдкреНрд░рдореБрдЦ рд╡рд┐рд╢реЗрд╖рддрд╛рдПрдБ рдХреНрдпрд╛ рд╣реИрдВ?
рдмрд╛рд▓ рд╕рд╛рд╣рд┐рддреНрдп: рдЗрд╕рдХреА рдкреНрд░рдореБрдЦ рд╡рд┐рд╢реЗрд╖рддрд╛рдПрдБ рдХреНрдпрд╛ рд╣реИрдВ?
Dr. Mulla Adam Ali
┬а

Recently uploaded (6)

2011 Census of India - complete information.pptx
2011 Census of India - complete information.pptx2011 Census of India - complete information.pptx
2011 Census of India - complete information.pptx
┬а
Email Marketing Kya Hai aur benefits of email marketing
Email Marketing Kya Hai aur benefits of email marketingEmail Marketing Kya Hai aur benefits of email marketing
Email Marketing Kya Hai aur benefits of email marketing
┬а
рдмрд╛рд▓ рд╕рд╛рд╣рд┐рддреНрдп: рдЗрд╕рдХреА рдкреНрд░рдореБрдЦ рд╡рд┐рд╢реЗрд╖рддрд╛рдПрдБ рдХреНрдпрд╛ рд╣реИрдВ?
рдмрд╛рд▓ рд╕рд╛рд╣рд┐рддреНрдп: рдЗрд╕рдХреА рдкреНрд░рдореБрдЦ рд╡рд┐рд╢реЗрд╖рддрд╛рдПрдБ рдХреНрдпрд╛ рд╣реИрдВ?рдмрд╛рд▓ рд╕рд╛рд╣рд┐рддреНрдп: рдЗрд╕рдХреА рдкреНрд░рдореБрдЦ рд╡рд┐рд╢реЗрд╖рддрд╛рдПрдБ рдХреНрдпрд╛ рд╣реИрдВ?
рдмрд╛рд▓ рд╕рд╛рд╣рд┐рддреНрдп: рдЗрд╕рдХреА рдкреНрд░рдореБрдЦ рд╡рд┐рд╢реЗрд╖рддрд╛рдПрдБ рдХреНрдпрд╛ рд╣реИрдВ?
┬а
ali garh movement part2.pptx THIS movement by sir syed ahmad khan who started...
ali garh movement part2.pptx THIS movement by sir syed ahmad khan who started...ali garh movement part2.pptx THIS movement by sir syed ahmad khan who started...
ali garh movement part2.pptx THIS movement by sir syed ahmad khan who started...
┬а
Kabir Ke 10 Dohe in Hindi with meaning
Kabir Ke 10 Dohe in Hindi with meaningKabir Ke 10 Dohe in Hindi with meaning
Kabir Ke 10 Dohe in Hindi with meaning
┬а
knowledge and curriculum Syllabus for B.Ed
knowledge and curriculum Syllabus for B.Edknowledge and curriculum Syllabus for B.Ed
knowledge and curriculum Syllabus for B.Ed
┬а

Some Q & A Enzymes | IGNOU Biochemistry CHE-09 (in English /Hinglish)

  • 1. 6. SOME IMPORTANT QUESTION - ANSWER FOR IGNOU BIOCHEMISTRY [CHE 9] ENZYMES Q. 1(A). What is the chemical nature of enzymes? [Enzymes рдХрд╛ рд░рд╛рд╕рд╛рдпрдирд┐рдХ рд╕реНрд╡рднрд╛рд╡ рдХ реИ рд╕рд╛ рд╣реЛрддрд╛ рд╣реИ?] Ans. Enzymes are a specialized class of proteins (ribozymes are the exception which are RNA molecules) which act as biocatalysts in the metabolic reactions to speed up the rate of a specific chemical reaction. The enzyme is not destroyed during the reaction and is used over and over. Though many enzyme molecules are the true catalyst by themselves, some enzymes require the presence of additional nonprotein molecules for the full expression of their catalytic function and such enzymes are conjugated protein molecules. The protein part of an enzyme molecule is called apoenzyme and the nonprotein part is called a cofactor. Thus the combination of an apoenzyme and the cofactor is called holoenzyme. Apoenzyme + Cofactor тАФ---> Holoenzyme [Enzymes proteins рдХрд╛ рдПрдХ рд╡рд┐рд╢реЗрд╖реАрдХреГ рдд (specialized) рд╡рд░реНрдЧ рд╣реИрдВ (ribozymes рдХреЛ рдЫреЛреЬ рдХрд░, рдЬреЛ RNA molecules рд╣реИрдВ) рдЬреЛ metabolic reactions рдореЗрдВ biocatalysts рдХрд╛ рдХрд╛рдо рдХрд░рддреЗ рд╣реИрдВ рдФрд░ рд╡рд┐рд╢реЗрд╖ chemical reactions рдХреА speed рдмреЭрд╛рддреЗ рд╣реИрдВ I chemical reactions рдХ реЗ рджреМрд░рд╛рди enzymes рдирд╖реНрдЯ рдирд╣реАрдВ рд╣реЛрддреЗ рдФрд░ рдмрд╛рд░ - рдмрд╛рд░ рдЗрд╕реНрддреЗрдорд╛рд▓ рд╣реЛрддреЗ рд╣реИрдВ I рдпрджреНрдпрдкрд┐ рдмрд╣реБрдд рд╕реЗ enzyme molecules рдЦреБрдж рд╣реА true catalyst рд╣реЛрддреЗ рд╣реИрдВ рдХрд┐рдиреНрддреБ рдХ реБ рдЫ enzymes рдХреЛ рдкреВрд░реНрдг catalytic function рд╣реЗрддреБ рдХ реБ рдЫ рдЕрдиреНрдп molecules рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ рдФрд░ рдРрд╕реЗ enzymes conjugated protein molecules рд╣реЛрддреЗ рд╣реИрдВ рдПрдХ enzyme molecule рдХрд╛ protein part apoenzyme рдФрд░ nonprotein cofactor рдХрд╣рд▓рд╛рддрд╛ рд╣реИ I рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдПрдХ apoenzyme рдФрд░ рдПрдХ cofactor рдХрд╛ рд╕рдВрдпреЛрдЬрди holoenzyme рдХрд╣рд▓рд╛рддрд╛ рд╣реИ I Apoenzyme + Cofactor тАФ---> Holoenzyme Q. 1(B).Define the following terms (рдЗрди рд╢рдмреНрджрд╛рд╡рд▓реА рдХреЛ рдкрд░рд┐рднрд╛рд╖рд┐рдд рдХрд░реЗрдВ): Enzyme, apoenzyme, holoenzyme, cofactor, coenzyme, prosthetic group, active site, substrate, enzyme activity Ans. Enzymes - are a group of specialized proteins which act as biocatalysts in the metabolic reactions to speed up the rate of a specific chemical reaction. The enzyme is not destroyed during the reaction and is used over and over. [Enzymes - proteins рдХрд╛ рдПрдХ рд╡рд┐рд╢реЗрд╖реАрдХреГ рдд (specialized) рд╡рд░реНрдЧ рд╣реИрдВ рдЬреЛ metabolic reactions рдореЗрдВ biocatalysts рдХрд╛ рдХрд╛рдо рдХрд░рддреЗ рд╣реИрдВ рдФрд░ рд╡рд┐рд╢реЗрд╖ chemical reactions рдХреА speed рдмреЭрд╛рддреЗ рд╣реИрдВ I chemical reactions рдХ реЗ рджреМрд░рд╛рди enzymes рдирд╖реНрдЯ рдирд╣реАрдВ рд╣реЛрддреЗ рдФрд░ рдмрд╛рд░ - рдмрд╛рд░ рдЗрд╕реНрддреЗрдорд╛рд▓ рд╣реЛрддреЗ рд╣реИрдВ I] Apoenzyme - is the enzymatically inactive protein part of an enzyme, which requires a cofactor for its activity. [Apoenzyme - рдХрд┐рд╕реА enzyme рдХ реЗ enzymatically inactive protein part рдХреЛ apoenzyme рдХрд╣рддреЗ рд╣реИрдВ I рдЗрд╕ inactive part рдХреЛ activate рдХрд░рдиреЗ рд╣реЗрддреБ рдПрдХ cofactor рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ I] Holoenzyme - The combination of an Apoenzyme and the cofactor is called holoenzyme and is a complete, functional enzyme, which is catalytically active. [Holoenzyme - Apoenzyme рдФрд░ cofactor рдХ реЗ рд╕рдВрдпреЛрдЬрди рд╕реЗ holoenzyme рдмрдирддрд╛ рд╣реИ рдФрд░ рдпрд╣реА рдПрдХ complete, functional рдФрд░ catalytically active enzyme рд╣реЛрддрд╛ рд╣реИ I] Cofactor - is the non protein part of an enzyme which is required for enzyme activity. e.g. Mg2+, Zn++, NAD. 1
  • 2. [Cofactor - рдпрд╣ enzyme рдХрд╛ non protein part рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕рдХреА enzyme activity рдХ реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ I рдЬреИрд╕реЗ - Mg++, Zn++, NAD] Coenzyme - The non protein organic cofactor molecule is called coenzyme, such as vitamins of B group. [Coenzymes - рд╡реЛ organic compounds рд╣реЛрддреЗ рд╣реИрдВ рдЬрд┐рдирдХреА рдХрдИ enzymes рдХреЛ рдЙрдирдХреА catalytic activity рдХ реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ I] Prosthetic group - The tightly bound cofactor is called prosthetic group, such as heme group in hemoglobin. [Prosthetic group - рдЬрдм рдПрдХ cofactor рдПрдХ protein рдпрд╛ enzyme рд╕реЗ tightly bound рд╣реЛрддрд╛ рд╣реИ рддреЛ рдЙрд╕ cofactor рдХреЛ prosthetic group рдХрд╣рддреЗ рд╣реИрдВ, рдЬреИрд╕реЗ - hemoglobin рдХрд╛ heme group ] Active site - The part of an enzyme where all the events of the catalytic process occur is called its active site. [Active site - Enzyme рдХрд╛ рд╡реЛ рд╣рд┐рд╕реНрд╕рд╛ рдЬрд╣рд╛рдБ catalytic рдкреНрд░рдХреНрд░рд┐рдпрд╛ рдХ реЗ рд╕рд╛рд░реЗ events рд╣реЛрддреЗ рд╣реИрдВ, active site рдХрд╣рд▓рд╛рддрд╛ рд╣реИ I] Substrate - is the chemical substance which is transformed in a chemical reaction catalyzed by an enzyme. [Substrate - рд╡реЛ chemical substance рдЬрд┐рд╕рдХрд╛ transformation рдПрдХ enzyme рджреНрд╡рд╛рд░рд╛ catalyze рд╣реЛрддрд╛ рд╣реИ I] Enzyme activity - The quantity or concentration of an enzymes is expressed in terms of activity in enzyme units. An enzyme unit (activity as U or IU) is the amount of enzyme that will catalyse the transformation of 1 ╬╝mol of substrate/min under specified conditions of pH and temperature. [Enzyme activity - рдПрдХ enzyme рдХреА quantity рдпрд╛ concentration рдХреЛ enzyme activity рдХ реЗ рд░реВрдк рдореЗрдВ рдЕрднрд┐рд╡реНрдпрдХреНрдд рдХрд░рддреЗ рд╣реИрдВ рдФрд░ рдЗрд╕ activity рдХреЛ enzyme units рдореЗрдВ рджрд░реНрд╢рд╛рддреЗ рд╣реИрдВ I An enzyme unit (activity as U or IU) is the amount of enzyme that will catalyse the transformation of 1 ╬╝mol of substrate/min under specified conditions of pH and temperature.] Q.2(A). Name the different classes of enzymes and describe any one with the help of an example. [Enzymes рдХ реЗ рд╡рд┐рднрд┐рдиреНрди рд╡рд░реНрдЧреЛрдВ рдХ реЗ рдирд╛рдо рд▓рд┐рдЦреЗрдВ рдФрд░ рдХрд┐рд╕реА рдПрдХ рдХрд╛ рдЙрджрд╛рд╣рд░рдг рд╕рд╣рд┐рдд рд╡рд░реНрдгрди рдХрд░реЗрдВ I Ans. The International Union of Biochemistry and Molecular Biology (IUBMB) has classified the enzymes into six major classes on the basis of the type of reactions they catalyze. These six classes are: Class 1: Oxidoreductases Class 2: Transferases Class 3: Hydrolases Class 4: Lyases Class 5: Isomerases Class 6: Ligases These six major classes have sub classes, sub-subclasses. Class 2: Transferases - The enzymes of this class catalyze the transfer of functional groups between donors and acceptors. The transferred groups may be amino, acyl, phosphate, alkyl, methyl, suphate etc. A typical example is ATP:D-hexose 6- phosphotransferase (trivial name - hexokinase) which indicates that ATP is the phosphate donor, D-hexose is the phosphate group acceptor and the transfer occurs to the hydroxyl group on 6-carbon position of hexose. ATP + D-hexose тЗМ ADP + D-hexose 6-phosphate 2
