ELECTRÒNICA ANALÒGICA
COMPONENTS I CIRCUITS
ELECTRÒNICS BÀSICS
IES Cap de Llevant
Departament de Tecnologia
DEFINIM ELECTRÒNICA
 ELECTRICITAT: estudi de la generació, transport i
distribució de l’energia elèctrica
 ELECTRÒNICA: es la rama de la física y
especialización de la ingeniería, que estudia y
emplea sistemas cuyo funcionamiento se basa
en la conducción y el control del flujo
microscópico de los electrones u otras
partículas cargadas eléctricamente. El corrent
elèctric travessa components semiconductors i
altres components electrònics.
QUÈ SÓN ELS SEMICONDUCTORS?
 Són materials que a baixes temperatures es comporten
com a aïllants però que en altres condicions presenten
certa conductivitat elèctrica.
 Principals semiconductors:
SEMICONDUCTORS
silici
germani
arseniür de gal·li
Carburi de silici
COMPONENTS ELECTRÒNICS
Resistències
• Fixes
• Variables
• Potenciòmetres
• Variables amb la temperatura (NTC’s i PTC’s)
• Variables amb la llum (LDR)
Condensadors
• Fixes
• Variables
Diodes
Transistors
• pnp
• npn
RESISTÈNCIES
LES RESISTÈNCIES
 Són components que ofereixen oposició al pas del corrent
elèctric.
 FUNCIONS:
 Limitar o regular la quantitat de corrent que circula pel
circuit. (Divisors de tensió i de intensitat)
 Protegir alguns components pels quals no pot circular
una intensitat elevada.
 CARACTERÍSTIQUES:
 Valor nominal: valor en ohms (Ω)
 tolerancia: desviació màxima o màxim error respecte de
valor nominal (el que donen les franges). S’expressa en
%
LES RESISTÈNCIES FIXES
 Es un fil de carbó (grafit) o metàl·lic (wolframi p.e) enrotllat
a una base cilíndrica y el seu valor nominal i tolerància ve
indicat mitjançant un codi de colors
CODI DE COLORS
LES RESISTÈNCIES VARIABLES (I)
•Es basen en una
resistència damunt
de la qual llisca un
contacte mòbil.
Segons on es col·loca
el seu valor varia
entre 0 i R ohms
POTENCIÒMETRES
•La resistència
disminueix quan
augmenta la
quantitat de llum que
reben
RESISTÈNCIES
VARIABLES AMB LA
LLUM (LDR)
•NTC: si la Tª
augmenta el valor
disminueix
•PTC: si la Tª
augmenta el valor
augmenta
RESISTÈNCIES
VARIABLES AMB LA
TEMPERATURA
FUNCIONAMENT LDR
FUNCIONAMENT TERMISTORS
LES RESISTÈNCIES VARIABLES (II)
EL CONDENSADOR
DEFINICIÓ I ESTRUCTURA
 És un component que serveix per emmagatzemar
energia durant un curt temps i alliberar-la posteriorment,
gràcies ala processos de càrrega i descàrrega.
 El formen dues plaques metàl·liques separades per un
aïllant (dielèctric). Cada placa duu un terminal per fer la
connexió al circuit
FUNCIONAMENT CONDENSADORS
CAPACITAT D’UN CONDENSADOR
 CAPACITAT: És el paràmetre que caracteritza el
condensador. Representa la relació entre la càrrega
elèctrica que emmagatzema i el voltatge al qual es
sotmet. Depèn de la mida i forma de les plaques i de la
seva separació
 Es mesura en FARADS. Però com que la unitat és molt
gran s’empren submúltiples:
Mil·lifarad (10-3) Microfarad (10-6)
Nanofarad (10-9) Picofarad (10-12)
(Volts)V
(Coulombs)Q
(Farads)C 
CÀRREGA I DESCÀRREGA (I)
CÀRREGA DEL
CONDENSADOR:
El LED està apagat
DESCÀRREGA DEL
CONDENSADOR:
El LED està il·luminat
 Què passarà amb el LED?
CÀRREGA I DESCÀRREGA (II)
 La constant de temps (ζ) és
el temps que tarda el
condensador en carregar-
se o descarregar-se un
63.2%
CONDENSADORS
APLICACIONS DELS CONDENSADORS
 Protecció d’elements del circuit: exemple
interruptors
 Filtres de freqüència
 Sintonitzadors de freqüència: exemple la
ràdio
 Carregadors: exemple flash d’una càmera de
fotos
 Temporitzadors: exemple llum interior d’un
cotxe, llums al carrer
APLICACIONS DELS CONDENSADORS (II)
 Conversió AC-DC
EL DÍODE
DEFINIM DÍODE
 Component electrònic semiconductor que es
caracteritza per permetre el pas del corrent
elèctric únicament en el sentit ànode(+) →
càtode(-) quan es posa a una diferència de
potencial superior a 0.65V.
DIODES
POLARITZACIÓ D’UN DÍODE
 Al fet d’aportar una font externa de tensió elèctrica per
tal de subministrar l’energia necessària a les càrregues
perquè puguin travessar la unió P-N es diu POLARTIZAR
 La polarització pot ser INVERSA (no condueix) o
DIRECTA. (condueix)
APLICACIONS (I)
 Rectificació d’ona (Conversió de corrent altern en
corrent continu,...)