  • 3. [International Union of Biochemistry and Molecular Biology (IUBMB) рдиреЗ enzymes рдХреЛ рдЙрдирдХ реЗ рджреНрд╡рд╛рд░рд╛ catalyze рдХрд┐рдпреЗ рдЧрдП reactions рдХ реЗ рдкреНрд░рдХрд╛рд░ рдХ реЗ рдЖрдзрд╛рд░ рдкрд░ рдЫрдГ рдкреНрд░рдореБрдЦ рд╡рд░реНрдЧреЛрдВ (major classes) рдореЗрдВ рд╡рд░реНрдЧреАрдХреГ рдд рдХрд┐рдпрд╛ рд╣реИ I рдпреЗ six classes рд╣реИрдВ : Class 1: Oxidoreductases Class 2: Transferases Class 3: Hydrolases Class 4: Lyases Class 5: Isomerases Class 6: Ligases рдЗрди six major classes рдХреЛ subclasses, sub-subclasses рдореЗрдВ рднреА рд╡рд░реНрдЧреАрдХреГ рдд рдХрд┐рдпрд╛ рдЧрдпрд╛ рд╣реИ I Class 2: Transferases - рдЗрд╕ рд╡рд░реНрдЧ рдХ реЗ enzymes donors рдФрд░ acceptors рдХ реЗ рдордзреНрдп functional groups рдХреЛ transfer рдХрд░рддреЗ рд╣реИрдВ I рдпреЗ transfer рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ groups amino, acyl, phosphate, alkyl, methyl, suphate рдЖрджрд┐ рд╣реЛ рд╕рдХрддреЗ рд╣реИрдВ I рдПрдХ рд╡рд┐рд╢рд┐рд╖реНрдЯ рдЙрджрд╛рд╣рд░рдг рдХ реЗ рддреМрд░ рдкрд░ enzyme ATP:D-hexose 6- phosphotransferase (trivial name - hexokinase) рдХреЛ рд▓реЗ рд╕рдХрддреЗ рд╣реИрдВ рдЬреЛ рдпрд╣ рджрд░реНрд╢рд╛рддрд╛ рд╣реИ рдХрд┐ ATP phosphate donor рд╣реИ, D-hexose phosphate group acceptor рд╣реИ рдФрд░ phosphate group рдХрд╛ transfer hexose рдХ реЗ рдЫрдареЗ carbon рдХ реЗ hydroxyl group рдкрд░ рд╣реЛрддрд╛ рд╣реИ I ATP + D-hexose тЗМ ADP + D-hexose 6-phosphate Q. 2(B). How are enzymes given number, explain with the help of an example. [Enzymes рдХреЛ рдХрд┐рд╕ рдЖрдзрд╛рд░ рдкрд░ рдирдореНрдмрд░ рджрд┐рдП рдЬрд╛рддреЗ рд╣реИрдВ, рдПрдХ рдЙрджрд╛рд╣рд░рдг рджреЗрдХрд░ рд╕рдордЭрд╛рдпреЗрдВ ] Ans. The enzymes are given some recommended name for everyday use.. Likewise, enzymes are assigned systematic names which identify the reactions they catalyze. In addition, each enzyme is given a classification number which is used for accurate and unambiguous identification of an enzyme which is required in international research journals, abstracts and indexes. Example - ATP + creatine тЗМ ADP + phosphocreatine This reaction is catalyzed by the enzyme which has been assigned a recommended name creatine kinase and a systematic name ATP:creatine phosphotransferase. Its classification number is EC 2.7.3.2, where EC stands for Enzyme Commission, the first digit (2) for the class name (Transferases), the second digit (7) for the subclass (phosphotransferases), the third digit (3) for the sub-subclass (phosphotransferases with a nitrogenous group as acceptor) and the fourth digit (2) designates creatine kinase (the recommended name of the enzyme). [рдкреНрд░рддреНрдпреЗрдХ enzyme рдХрд╛ рд╕рд╛рдорд╛рдиреНрдп рддреМрд░ рдкрд░ рд░реЛреЫ рдЗрд╕реНрддреЗрдорд╛рд▓ рдХрд╛ рдПрдХ recommended name рд╣реЛрддрд╛ рд╣реИ I рдЗрд╕реА рдкреНрд░рдХрд╛рд░ рдкреНрд░рддреНрдпреЗрдХ enzyme рдХреЛ рдПрдХ systematic name рджрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ рдЬреЛ рдЙрд╕ enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдХреА рдкрд╣рдЪрд╛рди рдХрд░рд╛рддрд╛ рд╣реИ I рдЗрд╕рдХ реЗ рд╕рд╛рде - рд╕рд╛рде рдкреНрд░рддреНрдпреЗрдХ enzyme рдХрд╛ рдПрдХ classification number рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕рдХрд╛ рдЗрд╕реНрддреЗрдорд╛рд▓ enzyme рдХ реЗ рдмрд┐рд▓реНрдХ реБ рд▓ accurate рдФрд░ рд╕реНрдкрд╖реНрдЯ рд░реВрдк рд╕реЗ рдкрд╣рдЪрд╛рди рдХрд░рдиреЗ рд╣реЗрддреБ рд╣реЛрддрд╛ рд╣реИ рдЬреЛ international research journals, abstracts рдФрд░ indexes рдХ реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХ рд╣реЛрддрд╛ рд╣реИ I рдЙрджрд╛рд╣рд░рдг : ATP + creatine тЗМ ADP + phosphocreatine рдпрд╣ reaction рдЬрд┐рд╕ enzyme рджреНрд╡рд╛рд░рд╛ catalyze рд╣реЛрддрд╛ рд╣реИ рдЙрд╕рдХрд╛ recommended name creatine kinase рд╣реИ рдФрд░ systematic name ATP:creatine phosphotransferase рд╣реИ I рдЗрд╕рдХрд╛ classification number EC 2.7.3.2 рд╣реИ рдЬрд┐рд╕рдореЗрдВ EC рдХрд╛ рдорддрд▓рдм Enzyme commission рд╣реИ, рдкрд╣рд▓рд╛ рдЕрдВрдХ (2) class name (Transferases) рдХ реЗ рд▓рд┐рдП, рджреВрд╕рд░рд╛ рдЕрдВрдХ (7) subclass (phosphotransferases) рдХ реЗ рд▓рд┐рдП, рддреАрд╕рд░рд╛ рдЕрдВрдХ (3) sub-subclass 3
  • 4. (phosphotransferases with a nitrogenous group as acceptor) рдХ реЗ рд▓рд┐рдП рдФрд░ рдЪреМрдерд╛ рдЕрдВрдХ (2) recommended name creatine kinase рдХреЛ рджрд░реНрд╢рд╛рддрд╛ рд╣реИ I Q.3. What is catalytic efficiency of an enzyme?[рдПрдХ enzyme рдХреА catalytic efficiency рдХреНрдпрд╛ рд╣реЛрддреА рд╣реИ?] Ans. The catalytic efficiency of an enzyme means how efficiently the enzyme catalyzes the conversion of the substrate into the product(s). It is expressed in terms of its turnover number which indicates the number of substrate molecules which are transformed in one unit of time by one molecule of an enzyme under optimal conditions of temperature and pH. Example: The turnover number of carbonic anhydrase is 600000 per second and that of Lactate dehydrogenase is 1000 per second. It means the catalytic efficiency of carbonic anhydrase is much higher than that of Lactate dehydrogenase. In other words carbonic anhydrase catalyzes the reaction much faster than lactate dehydrogenase. [рдХрд┐рд╕реА enzyme рдХреА catalytic efficiency рдХрд╛ рдорддрд▓рдм рд╣реЛрддрд╛ рд╣реИ рдХрд┐ рд╡реЛ enzyme рдХрд┐рддрдиреА рджрдХреНрд╖рддрд╛ (efficiency) рдХ реЗ рд╕рд╛рде substrate рдХреЛ product(s) рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рдХрд░рддрд╛ рд╣реИ I рдЗрд╕рдХреЛ turnover рдХ реЗ рд░реВрдк рдореЗрдВ рджрд░реНрд╢рд╛рддреЗ рд╣реИрдВ рдЬреЛ рд╣реЛрддрд╛ рд╣реИ substrate рдХ реЗ molecules рдХреА рд╕рдВрдЦреНрдпрд╛ рдЬреЛ enzyme рдХ реЗ рдПрдХ molecule рджреНрд╡рд╛рд░рд╛ рд╕рдордп рдХреА рдПрдХ рдЗрдХрд╛рдИ рдореЗрдВ рдФрд░ рдЕрдиреБрдХ реВ рд▓рддрдо pH рдПрд╡рдВ рддрд╛рдкрдорд╛рди рдкрд░ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рд╣реЛрддреЗ рд╣реИрдВ I рдЙрджрд╛рд╣рд░рдг - Carbonic anhydrase рдХрд╛ turnover number 600000 рдкреНрд░рддрд┐ рд╕реЗрдХ рдВ рдб рд╣реИ рдФрд░ Lactate dehydrogenase рдХрд╛ 1000 рдкреНрд░рддрд┐ рд╕реЗрдХ рдВ рдб рд╣реИ, рддреЛ рдЗрд╕рдХрд╛ рдЕрд░реНрде рд╣реБрдЖ рдХрд┐ carbonic anhydrase рдХреА catalytic efficiency lactate dehydrogenase рд╕реЗ рдмрд╣реБрдд рдЕрдзрд┐рдХ рд╣реИ I рджреВрд╕рд░реЗ рд╢рдмреНрджреЛрдВ рдореЗрдВ carbonic anhydrase lactate dehydrogenase рдХреА рдЕрдкреЗрдХреНрд╖рд╛ рдЕрдзрд┐рдХ рддреЗрдЬреА рд╕реЗ reaction рдХреЛ catalyze рдХрд░рддрд╛ рд╣реИ I] Q.4. Enzymes are highly specific in their action. Explain. [Enzymes рдЕрдкрдиреЗ action рдореЗрдВ рдЕрддреНрдпрдзрд┐рдХ specific рд╣реЛрддреЗ рд╣реИрдВ, рд╡реНрдпрд╛рдЦреНрдпрд╛ рдХрд░реЗрдВ ] // What do you understand by enzyme specificity?[Enzyme рдХреА specificity рд╕реЗ рдЖрдк рдХреНрдпрд╛ рд╕рдордЭрддреЗ рд╣реИрдВ?] Ans. Enzyme specificity means selectivity of enzymes to their substrates i.e. to choose exact substrate from a mixture of different chemical molecules. Thus enzymes are highly specific in their action, both with respect to the substrate they act upon and the kind of reaction they catalyse. And it involves strength of binding of the substrate to the enzyme and the velocity of the enzyme catalyzed reaction. The degree of specificity varies from one enzyme to another. The enzymes which are specific to a particular bond such as peptide bond, phosphodiester bond or carboxylic ester bond are low in specificity. e.g. peptidases, phosphatases or esterases. The enzymes which are specific to a particular group are intermediate in specificity such as carboxypeptidase A specific for removal of C-terminal amino acids containing a free carboxyl group or hexokinase which catalyzes the phosphorylation of a variety of D-hexoses. Urease is an example of absolute enzyme specificity because it hydrolyses only urea. Some enzymes have stereochemical specificity such as D-amino acid oxidase is specific for D-amino acids only. The specificity of an enzyme with respect to its substrate or a bond to be broken, is determined by the shape of the active site, it's topographical features and the proper disposition in space of the amino acid residues participating in the process of substrate binding and catalysis. This could be explained by " lock and key " hypothesis and the " induced fit " theory. [Enzyme specificity рдХрд╛ рдЕрд░реНрде рд╣реИ enzymes рдХрд╛ рдЕрдкрдиреЗ substrate рдХ реЗ рдкреНрд░рддрд┐ рдЪрдпрдирд╛рддреНрдордХрддрд╛ рдпрд╛рдирд┐ рд╡рд┐рднрд┐рдиреНрди рдХ реЗ рдорд┐рдХрд▓ рдореЛрд▓реЗрдХреНрдпреВрд▓реНрд╕ рдХ реЗ рдПрдХ рдорд┐рд╢реНрд░рдг рд╕реЗ рдПрдХрджрдо рд╕рд╣реА substrate рдЪреБрдирдирд╛ I рдЗрд╕ рдкреНрд░рдХрд╛рд░ enzymes рдЕрдкрдиреА рдХреНрд░рд┐рдпрд╛ рдореЗрдВ рдЕрддреНрдпрдзрд┐рдХ рдЪрдпрдирд╛рддреНрдордХ рд╣реЛрддреЗ рд╣реИрдВ, рди рдХ реЗ рд╡рд▓ substrate рдХ реЗ рдкреНрд░рддрд┐ рдмрд▓реНрдХрд┐ рдЙрдирдХ реЗ рджреНрд╡рд╛рд░рд╛ catalyze рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ reaction рдХ реЗ рдкреНрд░рдХрд╛рд░ рдХ реЗ рдкреНрд░рддрд┐ рднреА I рдФрд░ рдЗрд╕рдореЗрдВ enzyme рдХреА substrate рдХ реЗ рд╕рд╛рде binding рдХреА рд╢рдХреНрддрд┐ рдФрд░ enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдХреА рдЧрддрд┐ рд╢рд╛рдорд┐рд▓ рд╣реЛрддреА рд╣реИ I рдЗрд╕ рд╡рд┐рд╢рд┐рд╖реНрдЯрддрд╛ (specificity) рдХрд╛ рдкрд░рд┐рдорд╛рдг рдПрдХ enzyme рд╕реЗ рджреВрд╕рд░реЗ enzyme рдореЗрдВ 4
  • 5. рднрд┐рдиреНрди рд╣реЛ рд╕рдХрддрд╛ рд╣реИ I рд╡реЛ enzymes рдЬреЛ рдПрдХ реЩрд╛рд╕ bond, рдЬреИрд╕реЗ - peptide bond, phosphodiester bond рдпрд╛ carboxylic ester bond, рдХ реЗ рд▓рд┐рдП specific рд╣реЛрддреЗ рд╣реИрдВ, рдЙрдирдХреА specificity рдХрдо рд╣реЛрддреА рд╣реИ, рдЙрджрд╛рд╣рд░рдг - peptidases, phosphatases рдпрд╛ esterases рдЖрджрд┐ I рд╡реЛ enzymes рдЬреЛ рдПрдХ реЩрд╛рд╕ group рдХ реЗ рд▓рд┐рдП specific рд╣реЛрддреЗ рд╣реИрдВ рдЙрдирдХреА specificity рдордзреНрдпрдо рд╢реНрд░реЗрдгреА рдХреА рд╣реЛрддреА рд╣реИ, рдЬреИрд╕реЗ - carboxypeptidase A рдЬреЛ free carboxyl group рд╡рд╛рд▓реЗ C-terminal amino acids рдХ реЗ removal рдХ реЗ рд▓рд┐рдП specific рд╣реЛрддрд╛ рд╣реИ I рдЗрд╕реА рдкреНрд░рдХрд╛рд░ enzyme hexokinase рд╣реИ рдЬреЛ рд╡рд┐рднрд┐рдиреНрди D-hexoses рдХ реЗ phosphorylation рдХреЛ catalyze рдХрд░рддрд╛ рд╣реИ I Urease absolute enzyme specificity рдХрд╛ рдПрдХ рдЙрджрд╛рд╣рд░рдг рд╣реИ рдХреНрдпреЛрдВрдХрд┐ рдпрд╣ рдХ реЗ рд╡рд▓ urea рдХреЛ рд╣реА hydrolyze рдХрд░рддрд╛ рд╣реИ I рдХ реБ рдЫ enzymes stereochemical specificity рд░рдЦрддреЗ рд╣реИрдВ, рдЬреИрд╕реЗ - D-amino acid oxidase рдХ реЗ рд╡рд▓ D-amino acids рдХ реЗ рд▓рд┐рдП specific рд╣реИ I рдХрд┐рд╕реА substrate рдпрд╛ bond рдХ реЗ рд▓рд┐рдП enzyme рдХреА specificity enzyme рдХреА active site рдХреА рд░рдЪрдирд╛ рдФрд░ рдЙрд╕рдХ реЗ amino acids рдХреА рд╡рд┐рд╢реЗрд╖рддрд╛рдУрдВ рджреНрд╡рд╛рд░рд╛ рдирд┐рд░реНрдзрд╛рд░рд┐рдд рд╣реЛрддреА рд╣реИ рдФрд░ рдЗрд╕рдХреА рд╡реНрдпрд╛рдЦреНрдпрд╛ " lock and key " hypothesis рдФрд░ " induced fit " theory рджреНрд╡рд╛рд░рд╛ рдХреА рдЬрд╛ рд╕рдХрддреА рд╣реИ I] Lock and key model Induced fit model Q.5. Describe the mechanism of enzyme action.[Enzyme рдХреА mechanism of action рдХрд╛ рд╡рд░реНрдгрди рдХрд░реЗрдВ ] Ans. The basic steps of an enzyme catalyzed reaction are shown in the figure below : The binding of substrate to the enzyme occurs at the active site present on the surface of the enzyme molecule. The active site is a specific area in the enzyme molecule where the suitable substrate molecule binds to it and the chemical reaction occurs by breaking or formation of the bonds. The active site has hydrophobic and hydrophilic amino acids which bind to the substrate by hydrophobic interactions, electrostatic and hydrogen bonded interactions. Two hypotheses for the binding of substrate to the enzyme are 'lock(enzyme) and key(substrate)' and 'Induced fit'. In the lock and key model the shape of the active site of the enzyme is complementary to the shape of the substrate. In an induced fit model the enzyme changes the shape of its active site (in presence of the substrate ) complementary to the shape of the substrate to fit correctly to each other. 5
  • 6. The interactions between the enzyme and substrate are non covalent or weak covalent so that the Enzyme-product complex could break easily to release the product and regenerate the enzyme. The usual reactions in the transformation of substrate in enzyme catalyzed reactions are nucleophilic, electrophilic, homolytic and rearrangements etc. In a chemical reaction for conversion of reactants to products, the reactant molecules have to overcome a free energy barrier called ' activation energy '. At the peak position (transition state) of this barrier the probability of the formation or breaking of chemical bonds is very high. The amount of energy required to bring all the molecules in one mole of a substance at a given temperature to transition state at the top of the activation barrier is called 'free energy of activation (тИЖG*). The enzymes decrease this free energy of activation as compared to the free energy of activation of a nonenzymatic reaction so that more and more molecules pass the energy barrier to form the product. Thus enzymes merely speed up the rate at which the equilibrium point is reached. The lowering of activation energy by enzymes is accomplished at the active site of the enzyme by: 1. increasing the collision rate of the reactant molecules by bringing them close enough to react (proximity effect), 2. by bringing about proper orientation of reacting groups with respect to each other (orientation effect), 3. by bringing about conformational change in the substrate which produces strain in the form of distortion of bond angle and bond length which brings it closer to the transition state, 4. and also the functional groups at the active site provide proton donors and acceptors in high local concentration in a proper position to bring about the reaction. [рдПрдХ enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдХ реЗ basic steps рдиреАрдЪреЗ рдЪрд┐рддреНрд░ рдореЗрдВ рджрд░реНрд╢рд╛рдпрд╛ рдЧрдпрд╛ рд╣реИ : Substrate рдХреА enzyme рд╕реЗ binding enzyme molecule рдХреА surface рдкрд░ рдЙрдкрд╕реНрдерд┐рдд тАШactive siteтАЩ рдкрд░ рд╣реЛрддреА рд╣реИ I рдпрд╣ active site enzyme molecule рдХреА surface рдкрд░ рд╡реЛ рд╕реНрдерд╛рди рд╣реЛрддрд╛ рд╣реИ рдЬрд╣рд╛рдБ рдЙрдЪрд┐рдд substrate enzyme рд╕реЗ bind рдХрд░рддрд╛ рд╣реИ рдФрд░ рдлрд┐рд░ рдпрд╣рд╛рдБ bond рдЯреВрдЯрдиреЗ рдпрд╛ bond рдмрдирдиреЗ рджреНрд╡рд╛рд░рд╛ chemical reaction рд╣реЛрддрд╛ рд╣реИ I рдЗрд╕ active site рдореЗрдВ hydrophobic рдФрд░ hydrophilic amino acids рд╣реЛрддреЗ рд╣реИрдВ рдЬреЛ hydrophobic interactions, electrostatic and hydrogen bonded interactions рджреНрд╡рд╛рд░рд╛ substrate рдХреЛ bind рдХрд░рддреЗ рд╣реИрдВ I enzyme рдФрд░ substrate рдХреА рдЗрд╕ binding рдХ реЗ рд▓рд┐рдП рджреЛ рдкрд░рд┐рдХрд▓реНрдкрдирд╛рдпреЗрдВ рд╣реИрдВ - 'lock (enzyme) and key (substrate)' рдФрд░ 'Induced fit' l Lock and key model рдореЗрдВ enzyme рдХреА active site рдХрд╛ рдЖрдХрд╛рд░ рдФрд░ substrate рдХрд╛ рдЖрдХрд╛рд░ рдПрдХ рджреВрд╕рд░реЗ рдХ реЗ рдкреВрд░рдХ (complementary) рд╣реЛрддреЗ рд╣реИрдВ рдЬрдмрдХрд┐ induced fit model рдореЗрдВ enzyme рдЕрдкрдирд╛ рдЖрдХрд╛рд░ substrate рдХ реЗ рдЖрдХрд╛рд░ рдХ реЗ 6
  • 7. рдЕрдиреБрд░реВрдк рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдмрджрд▓ рд▓реЗрддрд╛ рд╣реИ (substrate рдХреА рдЙрдкрд╕реНрдерд┐рддрд┐ рдореЗрдВ) рдХрд┐ substrate active site рдореЗрдВ рдареАрдХ рд╕реЗ fit рд╣реЛ рдЬрд╛рдпреЗ I Enzyme рдФрд░ substrate рдХ реЗ рдмреАрдЪ рдкрд╛рд░рд╕реНрдкрд░рд┐рдХ рдХреНрд░рд┐рдпрд╛ (interactions) non covalent рдпрд╛ weak covalent рд╣реЛрддреА рд╣реИрдВ рддрд╛рдХрд┐ Enzyme-product complex рдЖрд╕рд╛рдиреА рд╕реЗ рдЯреВрдЯ рд╕рдХ реЗ рдФрд░ product рдЖрд╕рд╛рдиреА рд╕реЗ enzyme рд╕реЗ рдореБрдХреНрдд рд╣реЛ рдЬрд╛рдпреЗ рддрдерд╛ enzyme рдирдП catalysis рдХ реЗ рд▓рд┐рдП regenerate рд╣реЛ рдЬрд╛рдП I Enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдореЗрдВ substrate рдХрд╛ transformation nucleophilic, electrophilic, homolytic рдФрд░ rearrangements рдЖрджрд┐ reactions рджреНрд╡рд╛рд░рд╛ рд╣реЛрддрд╛ рд╣реИ I Reactants рдХ реЗ products рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрди рдХ реЗ chemical reaction рдореЗрдВ reactant molecules рдХреЛ рдПрдХ free energy barrier, рдЬрд┐рд╕реЗ ' activation energy ' рдХрд╣рддреЗ рд╣реИрдВ, рдХреЛ рдкрд╛рд░ рдХрд░рдирд╛ рд╣реЛрддрд╛ рд╣реИ I рдЗрд╕ barrier рдХ реЗ рд╢рд┐рдЦрд░ (transition state) рдкрд░ chemical bonds рдХ реЗ рдЯреВрдЯрдиреЗ рдФрд░ рдмрдирдиреЗ рдХреА рд╕рдВрдореНрднрд╛рд╡рдирд╛ рдЕрддреНрдпрдзрд┐рдХ рд╣реЛрддреА рд╣реИ I рдЗрд╕ transition state рдкрд░ рдПрдХ рдирд┐рд╢реНрдЪрд┐рдд рддрд╛рдкрдорд╛рди рдкрд░ рдПрдХ рдкрджрд╛рд░реНрде рдХ реЗ рдПрдХ mole рдХ реЗ рд╕рднреА molecules рдХреЛ рдПрдХ рд╕рд╛рде рд▓рд╛рдиреЗ рдХ реЗ рд▓рд┐рдП рдЬрд┐рддрдиреА energy рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ рдЙрд╕реЗ 'free energy of activation (тИЖG*) рдХрд╣рддреЗ рд╣реИрдВ I Enzymes рдЗрд╕ free energy of activation рдХреА рдорд╛рддреНрд░рд╛ рдХреЛ рдХрдо рдХрд░рддреЗ рд╣реИрдВ (рдмрд┐рдирд╛ enzyme рдХ реЗ рд╣реЛрдиреЗ рд╡рд╛рд▓реЗ reaction рдХреА рддреБрд▓рдирд╛ рдореЗрдВ) рдЬрд┐рд╕рд╕реЗ рдЕрдзрд┐рдХ рд╕реЗ рдЕрдзрд┐рдХ molecules рдЗрд╕ energy barrier рдХреЛ рдкрд╛рд░ рдХрд░рдХ реЗ рдЖрд╕рд╛рдиреА рд╕реЗ product рдмрдирд╛ рд╕рдХ реЗрдВ I рдЗрд╕рдкреНрд░рдХрд╛рд░ enzymes reaction рдХ реЗ equilibrium point рддрдХ рдкрд╣реБрдБрдЪрдиреЗ рдХ реЗ рд▓рд┐рдП рдХ реЗ рд╡рд▓ reaction рдХреА speed рдмреЭрд╛рддреЗ рд╣реИрдВ I Enzymes рджреНрд╡рд╛рд░рд╛ active site рдкрд░ рдпрд╣ activation energy рдЗрд╕ рдкреНрд░рдХрд╛рд░ рдХрдо рдХреА рдЬрд╛рддреА рд╣реИ : 1. Reactant molecules рдХреЛ рдмрд╣реБрдд рдиреЫрджреАрдХ рд▓рд╛рдХрд░ рдЙрдирдХ реЗ рдмреАрдЪ рдЯрдХреНрдХрд░ рдХреА рджрд░ рдХреЛ рдмреЭрд╛ рдХрд░ рддрд╛рдХрд┐ рд╡реЗ рдЖрд╕рд╛рдиреА рд╕реЗ react рдХрд░ рд╕рдХ реЗрдВ (рдЗрд╕реЗ proximity effect рдХрд╣рддреЗ рд╣реИрдВ), 2. Reacting groups рдХрд╛ рдПрдХ рджреВрд╕рд░реЗ рдХ реЗ рд╕рд╛рде рдЙрдЪрд┐рдд рдЕрднрд┐рд╡рд┐рдиреНрдпрд╛рд╕ рдХрд░рд╛ рдХрд░ (рдЗрд╕реЗ orientation effect рдХрд╣рддреЗ рд╣реИрдВ), 3. Substrate рдореЗрдВ рдЕрдиреБрд░реВрдкрддрд╛ рдкрд░рд┐рд╡рд░реНрддрди рд▓рд╛рдХрд░ рдЬрд┐рд╕рдХ реЗ рдХрд╛рд░рдг bond angle рдФрд░ bond length рдореЗрдВ рддрдирд╛рд╡ рдФрд░ рддреЛреЬ - рдорд░реЛреЬ рд╣реЛрдХрд░ рдпреЗ transition state рдХ реЗ рдиреЫрджреАрдХ рдЖ рд╕рдХ реЗрдВ , 4. рдФрд░ Enzyme рдХреА active site рдХ реЗ functional groups reaction рдХ реЗ рд▓рд┐рдП proton donors рдФрд░ acceptors рдХреА proper position рдореЗрдВ рдЕрдзрд┐рдХ рд╕реНрдерд╛рдиреАрдп рдорд╛рддреНрд░рд╛ рдЙрдкрд▓рдмреНрдз рдХрд░рд╛ рдХрд░ I] Q.6. What is the effect of enzyme concentration, substrate concentration, pH and temperature on an enzyme catalyzed reaction?[Enzyme concentration, substrate concentration, pH рдФрд░ temperature рдХрд╛ enzyme catalyzed reaction рдкрд░ рдХреНрдпрд╛ рдкреНрд░рднрд╛рд╡ рдкреЬрддрд╛ рд╣реИ?] Or What are the factors responsible affecting enzyme catalyzed reaction?[Enzyme catalyzed reaction рдХреЛ рдкреНрд░рднрд╛рд╡рд┐рдд рдХрд░рдиреЗ рд╡рд╛рд▓реЗ рдХреМрди рд╕реЗ рдХрд╛рд░рдХ рд╣реИрдВ?] Ans. There are some factors that affect the enzyme catalyzed reaction : Enzyme concentration: The rate of enzyme catalyzed reaction is directly proportional to the concentration of the enzyme if a purified enzyme is used , the substrate concentration is very high and the conditions of the reaction remain constant. [Enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдХреА рджрд░ enzyme рдХ реЗ concentration рдХ реЗ рд╕реАрдзрд╛ рд╕рдорд╛рдиреБрдкрд╛рддреА рд╣реЛрддреА рд╣реИ рдпрджрд┐ enzyme pure рд╣реИ, substrate рдХрд╛ concentration рдЕрддреНрдпрдзрд┐рдХ рдФрд░ reaction рдХреА рдкрд░рд┐рд╕реНрдерд┐рддрд┐рдпрд╛рдБ рд╕реНрдерд┐рд░ рд╣реЛрдВ I] Substrate concentration: In an enzyme catalyzed reaction if the enzyme concentration is kept constant then at low substrate concentration the initial reaction rate is nearly proportional to the 7
  • 8. substrate concentration and the reaction is thus approximately first order with respect to the substrate. However, as the substrate concentration is increased further the increase in initial rate is no longer nearly proportional to the substrate concentration and the reaction in this zone is of mixed order. With a further increase in the substrate concentration the reaction becomes essentially independent of the substrate concentration and approaches a constant rate and in this range the reaction is zero order. Thus the reaction curve becomes hyperbolic. [Enzyme catalyzed reaction рдореЗрдВ рдпрджрд┐ enzyme concentration рдХреЛ рд╕реНрдерд┐рд░ рд░рдЦрд╛ рдЬрд╛рдП рддреЛ substrate рдХ реЗ рдХрдо concentration рдкрд░ reaction рдХреА initial reaction rate substrate concentration рдХ реЗ рд▓рдЧрднрдЧ рд╕рдорд╛рдиреБрдкрд╛рддреА рд╣реЛрддреА рд╣реИ рдФрд░ рдЗрд╕ рдкреНрд░рдХрд╛рд░ reaction substrate рдХ реЗ рд╕рдиреНрджрд░реНрдн рдореЗрдВ рд▓рдЧрднрдЧ first order reaction рд╣реЛрддрд╛ рд╣реИ I рд╣рд╛рд▓рд╛рдВрдХрд┐, substrate concentration рдХ реЗ рдФрд░ рдмреЭрдиреЗ рдкрд░ initial rate рдореЗрдВ рд╡реГрджреНрдзрд┐ substrate concentration рдХ реЗ рд▓рдЧрднрдЧ рд╕рдорд╛рдиреБрдкрд╛рддреА рдирд╣реАрдВ рд░рд╣рддреА рдФрд░ рдЗрд╕ рдХреНрд╖реЗрддреНрд░ рдореЗрдВ reaction mixed order рдХрд╛ рд╣реЛрдВ рдЬрд╛рддрд╛ рд╣реИ I рдЬрдм substrate concentration рдФрд░ рдмреЭрддрд╛ рд╣реИ рддреЛ reaction rate рдкрд░ substrate concentration рдХрд╛ рдХреЛрдИ рдкреНрд░рднрд╛рд╡ рдирд╣реАрдВ рдкреЬрддрд╛ рдФрд░ reaction рдХреА рджрд░ рд╕реНрдерд┐рд░ рд╣реЛ рдЬрд╛рддреА рд╣реИ рдФрд░ reaction zero order рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдРрд╕реА рдкрд░рд┐рд╕реНрдерд┐рддрд┐ рдореЗрдВ reaction curve hyperbolic рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I] pH: A small change in pH results in change in enzyme catalyzed reaction rate appreciably. The curve showing rate of enzyme catalyzed reaction against pH of the reaction mixture is generally bell shaped. The enzyme activity is maximum only in a narrow range of pH and decreases at both higher and lower pH. The pH where an enzyme shows maximum reaction rate is called the optimum pH. The effect of pH on enzyme activity is attributed to factors such as acid-base behaviour of enzyme and substrate, denaturation of enzyme by change in pH , change in ionisation state of a changed substrate, enzyme or both with change in pH affecting its binding to the substrate. [Reaction solution рдХ реЗ pH рдореЗрдВ рдПрдХ рдЫреЛрдЯреЗ рд╕реЗ рдкрд░рд┐рд╡рд░реНрддрди рд╕реЗ рд╣реА reaction rate рдкрд░ рдкрд░реНрдпрд╛рдкреНрдд рд░реВрдк рд╕реЗ рдкреНрд░рднрд╛рд╡ рдкреЬрддрд╛ рд╣реИ I Enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдХреА рджрд░ рдФрд░ pH рдХ реЗ рдмреАрдЪ graph рд╕рд╛рдорд╛рдиреНрдпрддрдГ рдПрдХ рдШрдВрдЯреА (bell) рдХ реЗ shape рдХрд╛ рд╣реЛрддрд╛ рд╣реИ I рдЕрдзрд┐рдХрддрдо enzyme activity pH рдХреА рдПрдХ narrow range рдореЗрдВ рд╣реЛрддреА рд╣реИ рдФрд░ рдЙрдЪреНрдЪрддрд░ рдФрд░ рдирд┐рдореНрдирддрд░ pH рдкрд░ рдпрд╣ рджрд░ рдХрдо рд╣реЛрддреА рдЬрд╛рддреА рд╣реИ I рд╡реЛ pH рдЬрд┐рд╕ рдкрд░ reaction рджрд░ рдЙрдЪреНрдЪрддрдо рд╣реЛрддреА рд╣реИ рдЙрд╕реЗ optimum pH рдХрд╣рддреЗ рд╣реИрдВ I Enzyme activity рдкрд░ pH рдХ реЗ рдЗрд╕ рдкреНрд░рднрд╛рд╡ рдХ реЗ рд▓рд┐рдП реЫрд┐рдореНрдореЗрджрд╛рд░ рдХрд╛рд░рдХ рд╣реИрдВ - enzyme рдФрд░ substrate рдХрд╛ acid-base behaviour, pH рдкрд░рд┐рд╡рд░реНрддрди рдХ реЗ рдХрд╛рд░рдг enzyme рдХрд╛ denaturation, substrate рдПрд╡рдВ enzyme рдпрд╛ рджреЛрдиреЛрдВ рдХ реЗ ionisation state рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрди рдЬрд┐рд╕рд╕реЗ enzyme рдФрд░ substrate рдХ реЗ рдмреАрдЪ binding рдкреНрд░рднрд╛рд╡рд┐рдд рд╣реЛрддреА рд╣реИ I] Temperature: Most of the enzyme catalyzed reactions appear to have an optimum temperature, the temperature at which the enzyme shows maximum reaction rate. The enzyme activity increases with temperature due to increase in the number of collisions between the enzyme and substrate molecules and also due to an increase in the energy of these collisions. The enzyme 8
  • 9. activity decreases after a certain temperature (the optimum temperature) due to denaturation of the enzyme protein i.e. the rate of inactivation also increases with rise in temperature. [рдЕрдзрд┐рдХрддрд░ enzyme catalyzed reactions рдХрд╛ рдПрдХ optimum temperature рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕ рдкрд░ reaction rate рдЕрдзрд┐рдХрддрдо рд╣реЛрддрд╛ рд╣реИ I Temperature рдмреЭрдиреЗ рдХ реЗ рд╕рд╛рде enzyme activity рдмреЭрддреА рд╣реИ рдФрд░ рдРрд╕рд╛ enzyme рдФрд░ substrate molecules рдХ реЗ рдмреАрдЪ рдЯрдХреНрдХрд░ рдмреЭрдиреЗ рдПрд╡рдВ рдЗрди рдЯрдХреНрдХрд░реЛрдВ рдХреА рдКрд░реНрдЬрд╛ рдмреЭрдиреЗ рдХ реЗ рдХрд╛рд░рдг рд╣реЛрддрд╛ рд╣реИ I рдХрд┐рдиреНрддреБ рдПрдХ рдирд┐рд╢реНрдЪрд┐рдд temperature (optimum temperature) рдХ реЗ рдмрд╛рдж enzyme activity рдШрдЯрдиреЗ рд▓рдЧрддреА рд╣реИ рдЬрд┐рд╕рдХрд╛ рдХрд╛рд░рдг рдмреЭрддреЗ рддрд╛рдкрдорд╛рди рдХ реЗ рд╕рд╛рде enzyme protein рдХрд╛ denaturation рд╣реЛрддрд╛ рд╣реИ I Q.7. What is Km? What is its significance in enzyme catalyzed reactions?[Km рдХреНрдпрд╛ рд╣реЛрддрд╛ рд╣реИ рдФрд░ enzyme catalyzed reaction рдореЗрдВ рдЗрд╕рдХрд╛ рдХреНрдпрд╛ рдорд╣рддреНрд╡ рд╣реИ?] Ans. Km (Michaelis constant) is numerically equal to the concentration of the substrate (moles per litre) at that stage of when the observed rate of the enzyme catalyzed reaction is half of the maximum rate i.e. ┬╜ Vmax. Significance of Km: It is a measure of the affinity of the enzyme for its substrate. A low value of Km indicates the high affinity of the enzyme for its substrate as the reaction will approach Vmax (and so ┬╜ Vmax too) rapidly because a low concentration of substrate would be needed to saturate the enzyme. Likewise, a high Km would indicate a low affinity of the enzyme for its substrate. [Km (Michaelis constant) substrate рдХрд╛ рд╡рд╣ concentration (moles per litre) рдЬрд┐рд╕ рдкрд░ enzyme рджреНрд╡рд╛рд░рд╛ catalyzed reaction рдХреА рджрд░ рдЕрдзрд┐рдХрддрдо рджрд░ (Vmax) рдХреА рдЖрдзреА (┬╜ Vmax) рд╣реЛрддреА рд╣реИ I Significance of Km: Km enzyme рдХреА substrate рдХ реЗ рд▓рд┐рдП affinity (рдЖрдХрд░реНрд╖рдг) рдХрд╛ рдорд╛рдк рд╣реЛрддрд╛ рд╣реИ I Km рдХреА рдХрдо value рджрд░реНрд╢рд╛рддреА рд╣реИ рдХрд┐ enzyme рдХреА substrate рдХ реЗ рдкреНрд░рддрд┐ affinity рдЕрдзрд┐рдХ рд╣реИ рдХреНрдпреЛрдВрдХрд┐ substrate рдХреА рдПрдХ рдХрдо рдорд╛рддреНрд░рд╛ рд╣реА enzyme рдХреЛ saturate (рд╕рдВрддреГрдкреНрдд) рдХрд░ рджреЗрддреА рд╣реИ рдЬрд┐рд╕рд╕реЗ reaction рдХрд╛ Vmax рдФрд░ ┬╜ Vmax рднреА рд╢реАрдШреНрд░ рдкреНрд░рд╛рдкреНрдд рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдЗрд╕реА рдкреНрд░рдХрд╛рд░, Km рдХреА high value enzyme рдХреА substrate рдХ реЗ рдкреНрд░рддрд┐ рдХрдо affinity рдХреЛ рджрд░реНрд╢рд╛рддреА рд╣реИ I] Q.8. What are antimetabolites? Explain with an example.[Antimetabolites рдХреНрдпрд╛ рд╣реЛрддреЗ рд╣реИрдВ? рдПрдХ рдЙрджрд╛рд╣рд░рдг рджреНрд╡рд╛рд░рд╛ рд╡реНрдпрд╛рдЦреНрдпрд╛ рдХрд░реЗрдВ ] Ans. Antimetabolites are competitive inhibitors of enzyme activity. These competitive inhibitors have structural resemblance with the substrate of the enzyme, therefore they compete with substrate for the binding to the active site of the enzyme. They are so called because the substrates of enzymes are generally metabolites participating in metabolic transformations in the cell. Example: 9
  • 10. Sulphanilamide -- It is used to inhibit the bacterial growth. It inhibits folic acid synthesis in prokaryotes (bacteria). It functions by competitively inhibiting enzymatic reactions involving p-aminobenzoate required for the synthesis of folic acid. Folic acid is required for the synthesis of purine and pyrimidine in bacteria. In this way the bacteria are killed because now they can not synthesise nucleotides (due to lack of purines and pyrimidines) required for their survival. [Antimetabolites enzyme activity рдХ реЗ competitive inhibitors рд╣реЛрддреЗ рд╣реИрдВ I рдпреЗ competitive inhibitors enzyme рдХ реЗ substrate рд╕реЗ рд╕рдВрд░рдЪрдирд╛рддреНрдордХ рд░реВрдк рд╕реЗ рдорд┐рд▓рддреЗ - рдЬреБрд▓рддреЗ рд╣реИрдВ, рдЗрд╕рд▓рд┐рдП enzyme рдХреА active site рд╕реЗ bind рдХрд░рдиреЗ рдХ реЗ рд▓рд┐рдП substrate рдХ реЗ рд╕рд╛рде рдкреНрд░рддрд┐рд╕реНрдкрд░реНрдзрд╛ (compete) рдХрд░рддреЗ рд╣реИрдВ I рдЗрдирдХреЛ Antimetabolites рдЗрд╕рд▓рд┐рдП рдХрд╣рддреЗ рд╣реИрдВ рдХреНрдпреЛрдВрдХрд┐ enzymes рдХ реЗ substrates рдЖрдорддреМрд░ рдкрд░ cell рдХ реЗ рдЕрдВрджрд░ рд╣реЛрдиреЗ рд╡рд╛рд▓реЗ metabolic transformations рдореЗрдВ рднрд╛рдЧ рд▓реЗрдиреЗ рд╡рд╛рд▓реЗ metabolites рд╣реЛрддреЗ рд╣реИрдВ I рдЙрджрд╛рд╣рд░рдг - Sulphanilamide -- рдЗрд╕рдХрд╛ рдЙрдкрдпреЛрдЧ bacterial growth рдХреЛ inhibit рдХрд░рдиреЗ рдХ реЗ рд▓рд┐рдП рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ I рдпрд╣ prokaryotes (bacteria) рдореЗрдВ folic acid рдХреА synthesis рдХреЛ inhibit рдХрд░рддрд╛ рд╣реИ I рдпрд╣ folic acid рдХреА synthesis рдХ реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХ enzymatic reactions, рдЬрд┐рд╕рдореЗрдВ p-aminobenzoate рд╢рд╛рдорд┐рд▓ рд╣реЛрддрд╛ рд╣реИ, рдХреЛ competitively inhibit рдХрд░рддрд╛ рд╣реИ I Bacteria рдореЗрдВ folic acid рдХреА purine рдФрд░ pyrimidine synthesis рдХ реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ I рдЗрд╕ рдкреНрд░рдХрд╛рд░, purines рдФрд░ pyrimidines рдХреА рдХрдореА рдХ реЗ рдХрд╛рд░рдг nucleotides рдХреА synthesis рднреА рдирд╣реАрдВ рд╣реЛ рдкрд╛рддреА рдЬреЛ bacteria рдХ реЗ рдЬреАрд╡рд┐рдд рд░рд╣рдиреЗ рдХ реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХ рд╣реЛрддреЗ рд╣реИрдВ рдФрд░ рдЗрд╕ рдХрд╛рд░рдг bacteria рдорд░ рдЬрд╛рддреЗ рд╣реИрдВ I] Q.9. Define coenzyme with an example.[Coenzyme рдХреЛ рдПрдХ рдЙрджрд╛рд╣рд░рдг рдХ реЗ рд╕рд╛рде рдкрд░рд┐рднрд╛рд╖рд┐рдд рдХрд░реЗрдВ ] Ans. The non protein organic molecule which is a part of an enzyme and required for enzyme activity is called coenzyme. It binds to the active site of the enzyme and helps the enzyme in catalysis. Coenzymes are often vitamins or derivatives of vitamins and play a crucial role in the regulation of most enzyme activities e.g. Flavin mononucleotide (FMN) and Flavin adenine dinucleotide (FAD), which are derivatives of riboflavin (vitamin B2). FMN and FAD are coenzymes for some oxidation-reduction enzymes called flavoenzymes. Coenzyme Nicotinamide adenine dinucleotide (NAD) activates the lactic dehydrogenase enzyme in the dehydrogenation of pyruvate to lactate, [Coenzyme рдПрдХ non protein organic molecule рд╣реЛрддрд╛ рд╣реИ рдЬреЛ enzyme рдХрд╛ рдПрдХ рд╣рд┐рд╕реНрд╕рд╛ рд╣реЛрддрд╛ рд╣реИ рдФрд░ рдЬреЛ enzyme activity рдХ реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХ рд╣реЛрддрд╛ рд╣реИ I Coenzymes рдЕрдХреНрд╕рд░ vitamins рдпрд╛ рдЙрдирдХ реЗ derivatives рд╣реЛрддреЗ рд╣реИрдВ рдФрд░ рдмрд╣реБрдд рд╕реЗ enzymes рдХреА activity рдХреЛ рдирд┐рдпрдВрддреНрд░рдг рдХрд░рдиреЗ рдореЗрдВ рдорд╣рддреНрд╡рдкреВрд░реНрдг рднреВрдорд┐рдХрд╛ рдирд┐рднрд╛рддреЗ рд╣реИрдВ, рдЬреИрд╕реЗ - Flavin mononucleotide (FMN) рдФрд░ Flavin adenine dinucleotide (FAD) рдЬреЛ riboflavin (vitamin B2) рдХ реЗ derivatives рд╣реИрдВ I FMN рдФрд░ FAD рдХ реБ рдЫ oxidation-reduction enzymes (flavoenzymes) рдХ реЗ coenzymes рд╣реИрдВ I Nicotinamide adenine dinucleotide (NAD) рднреА рдПрдХ coenzyme рд╣реИ рдЬреЛ pyruvate рдХ реЗ lactate рдореЗрдВ dehydrogenation рд╣реЗрддреБ рдЖрд╡рд╢реНрдпрдХ enzyme lactic dehydrogenase enzyme рдХреЛ activate рдХрд░рддрд╛ рд╣реИ I] Q.10. How does an oxidoreductase enzyme differ from a transferase? Illustrate with an example.[рдПрдХ oxidoreductase enzyme рдПрдХ transferase рд╕реЗ рдХрд┐рд╕ рдкреНрд░рдХрд╛рд░ рднрд┐рдиреНрди рд╣реЛрддрд╛ рд╣реИ, рдПрдХ рдЙрджрд╛рд╣рд░рдг рджреЗрдХрд░ рд╕рдордЭрд╛рдпреЗрдВ ] Ans. Oxidoreductase enzyme catalyzes the electron transfer in oxidation-reduction process e.g. alcohol:NAD oxidoreductase which catalyzes the electron transfer from ethyl alcohol to NAD+ to form acetaldehyde and NADH. Ethyl alcohol + NAD+ тЗМ Acetaldehyde + NADH On the other hand a transferase enzyme catalyzes the transfer of a chemical group such as amino, methyl, alkyl, phosphate etc. from one molecule to another. Example: ATP:D-hexose 6-phosphotransferase (Hexokinase) catalyzes the transfer of phosphate group from ATP to D-hexose. ATP + D-hexose тЗМ D-hexose 6-phosphate + ADP 10
  • 11. [Oxidoreductase enzyme oxidation - reduction process рдореЗрдВ electron рдХ реЗ transfer рдореЗрдВ catalyst рдХрд╛ рдХрд╛рдо рдХрд░рддреЗ рд╣реИрдВ, рдЬреИрд╕реЗ - alcohol:NAD oxidoreductase ethyl alcohol рд╕реЗ NAD+ рдХреЛ electron transfer рдХрд░рдиреЗ рдореЗрдВ catalyst рдХрд╛ рдХрд╛рдо рдХрд░рддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ acetaldehyde рдФрд░ NADH рдмрдирддреЗ рд╣реИрдВ I Ethyl alcohol + NAD+ тЗМ Acetaldehyde + NADH рдЬрдмрдХрд┐ рдПрдХ transferase enzyme рдПрдХ chemical group рдЬреИрд╕реЗ - amino, methyl, alkyl, phosphate рдЖрджрд┐ рдХреЛ рдПрдХ molecule рд╕реЗ рджреВрд╕рд░реЗ molecule рдХреЛ transfer рдХрд░рдиреЗ рдореЗрдВ catalyst рдХрд╛ рдХрд╛рд░реНрдп рдХрд░рддрд╛ рд╣реИ I рдЬреИрд╕реЗ - ATP:D-hexose 6-phosphotransferase (Hexokinase) phosphate group рдХреЛ ATP рд╕реЗ D-hexose рдХреЛ transfer рдХрд░рдиреЗ рдореЗрдВ catalyst рдХрд╛ рдХрд╛рдо рдХрд░рддрд╛ рд╣реИ I] ATP + D-hexose тЗМ D-hexose 6-phosphate + ADP Q.11. Compare competitive and non-competitive inhibition of enzyme activity.[Enzyme activity рдХ реЗ competitive рдФрд░ non-competitive inhibition рдХреА рддреБрд▓рдирд╛ рдХрд░реЗрдВ I] Ans. тЧП The structure of competitive inhibitor molecule resembles to that of the substrate molecule whereas the structure of non-competitive inhibitor molecule is entirely different. [competitive inhibitor molecule рдХреА рд╕рдВрд░рдЪрдирд╛ substrate molecule рд╕реЗ рдорд┐рд▓рддреА - рдЬреБрд▓рддреА рд╣реИ рдЬрдмрдХрд┐ non-competitive inhibitor molecule рдХреА рд╕рдВрд░рдЪрдирд╛ substrate рдХреА рд╕рдВрд░рдЪрдирд╛ рд╕реЗ рдмрд┐рд▓реНрдХ реБ рд▓ рднрд┐рдиреНрди рд╣реЛрддреА рд╣реИ I] тЧП The competitive inhibitor competes with the substrate for binding to the active site of the enzyme whereas the non-competitive inhibitor forms a complex with the enzyme by binding at a site other than the active site. [Competitive inhibitor enzyme рдХреА active site рд╕реЗ binding рдХ реЗ рд▓рд┐рдП substrate рдХ реЗ рд╕рд╛рде рдкреНрд░рддрд┐рд╕реНрдкрд░реНрдзрд╛ рдХрд░рддрд╛ рд╣реИ рдЬрдмрдХрд┐ non-competitive inhibitor enzyme рдХ реЗ рд╕рд╛рде bind рдХрд░рдХ реЗ рдПрдХ complex рдмрдирд╛рддрд╛ рд╣реИ рдФрд░ рдпрд╣ binding enzyme рдХреА active site рдХ реЗ рд╕реНрдерд╛рди рдПрдХ рдЕрдиреНрдп site рдкрд░ рд╣реЛрддреА рд╣реИ I] тЧП The competitive inhibitor does not alter the structure of the enzyme whereas the non-competitive inhibitor alters the enzyme molecule in such a way that the substrate may get attached to the active site but the products are not formed. [Competitive inhibitor enzyme рдХреА рд╕рдВрд░рдЪрдирд╛ рдХреЛ рдирд╣реАрдВ рдмрджрд▓рддрд╛ рдЬрдмрдХрд┐ non-competitive inhibitor enzyme molecule рдХреЛ рдХ реБ рдЫ рдЗрд╕ рддрд░рд╣ рдмрджрд▓ рджреЗрддрд╛ рд╣реИ рдХрд┐ substrate active site рд╕реЗ bind рддреЛ рд╣реЛрддрд╛ рд╣реИ рдХрд┐рдиреНрддреБ product рдирд╣реАрдВ рдмрди рдкрд╛рддрд╛ I] тЧП The competitive inhibition can be reversed by increasing the substrate concentration whereas the non-competitive inhibition can be overcomed by increasing the enzyme concentration. [competitive inhibition рдХреЛ substrate concentration рдХреЛ рдмреЭрд╛ рдХрд░ рдкрд▓реНрдЯрд╛ (reverse) рдЬрд╛ рд╕рдХрддрд╛ рд╣реИ рдЬрдмрдХрд┐ non-competitive inhibition рдХреЛ рдкрд▓рдЯрдиреЗ (reverse) рдХ реЗ рд▓рд┐рдП enzyme concentration рдХреЛ рдмреЭрд╛рдирд╛ рдкреЬрддрд╛ рд╣реИ I] тЧП Vmax in presence of competitive inhibitor remains unchanged but Km is increased whereas in presence of non-competitive inhibitor Vmax is affected (decreased) but Km is unaffected. [Competitive inhibitor рдХреА рдЙрдкрд╕реНрдерд┐рддрд┐ рдореЗрдВ Vmax рдирд╣реАрдВ рдмрджрд▓рддрд╛ рдХрд┐рдиреНрддреБ Km рдмреЭ рдЬрд╛рддрд╛ рд╣реИ рдЬрдмрдХрд┐ non-competitive inhibitor рдХреА рдЙрдкрд╕реНрдерд┐рддрд┐ рдореЗрдВ Vmax рддреЛ рдХрдо рд╣реЛрддрд╛ рд╣реИ рдХрд┐рдиреНрддреБ Km рдкреНрд░рднрд╛рд╡рд┐рдд рдирд╣реАрдВ рд╣реЛрддрд╛ I] тЧП The effect of a competitive inhibitor is temporary but that of non-competitive inhibitor is permanent. [Competitive inhibitor рдХрд╛ рдкреНрд░рднрд╛рд╡ рдЕрд╕реНрдерд╛рдИ рд╣реЛрддрд╛ рд╣реИ рдЬрдмрдХрд┐ non-competitive inhibitor рдХрд╛ рдкреНрд░рднрд╛рд╡ рд╕реНрдерд╛рдИ рд╣реЛрддрд╛ рд╣реИ I] 11
  • 12. Q.12. Explain allosteric enzymes. What is allosteric regulation?[Allosteric enzymes рдХреА рд╡реНрдпрд╛рдЦреНрдпрд╛ рдХрд░реЗрдВ I Allosteric regulation рдХреНрдпрд╛ рд╣реЛрддрд╛ рд╣реИ?] Ans. Allosteric enzymes are enzymes which have an additional binding site for effector molecules other than the substrate binding site. The binding of effector molecule brings about conformational changes in the enzyme , thereby changing catalytic properties of the enzyme. Allosteric enzymes are involved in allosteric regulation which is an important mechanism of enzyme regulation. In allosteric regulation the first enzyme of a biosynthetic pathway is strongly inhibited by the end product of that pathway. This regulatory molecule called an 'effector' has no structural resemblance to the substrate or product of the first enzyme. This effector molecule binds to a site other than the active site of the enzyme and brings about a reversible conformational change in the active site leading to alteration in enzyme activity of allosteric enzyme. The allosteric enzymes do not exhibit normal Michaelis-Menton or hyperbolic kinetics but rather show a sigmoidal behavior. A classical example is aspartate carbamoyl transferase which catalyzes the first step in pyrimidine biosynthesis in E.coli. It is inhibited by the final product of the pathway which is Cytidine triphosphate (CTP), a pyrimidine nucleotide. In allosteric regulation the effector may be an activator also. When an activator binds, it increases the function of active sites and results in increased binding of substrate molecules. Example - binding of oxygen to hemoglobin. [Allosteric enzymes рд╡реЛ enzymes рд╣реЛрддреЗ рд╣реИрдВ рдЬрд┐рдирдореЗрдВ substrate binding site рдХ реЗ рдЕрддрд┐рд░рд┐рдХреНрдд рдПрдХ рдФрд░ binding site рд╣реЛрддреА рд╣реИ рдЬрд┐рд╕рдореЗрдВ effector molecule bind рд╣реЛрддрд╛ рд╣реИ I Effector molecule рдХреА binding рдХ реЗ рдХрд╛рд░рдг enzyme рдореЗрдВ рдХ реБ рдЫ conformational changes рд╣реЛ рдЬрд╛рддреЗ рд╣реИрдВ рдЬрд┐рд╕рд╕реЗ enzyme рдХреА catalytic properties рдмрджрд▓ рдЬрд╛рддреА рд╣реИрдВ I рдпреЗ Allosteric enzymes allosteric regulation рдореЗрдВ рд╢рд╛рдорд┐рд▓ рд╣реЛрддреЗ рд╣реИрдВ рдЬреЛ enzyme regulation рдХреА рдПрдХ рдорд╣рддреНрд╡рдкреВрд░реНрдг mechanism рд╣реИ I рдЗрд╕ allosteric regulation рдореЗрдВ рдПрдХ biosynthetic pathway рдХрд╛ рдкрд╣рд▓рд╛ enzyme, pathway рдХ реЗ end product рджреНрд╡рд╛рд░рд╛ рдмрд╣реБрдд рдЕрдзрд┐рдХрддрд╛ рд╕реЗ inhibit рд╣реЛрддрд╛ рд╣реИ I рдпрд╣ рдЬреЛ regulatory molecule (end product) рд╣реЛрддрд╛ рд╣реИ, рдЬрд┐рд╕реЗ 'effector' рдХрд╣рддреЗ рд╣реИрдВ, рдЙрд╕рдХреА рдкрд╣рд▓реЗ enzyme рдХ реЗ substrate рдпрд╛ product рд╕реЗ рдХреЛрдИ рд╕рдВрд░рдЪрдирд╛рддреНрдордХ рд╕рдорд╛рдирддрд╛ рдирд╣реАрдВ рд╣реЛрддреА рд╣реИ I рдЗрд╕рд▓рд┐рдП рдпрд╣ effector molecule active site рд╕реЗ bind рдирд╣реАрдВ рдХрд░рддрд╛ рд╣реИ рдмрд▓реНрдХрд┐ enzyme рд╕реЗ рдПрдХ рдЕрдиреНрдп site рдкрд░ bind рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ active site рдХреА рдмрдирд╛рд╡рдЯ (conformation) рдореЗрдВ рдПрдХ рдкреНрд░рддрд┐рд╡рд░реНрддреА (reversible) рдкрд░рд┐рд╡рд░реНрддрди рдХрд░ рджреЗрддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ allosteric enzyme рдХреА catalytic activity рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрди рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдпреЗ allosteric enzymes normal Michaelis-Menton рдпрд╛ hyperbolic kinetics рдирд╣реАрдВ рджрд░реНрд╢рд╛рддреЗ рд╣реИрдВ рдмрд▓реНрдХрд┐ рдПрдХ sigmoidal reaction curve рджреЗрддреЗ рд╣реИрдВ I рдЗрд╕рдХрд╛ рдПрдХ рд╢реНрд░реЗрд╖реНрдЯ рдЙрджрд╛рд╣рд░рдг рд╣реИ - aspartate carbamoyl transferase рдЬреЛ рдП. coli рдореЗрдВ pyrimidine biosynthesis рдХрд╛ рдкрд╣рд▓рд╛ step catalyze рдХрд░рддрд╛ рд╣реИ рдФрд░ рдпрд╣ рдЗрд╕ pathway рдХ реЗ final product Cytidine triphosphate (CTP), рдЬреЛ рдПрдХ pyrimidine nucleotide рд╣реИ, рджреНрд╡рд╛рд░рд╛ рдмрд╛рдзрд┐рдд (inhibit) рд╣реЛрддрд╛ рд╣реИ I Allosteric regulation рдореЗрдВ effector рдПрдХ activator рдХреА рддрд░рд╣ рднреА рдХрд╛рдо рдХрд░ рд╕рдХрддрд╛ рд╣реИ I рдпрд╣ activator bind рдХрд░рдХ реЗ active site рдХ реЗ рдХрд╛рд░реНрдп рдХреЛ рдмреЭрд╛рддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ substrate molecules рдХреА binding рдФрд░ рдмреЭ рдЬрд╛рддреА рд╣реИ I рдЙрджрд╛рд╣рд░рдг - binding of oxygen to hemoglobin] 12
  • 13. O2 - Hb dissociation curve Q.13. Write the mechanism of enzyme regulation by covalent modification.[Covalent modification рджреНрд╡рд╛рд░рд╛ enzyme regulation рдХреА mechanism рд▓рд┐рдЦреЗрдВ I] Ans. Covalent modification of enzyme results in reversible modification of the amino acid side chains of the enzyme resulting in activation or inactivation of the enzyme. This can be explained by two enzymes viz. glycogen phosphorylase and glycogen synthase. The enzyme glycogen phosphorylase catalyzes the reaction: (Glycogen)n + orthophosphate --------> (Glycogen)n-1 + ╬▒-D-Glucose-1-phosphate The enzyme glycogen phosphorylase has two forms viz. form a(active) and from b(inactive). The inactive form b is converted into active form a by the enzyme phosphorylase kinase in presence of ATP and Mg++ which phosphorylates the side chain of serine present in the inactive form b( covalent modification). The active form a degrades glycogen. When degradation of glycogen is not required then the active form a is converted back to inactive form b by enzyme phosphorylase phosphatase which dephosphorylates the side chain of serine residue. Likewise, the enzyme glycogen synthase, which catalyzes glycogen synthesis, is converted into an inactive form by phosphorylation (as oppose to glycogen phosphorylase which gets activated by phosphorylation). In this way by activation and inactivation of these enzymes the glycogen metabolism is regulated. [Enzyme рдХ реЗ covalent modification рдореЗрдВ enzyme рдХ реЗ amino acid side chains рдХрд╛ reversible modification рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ enzyme рдХрд╛ activation рдпрд╛ inactivation рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдЗрд╕рдХреА рд╡реНрдпрд╛рдЦреНрдпрд╛ рджреЛ enzymes - glycogen phosphorylase рдФрд░ glycogen synthase рджреНрд╡рд╛рд░рд╛ рдХреА рдЬрд╛ рд╕рдХрддреА рд╣реИ I enzyme glycogen phosphorylase рджреНрд╡рд╛рд░рд╛ catalyze рдХрд┐рдпрд╛ рдЬрд╛рдиреЗ рд╡рд╛рд▓рд╛ reaction рд╣реИ : (Glycogen)n + orthophosphate --------> (Glycogen)n-1 + ╬▒-D-Glucose-1-phosphate Glycogen phosphorylase enzyme рдХ реЗ рджреЛ рд░реВрдк рд╣реЛрддреЗ рд╣реИрдВ - form a (active) рдФрд░ from b (inactive) I Phosphorylase kinase enzyme ATP рдФрд░ Mg++ рдХреА рдЙрдкрд╕реНрдерд┐рддрд┐ рдореЗрдВ inactive form b рдХреА serine residue рдХреА side chain рдХреЛ phosphorylate рдХрд░рддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ inactive form b active form a рдореЗрдВ рдмрджрд▓ рдЬрд╛рддрд╛ рд╣реИ (рдпрд╣ covalent modification рдХрд╣рд▓рд╛рддрд╛ рд╣реИ) I Enzyme рдХрд╛ active form a glycogen рдХреЛ degrade рдХрд░рддрд╛ рд╣реИ I рдЬрдм glycogen рдХ реЗ degradation рдХреА реЫрд░реВрд░рдд рдирд╣реАрдВ рд╣реЛрддреА рд╣реИ рддреЛ phosphorylase phosphatase enzyme active form a рдХ реЗ serine residue рдХреА side chain рдХреЛ dephosphorylate рдХрд░рдХ реЗ рдЗрд╕реЗ inactive form b рдореЗрдВ рдмрджрд▓ рджреЗрддрд╛ рд╣реИ I рдЗрд╕реА рдкреНрд░рдХрд╛рд░, glycogen рдХ реЗ рд╕рдВрд╢реНрд▓реЗрд╖рдг (synthesis) рдХреЛ catalyze рдХрд░рдиреЗ рд╡рд╛рд▓рд╛ enzyme glycogen synthase рдПрдХ inactive form рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрд┐рдд рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдХрд┐рдиреНрддреБ phosphorylation рджреНрд╡рд╛рд░рд╛ (рдЬрдмрдХрд┐ glycogen phosphorylase phosphorylation рджреНрд╡рд╛рд░рд╛ activate рд╣реЛрддрд╛ рд╣реИ) I рдЗрд╕ рддрд░рд╣, рдЗрди enzymes (glycogen phosphorylase рдФрд░ glycogen synthase) рдХ реЗ activation рдФрд░ inactivation рджреНрд╡рд╛рд░рд╛ glycogen metabolism рдирд┐рдпрдВрддреНрд░рд┐рдд рд╣реЛрддреА рд╣реИ I] 13
  • 14. Covalent regulation Q. 14. How is allosteric regulation different from regulation by reversible covalent modification of the enzyme?[Allosteric regulation reversible covalent modification рд╕реЗ рдХрд┐рд╕ рдкреНрд░рдХрд╛рд░ рднрд┐рдиреНрди рд╣реИ?] Ans. тЧП In allosteric modification an effector molecule binds to a site other than the active site of the enzyme and brings about a reversible conformational change in the active site leading to alteration in enzyme activity of allosteric enzyme while covalent modification of enzyme results in reversible modification of the amino acid side chains of the enzyme resulting in activation or inactivation of the enzyme. [Allosteric modification рдореЗрдВ рдПрдХ effector molecule active site рд╕реЗ bind рдирд╣реАрдВ рдХрд░рддрд╛ рд╣реИ рдмрд▓реНрдХрд┐ рдПрдХ рдЕрдиреНрдп site рдкрд░ bind рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ active site рдХреА рдмрдирд╛рд╡рдЯ (conformation) рдореЗрдВ рдПрдХ рдкреНрд░рддрд┐рд╡рд░реНрддреА (reversible) рдкрд░рд┐рд╡рд░реНрддрди рдХрд░ рджреЗрддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ allosteric enzyme рдХреА catalytic activity рдореЗрдВ рдкрд░рд┐рд╡рд░реНрддрди рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ рдЬрдмрдХрд┐ enzyme рдХ реЗ covalent modification рдореЗрдВ enzyme рдХреА amino acid side chains рдореЗрдВ reversible modification рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕рд╕реЗ enzyme рдХрд╛ activation рдпрд╛ inactivation рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I] Q.15. What are isoenzymes? Give an example.[Isoenzymes рдХреНрдпрд╛ рд╣реЛрддреЗ рд╣реИрдВ? рдПрдХ рдЙрджрд╛рд╣рд░рдг рднреА рджреЗрдВ I] Ans. Isoenzymes are the different forms of an enzyme catalysing the same reaction but differing in physico-chemical properties such as amino acid sequence, different combination of subunits, heat stability electrophoretic mobility and sensitivity to inhibition by excess of substrate. These variants are genetically determined. These isoenzymes also differ in their kinetic and regulatory properties and their distribution in tissues which is attributed to the metabolic requirements of a particular tissue. These are numbered based on their electrophoretic mobility towards anode. Example: Lactate dehydrogenase (LDH) has five isoenzymes with LDH-5 having the lowest mobility towards anode and LDH-1 having the highest mobility. LDH-1 is present in highest concentration in heart while LDH-5 is present in highest concentration in skeletal muscles and liver. [Isoenzymes рдХрд┐рд╕реА enzyme рдХ реЗ рд╡рд┐рднрд┐рдиреНрди рд░реВрдк рд╣реЛрддреЗ рд╣реИрдВ рдЬреЛ same reaction рдХреЛ catalyze рдХрд░рддреЗ рд╣реИрдВ рдХрд┐рдиреНрддреБ рдЙрдирдХреА physico-chemical properties рдЬреИрд╕реЗ - amino acid sequence, subunits рдХрд╛ рд╡рд┐рднрд┐рдиреНрди рд╕рдВрдпреЛрдЬрди, рддрд╛рдк рдХ реЗ рдкреНрд░рддрд┐ рд╕реНрдерд┐рд░рддрд╛, electrophoretic mobility рдФрд░ substrate рдХреА рдЕрдзрд┐рдХрддрд╛ рджреНрд╡рд╛рд░рд╛ рдЕрд╡рд░реЛрдзрди (inhibition) рдХреА рд╕рдВрд╡реЗрджрдирд╢реАрд▓рддрд╛ рдЖрджрд┐ рднрд┐рдиреНрди рд╣реЛрддреА рд╣реИрдВ I рдпреЗ рднрд┐рдиреНрдирд░реВрдк (variants) рдЖрдиреБрд╡рдВрд╢рд┐рдХ рд░реВрдк рд╕реЗ рдирд┐рд░реНрдзрд╛рд░рд┐рдд рд╣реЛрддреЗ рд╣реИрдВ I Isoenzymes рдЕрдкрдиреА kinetic рдФрд░ regulatory properties рдПрд╡рдВ tissues рдореЗрдВ рдЙрдирдХ реЗ distribution рдореЗрдВ рднреА рднрд┐рдиреНрди рд╣реЛрддреЗ рд╣реИрдВ рдЬрд┐рд╕рдХ реЗ рд▓рд┐рдП рд╡рд┐рд╢рд┐рд╖реНрдЯ рдКрддрдХреЛрдВ рдХреА рдЪрдпрд╛рдкрдЪрдп рдЕрд╡рд╢реНрдпрдХрддрд╛рдпреЗрдВ (metabolic requirements) рдЬрд┐рдореНрдореЗрджрд╛рд░ рд╣реЛрддреА рд╣реИрдВ I Isoenzymes рдХреЛ рдЙрдирдХреА anode рдХреА рдУрд░ electrophoretic mobility рдХ реЗ рдЖрдзрд╛рд░ рдкрд░ рд╕рдВрдЦреНрдпрд╛рдВрдХрд┐рдд рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ I рдЙрджрд╛рд╣рд░рдг : Lactate dehydrogenase (LDH) рдХ реЗ рдкрд╛рдБрдЪ isoenzymes рд╣реЛрддреЗ рд╣реИрдВ рдЬрд┐рдирдореЗрдВ LDH-5 рдХреА anode рдХреА рддрд░рдл mobility рд╕рдмрд╕реЗ рдХрдо рд╣реЛрддреА рд╣реИ рдФрд░ LDH-1 рдХреА рд╕рдмрд╕реЗ рдЕрдзрд┐рдХ I LDH-1 рдХреА рдорд╛рддреНрд░рд╛ heart рдореЗрдВ рд╕рдмрд╕реЗ рдЕрдзрд┐рдХ рд╣реЛрддреА рд╣реИ рдЬрдмрдХрд┐ LDH-5 рдХреА рд╕рдмрд╕реЗ рдЕрдзрд┐рдХ рдорд╛рддреНрд░рд╛ skeletal muscles рдФрд░ liver рдореЗрдВ рд╣реЛрддреА рд╣реИ I] 14
  • 15. Q.16. Name two enzymes used in medical diagnosis. Explain the use of enzymes in diagnosis of heart attack. [Medical diagnosis рд╣реЗрддреБ рдЙрдкрдпреЛрдЧ рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ рджреЛ enzymes рдХ реЗ рдирд╛рдо рд▓рд┐рдЦреЗрдВ I Heart attack рдХреА diagnosis рд╣реЗрддреБ рдЙрдкрдпреЛрдЧ рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ enzymes рдХреА рд╡реНрдпрд╛рдЦреНрдпрд╛ рдХрд░реЗрдВ I] Ans. Creatine kinase (CK), used in the determination of myocardial infarction and muscle diseases and acid phosphatase used in the determination of prostate cancer, are two important enzymes used in medical diagnosis. Diagnostic enzymes in heart attack: The blockage in the artery or arteries supplying the blood to the heart results in heart attack or myocardial infarction (MI). This results in death of some of the cells of heart muscles, thereby, release of enzymes such as creatine kinase, glutamate oxaloacetate transaminase and lactate dehydrogenase into the blood. The pattern of release of these enzymes in blood helps in diagnosis and severity of heart attack. CK level in blood increases within 6 hours after myocardial infarction, reaches peak level at about 24 hours and then normalizes in 2-3 days. Similarly, GOT begins to increase 3-8 hrs. after myocardial injury, reaches peak level after about 24 and normalizes in 3-6 days. Likewise LDH level in blood begin to increase within 6-12 hrs. after MI , reach maximum level at about 48 hrs. which remains elevated for 4-14 days before coming down to normal levels. The rise and fall pattern of these enzymes were used for diagnosis of MI. However, these enzymes have become obsolete as some new more specific biochemical markers for diagnosis of MI have come up, e.g. isoenzyme of creatine kinase (CKMB), cardiac troponin I and troponin T. [Medical diagnosis (рдирд┐рджрд╛рди) рд╣реЗрддреБ рдЙрдкрдпреЛрдЧ рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ enzymes рдореЗрдВ рд╕реЗ рджреЛ enzymes рд╣реИрдВ - Creatine kinase (CK) рдЬрд┐рд╕рдХрд╛ рдЙрдкрдпреЛрдЧ myocardial infarction (heart attack) рдХ реЗ рдирд┐рджрд╛рди рд╣реЗрддреБ рдФрд░ Acid phosphatase рдЬрд┐рд╕рдХрд╛ рдЙрдкрдпреЛрдЧ prostate cancer рдХ реЗ рдирд┐рджрд╛рди рд╣реЗрддреБ рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ I Coronary (рдХреЛрд░реЛрдирд░реА) artery (рдзрдордиреА), рдЬреЛ heart рдХреЛ blood supply рдХрд░рддреА рд╣реИрдВ, рдореЗрдВ рдЬрдм рдХрд┐рд╕реА рдХрд╛рд░рдгрд╡рд╢ blood рдХ реЗ рдкреНрд░рд╡рд╛рд╣ рдореЗрдВ рд░реБрдХрд╛рд╡рдЯ рд╣реЛрддреА рд╣реИ рддреЛ myocardium рдХреЛ рдЖрд╡рд╢реНрдпрдХрддрд╛рдиреБрд╕рд╛рд░ рдСрдХреНрд╕реАрдЬрди рдирд╣реАрдВ рдорд┐рд▓ рдкрд╛рддреА рдФрд░ рдЬрдм рдпрд╣ рд╕реНрдерд┐рддрд┐ рдЕрдзрд┐рдХ рд╕рдордп рдХ реЗ рд▓рд┐рдП рдФрд░ рдЕрдкрд░рд┐рд╡рд░реНрддрдиреАрдп рд╣реЛрддреА рд╣реИ рддреЛ myocardial cell рдХреА death рдФрд░ necrosis (рдЧрд▓ рдЬрд╛рдирд╛) рд╣реЛрдиреЗ рд▓рдЧрддреА рд╣реИ I рдФрд░ рдЗрд╕реЗ myocardial infarction (рд░реЛрдзрдЧрд▓рди,MI) рдпрд╛ рддреАрд╡реНрд░ рд░реЛрдзрдЧрд▓рди (acute myocardial infarction, AMI) рдХрд╣рддреЗ рд╣реИрдВ рдФрд░ рдЬрд┐рд╕реЗ рдЖрдорддреМрд░ рдкрд░ рд╣реГрджрдпрд╛рдШрд╛рдд (рд╣рд╛рд░реНрдЯ рдЕрдЯреИрдХ) рдпрд╛ рджрд┐рд▓ рдХ реЗ рджреМрд░реЗ рдХ реЗ рд░реВрдк рдореЗрдВ рдЬрд╛рдирд╛ рдЬрд╛рддрд╛ рд╣реИ I Heart рдХ реЗ muscles рдХреА death рдФрд░ necrosis рдХ реЗ рдХрд╛рд░рдг рдХ реБ рдЫ enzymes release рд╣реЛрдХрд░ blood рдореЗрдВ рдЖ рдЬрд╛рддреЗ рд╣реИрдВ I рдЗрди enzymes рдХ реЗ release рд╣реЛрдиреЗ рдХ реЗ pattern рджреНрд╡рд╛рд░рд╛ myocardial infarction рдХреА diagnosis (рдирд┐рджрд╛рди) рдореЗрдВ рдорджрдж рдорд┐рд▓рддреА рд╣реИ I рдпреЗ enzymes рд╣реИрдВ - creatine kinase (CK), glutamate oxaloacetate transaminase (GOT) рдФрд░ lactate dehydrogenase I Blood рдореЗрдВ CK рдХрд╛ рд╕реНрддрд░ MI рд╣реЛрдиреЗ рдХ реЗ 6 рдШрдВрдЯреЛрдВ рдХ реЗ рдЕрдВрджрд░ рдмреЭрдирд╛ рд╢реБрд░реВ рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ, 24 рдШрдВрдЯреЗ рдореЗрдВ peak level рдкрд╣реБрдБрдЪ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдлрд┐рд░ 2-3 рджрд┐рдиреЛрдВ рдореЗрдВ рд╕рд╛рдорд╛рдиреНрдп рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдЗрд╕реАрдкреНрд░рдХрд╛рд░, GOT рдХрд╛ рд╕реНрддрд░ MI рдХ реЗ 3-8 рдШрдВрдЯреЗ рдмрд╛рдж рдмреЭрдиреЗ рд▓рдЧрддрд╛ рд╣реИ, 24 рдШрдВрдЯреЗ рдореЗрдВ peak level рдкрд╣реБрдБрдЪ рдЬрд╛рддрд╛ рд╣реИ рдФрд░ рдлрд┐рд░ 3-6 рджрд┐рдиреЛрдВ рдореЗрдВ рд╕рд╛рдорд╛рдиреНрдп рд╣реЛ рдЬрд╛рддрд╛ рд╣реИ I рдЗрд╕реА рддрд░рд╣, blood рдореЗрдВ LDH level 6-12 рдШрдВрдЯреЛрдВ рдореЗрдВ MI рдХ реЗ рдмрд╛рдж рдмреЭрддрд╛ рд╣реИ, рд▓рдЧрднрдЧ 48 рдШрдВрдЯреЛрдВ рдореЗрдВ peak рд╕реНрддрд░ рдорд┐рд▓рддрд╛ рдЬреЛ 4-14 рджрд┐рдиреЛрдВ рддрдХ рдмреЭрд╛ рд░рд╣рддрд╛ рд╣реИ рдФрд░ рдЙрд╕рдХ реЗ рдмрд╛рдж рдзреАрд░реЗ - рдзреАрд░реЗ рд╕рд╛рдорд╛рдиреНрдп рд╣реЛрддрд╛ рд╣реИ I рдЗрди enzymes рдХ реЗ рдмреЭрдиреЗ рдФрд░ рдШрдЯрдиреЗ рдХрд╛ рдпрд╣ pattern рд╣реА MI рдХ реЗ рдирд┐рджрд╛рди (diagnosis) рдореЗрдВ рдЙрдкрдпреЛрдЧ рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ I рд╣рд╛рд▓рд╛рдВрдХрд┐, рдЖрдЬрдХрд▓ рдЗрди enzymes рдХрд╛ рдЪрд▓рди рдХрдо рд╣реЛ рдЧрдпрд╛ рд╣реИ рдФрд░ рдЗрдирдХреА рдЬрдЧрд╣ рдХ реБ рдЫ рдирдП рдФрд░ рдЕрдзрд┐рдХ рд╡рд┐рд╢рд┐рд╖реНрдЯ biochemical markers рдХрд╛ рдЙрдкрдпреЛрдЧ рдЕрдзрд┐рдХ рд╣реЛрдиреЗ рд▓рдЧрд╛ рд╣реИ, рдЬреИрд╕реЗ - creatine kinase рдХрд╛ isoenzyme (CKMB), Lactate dehydrogenase рдХрд╛ isoenzyme 1 (LDH 1) cardiac troponin I рдФрд░ troponin T ] 15
  • 16. Q. 17. Write a short note on active site of enzymes.[Enzyme рдХреА active site рдкрд░ рдПрдХ short note рд▓рд┐рдЦреЗрдВ I] Ans. We know that the enzymes work as biocatalysts and the binding of substrate to the enzyme is a prerequisite for an enzyme catalyzed reaction. The active site is a specific area in the enzyme molecule where the suitable substrate molecule binds to it and the chemical reaction occurs by breaking or formation of the bonds. It is a small area in the whole enzyme molecule and only a few amino acid (their side chains) constitute this active site. The active site is specific for its substrate which can be explained by 'Lock and Key' or 'Induced Fit' models. The amino acid residues constituting the active site are basically of two types viz. binding groups and catalytic groups. The binding groups are responsible for binding of the substrate molecule(s) through non-covalent binding interactions such as hydrogen bonds, electrostatic or hydrophobic interactions. The binding group amino acids may be polar or nonpolar. The binding of substrate to binding groups results in the formation of enzyme - substrate complex and this creates a chemical environment for further reaction. The catalytic groups amino acids are of polar type. The catalytic groups bring about the actual catalytic reaction by lowering the free energy of the transition state and stimulating the bond formation/breaking and also prevent unwanted reactions. Some amino acid side chains take part in both binding and catalytic functions of the active site. [рд╣рдо рдЬрд╛рдирддреЗ рд╣реИрдВ рдХрд┐ enzymes biocatalysts рдХреА рддрд░рд╣ рдХрд╛рдо рдХрд░рддреЗ рд╣реИрдВ рдФрд░ enzyme рджреНрд╡рд╛рд░рд╛ catalysis рдХ реЗ рд▓рд┐рдП рдкрд╣рд▓реА рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реИ substrate рдХрд╛ enzyme рд╕реЗ bind рд╣реЛрдирд╛ I Active site enzyme рдХрд╛ рдПрдХ рд╡рд┐рд╢реЗрд╖ рд╣рд┐рд╕реНрд╕рд╛ рд╣реЛрддрд╛ рд╣реИ рдЬрд╣рд╛рдБ рдЙрдЪрд┐рдд substrate enzyme рд╕реЗ bind рдХрд░рддрд╛ рд╣реИ рдФрд░ рдЬрд╣рд╛рдБ bonds рдмрдирдиреЗ рдФрд░ рдЯреВрдЯрдиреЗ рдХреА рдкреНрд░рдХреНрд░рд┐рдпрд╛ рджреНрд╡рд╛рд░рд╛ reaction рдкреВрд░рд╛ рд╣реЛрддрд╛ рд╣реИ I рдпрд╣ рдкреВрд░реЗ enzyme molecule рдХрд╛ рдПрдХ рдЫреЛрдЯрд╛ рд╕рд╛ рдХреНрд╖реЗрддреНрд░ рд╣реЛрддрд╛ рд╣реИ рдФрд░ рдХ реЗ рд╡рд▓ рдХ реБ рдЫ amino acids рдХреА side chains рд╣реА рдЗрд╕ active site рдХрд╛ рдирд┐рд░реНрдорд╛рдг рдХрд░рддреА рд╣реИрдВ I рдпрд╣ active site рдЕрдкрдиреЗ substrate рдХ реЗ рд▓рд┐рдП рд╡рд┐рд╢рд┐рд╖реНрдЯ рд╣реЛрддреА рд╣реИ рдЬрд┐рд╕реЗ 'Lock and Key' рдпрд╛ 'Induced Fit' models рджреНрд╡рд╛рд░рд╛ рд╕рдордЭрд╛рдпрд╛ рдЬрд╛ рд╕рдХрддрд╛ рд╣реИ I Active site рдХреЛ рдирд┐рд░реНрдорд┐рдд рдХрд░рдиреЗ рд╡рд╛рд▓реЗ amino acid residues рдореВрд▓рд░реВрдк рд╕реЗ рджреЛ рдкреНрд░рдХрд╛рд░ рдХ реЗ рд╣реЛрддреЗ рд╣реИрдВ - рдПрдХ binding groups рдФрд░ рджреВрд╕рд░реЗ catalytic groups I Binding groups реЫрд┐рдореНрдореЗрджрд╛рд░ рд╣реЛрддреЗ рд╣реИрдВ substrate molecules рдХреА hydrogen bonds, electrostatic рдпрд╛ hydrophobic interactions рдЬреИрд╕реЗ interactions рджреНрд╡рд╛рд░рд╛ non-covalent binding рдХ реЗ рд▓рд┐рдП I рдпреЗ binding group amino acids polar рдпрд╛ nonpolar рд╣реЛ рд╕рдХрддреЗ рд╣реИрдВ I Substrate рдХреА binding groups рдХ реЗ рд╕рд╛рде binding рд╕реЗ enzyme - substrate complex рдмрдирддрд╛ рд╣реИ рдФрд░ рдЖрдЧреЗ рдХ реЗ reaction рдХ реЗ рд▓рд┐рдП рдПрдХ chemical environment рдмрдирд╛рддрд╛ рд╣реИ I рджреВрд╕рд░реА рддрд░рдл catalytic groups рдХ реЗ amino acids polar type рдХ реЗ рд╣реЛрддреЗ рд╣реИрдВ рдФрд░ рдпреЗ transition state рдХреА free energy рдХреЛ рдХрдо рдХрд░рдХ реЗ , bond рдХ реЗ рдмрдирдиреЗ рдФрд░ рдЯреВрдЯрдиреЗ рдХреА рдкреНрд░рдХреНрд░рд┐рдпрд╛ рдХреЛ рдкреНрд░реЗрд░рд┐рдд рдХрд░рдХ реЗ рддрдерд╛ рдЕрд╡рд╛рдВрдЫрд┐рдд reactions рдХреЛ рд░реЛрдХ рдХрд░ рд╡рд╛рд╕реНрддрд╡рд┐рдХ reaction рдХреЛ рдкреВрд░реНрдг рдХрд░рддреЗ рд╣реИрдВ I рдХ реБ рдЫ amino acid рдХреА side chains active site рдХ реЗ binding рдФрд░ catalytic рджреЛрдиреЛрдВ рд╣реА рдореЗрдВ рд╣рд┐рд╕реНрд╕рд╛ рд▓реЗрддреА рд╣реИрдВ I] 16
  • 17. Q. 18. Fill in the blanks [рдЦрд╛рд▓реА рдЬрдЧрд╣ рднрд░реЗрдВ]: (i) Chemical reactions рдХ реЗ рджреМрд░рд╛рди enzymes ______ рдирд╣реАрдВ рд╣реЛрддреЗ рдФрд░ рдмрд╛рд░ - рдмрд╛рд░ рдЗрд╕реНрддреЗрдорд╛рд▓ рд╣реЛрддреЗ рд╣реИрдВ I (ii) рдХрд┐рд╕реА enzyme рдХ реЗ enzymatically inactive protein part рдХреЛ _______ рдХрд╣рддреЗ рд╣реИрдВ I (iii) рдПрдХ enzyme рдХ реЗ рдЙрд╕ nonprotein part рдХреЛ рдЬрд┐рд╕рдХреА рдЖрд╡рд╢реНрдпрдХрддрд╛ enzyme activity рдХ реЗ рд▓рд┐рдП рд╣реЛрддреА рд╣реИ, рдЙрд╕реЗ ________ рдХрд╣рддреЗ рд╣реИрдВ I (iv) ______ enzyme рдХрд╛ non protein part рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕рдХреА enzyme activity рдХ реЗ рд▓рд┐рдП рдЖрд╡рд╢реНрдпрдХрддрд╛ рд╣реЛрддреА рд╣реИ I (v) рдЬрдм рдПрдХ cofactor рдПрдХ protein рдпрд╛ enzyme рд╕реЗ tightly bound рд╣реЛрддрд╛ рд╣реИ рддреЛ рдЙрд╕ cofactor рдХреЛ _______ group рдХрд╣рддреЗ рд╣реИрдВ I (vi) _________ рд╡реЛ chemical substance рд╣реЛрддрд╛ рд╣реИ рдЬрд┐рд╕рдХрд╛ transformation рдПрдХ enzyme рджреНрд╡рд╛рд░рд╛ catalyze рд╣реЛрддрд╛ рд╣реИ I (vii) Enzyme рдХрд╛ рд╡реЛ рд╣рд┐рд╕реНрд╕рд╛ рдЬрд╣рд╛рдБ catalytic рдкреНрд░рдХреНрд░рд┐рдпрд╛ рдХ реЗ рд╕рд╛рд░реЗ events рд╣реЛрддреЗ рд╣реИрдВ, ______ site рдХрд╣рд▓рд╛рддрд╛ рд╣реИ I (viii) Enzyme activity рдХреА traditional unit ____ рд╣реИ рдФрд░ SI unit ______ рд╣реИ I (ix) рдХрд┐рд╕реА enzyme рдХ реЗ рд╡рд┐рднрд┐рдиреНрди рд░реВрдк рдЬреЛ same reaction рдХреЛ catalyze рдХрд░рддреЗ рд╣реИрдВ рдХрд┐рдиреНрддреБ рдЙрдирдХреА physico-chemical properties рднрд┐рдиреНрди рд╣реЛрддреА рд╣реИрдВ рдЙрдиреНрд╣реЗрдВ __________ рдХрд╣рддреЗ рд╣реИрдВ I (x) Lactate dehydrogenase enzyme рдХ реЗ _____ isoenzymes рд╣реЛрддреЗ рд╣реИрдВ I (xi) LDH-1 рдХреА рдорд╛рддреНрд░рд╛ _____ рдореЗрдВ рд╕рдмрд╕реЗ рдЕрдзрд┐рдХ рд╣реЛрддреА рд╣реИ рдЬрдмрдХрд┐ LDH-5 рдХреА рд╕рдмрд╕реЗ рдЕрдзрд┐рдХ рдорд╛рддреНрд░рд╛ _______ muscles рдФрд░ _____ рдореЗрдВ рд╣реЛрддреА рд╣реИ I (xii) Myocardium рдореЗрдВ рдкрд╛рдпрд╛ рдЬрд╛рдиреЗ рд╡рд╛рд▓рд╛ creatine kinase рдХрд╛ isoenzyme ________ рд╣реИ I (xiii) Serum cardiac _______ рдХреЛ MI рдХреА diagnosis рд╣реЗрддреБ 'Gold standard' biochemical marker рдорд╛рдирд╛ рдЬрд╛рддрд╛ рд╣реИ I (xiv) Blood рдФрд░ urine рдореЗрдВ sugar рдХреА рдЬрд╛рдБрдЪ рд╣реЗрддреБ рдЙрдкрдпреЛрдЧ рдХрд┐рдпреЗ рдЬрд╛рдиреЗ рд╡рд╛рд▓реЗ рджреЛ enzymes рд╣реИрдВ - ________ рдФрд░ ______ (xv) _______ рдФрд░ _______ рдХрд╛ рдЙрдкрдпреЛрдЧ severe burn рдХ реЗ рдЙрдкрдЪрд╛рд░ рдореЗрдВ рдХрд┐рдпрд╛ рдЬрд╛рддрд╛ рд╣реИ рдХреНрдпреЛрдВрдХрд┐ рдпреЗ рд╢рд░реАрд░ рдХ реЗ рдЬрд▓реЗ рд╣реБрдП рдХреНрд╖реЗрддреНрд░ рдХреА dead skin, clotted blood рдФрд░ pus рдХреА proteins рдХ реЗ рдЕрдкрдШрдЯрди (decompose) рдореЗрдВ рдорджрдж рдХрд░рддреЗ рд╣реИрдВ I Ans. (i) рдирд╖реНрдЯ, (ii) apoenzyme, (iii) cofactor, (iv) coenzyme, (v) prosthetic, (vi) substrate, ((vii) active, (viii) U рдпрд╛ IU, katal, (ix) isoenzymes, (x) рдкрд╛рдБрдЪ, (xi) heart, skeletal, liver, (xxii) MB, (xiii) Troponin, (xiv) glucose oxidase, peroxidase, (xv) trypsin, chymotrypsin. REFERENCES: 1. IGNOU, CHE - 9 Biochemistry, Block 2 2. Lehninger Principles of biochemistry, seventh edition ; David L. Nelson & Michael M. Cox. Disclaimer : The pictures given in the text have been downloaded from Google images and I am thankful to the persons who have uploaded these pictures. Dr. P. K. Nigam (Retired Biochemist) 17