 Demodulació de ràdio
APLICACIONS (II)
 Donar direcció al corrent i protecció de
components
 Fotocél·lules
 Comandaments a distància
 Tecnologia OLED: díode orgànic d’emissió de
llum
 Diodes làser (depilació definitiva, impressores
làser, lectors de codis de barres,...)
APLICACIONS (III)
EL DÍODE LED (LIGHT EMITING DIODE)
 El seu comportament és idèntic als díodes, es torna
conductor quan la polaritat és directa i la seva particularitat
és que s’il·lumina.
 El voltatge necessari perquè es torni conductor és superior
que als díodes normals i és d’uns 2 V, i la intensitat de
corrent que hi circula és d’uns 20 mA.
 Consumeixen 30 vegades menys que una bombeta
Aplicacions:
1.- Indicacions lluminoses (standby,...)
2.- Senyals de tràfic
3.- Comandaments a distància (infrarroig)
4.- Panells informatius
5.- Il·luminació
6.- llums dels cotxes
CÀLCUL DE LA RESISTÈNCIA DE PROTECCIÓ
D’UN DIODE (I)
 Quan connectem un diode a una
pila, necessitem posar una
resistència en sèrie amb ell per
protegir-lo, ja que un diode no pot
funcionar amb una tensió gran
 Podem calcular el valor de la
resistència aplicant la llei d’Ohm
 La tensió que hi ha al diode, serà tensió aportada per la pila menys la
que hi ha a la resistència:
drf VVV 
df VIRV 
I
VV
R df 

 Podemos considerar que, en general, un LED trabaja con una tensión de 2 V y consume una corriente de
0,02 A. (También podríamos considerar como válidas una tensión de 1,5 V y una corriente de 0,015 A).
CÀLCUL DE LA RESISTÈNCIA DE PROTECCIÓ
D’UN DIODE (II)
 Volem construir un circuit per a una pista d'Scalextric de forma que, en passar
el cotxe per la meta, sigui detectat per un sensor i ha d'encendre un LED,
mentre el cotxe hi és present. El circuit ha d'anar alimentat per una pila de 4,5
V. Quin valor haurà de tenir el resistor si la intensitat en el LED ha de ser de
0,029 A. Dibuixeu l'esquema suposant que el sensor és un contacte
normalment obert.
Ω86.2
0.029A
2V4.5V
I
VV
R df





___EXERCICI___
EL TRANSISTOR
DEFINICIÓ I ESTRUCTURA
 Operadors electrònics que poden funcionar
com a interruptors controlats electrònicament
i com a amplificadors de senyals elèctrics.
 Estàn formats per tres capes de material
semiconductor als quals se’ls connecten tres
terminals:
EMISSOR
BASE
COL·LECTOR
TRANSISTORS
ENCAPSULATS
TIPUS DE TRANSISTORS
 En funció de les capes de semiconductor tenim dos tipus diferents
de transistor:
Per polaritzar-lo es
connecta el pol + al
col·lector i a la base
Per polaritzar-lo es
connecta el pol - al
col·lector i a la base
FUNCIONAMENT
 Segons com sigui l’intensitat de base, poden funcionar de 3 formes
distintes:
EN AMPLIFICACIÓ: el transistor permet un pas de corrent
proporcional i sempre superior a la intensitat que arriba a la base. A
la relació entre ambdues corrents s’anomena amplificació o guany
EN SATURACIÓ: si la intensitat que
arriba a la base es gran funciona com
un interruptor tancat
EN TALL: si la intensitat que arriba a la
base és nul·la es comporta com un
interruptor obert
ELS SEUS CREADORS.
 Inventat als Laboratoris Bell d’Estats
Units.
 Reberen el Premi Nobel de Física l’any
1956
William Shockley
John Bardeen
Walter Brattain
EL CIRCUIT INTEGRAT
 Un circuit integrat (CI, chip o microchip),
és una pastilla petital de material
semiconductor sobre la qual ese fabriquen
circuits electrònics i protegida per un
encapsulat de plàstico o ceàámica, que
poseeix conductors metàlics per fer conexió
amb el circuit imprés. .
MICROPROCESADORS
CIRCUITS AMB TRANSISTORS (I)
 Al circuit següent, contesteu:
a) En la posició que es troba l'interruptor S, quin és l'estat del transistor? Quin valor
tenen Ib i Ic si el transistor de un guany de 40?
b) Si tanquem l'interruptor S, quin serà l'estat del transistor? Quin valor tindran Ib i Ic.
c) En quin estat del transistor el LED estarà encès?
d) Serà suficient la intensitat del col·lector per encendre el LED?
___EXERCICI___
CIRCUITS AMB TRANSISTORS (II)
 Al circuit següent, contesteu:
a) En la posició que es troba l'interruptor S, quin és l'estat del transistor? Quin valor
tenen Ib i Ic si el transistor de un guany de 40 ?
El transistor no condueix (està tallat) i per tant les corrents són 0
b) Si tanquem l'interruptor S, quin serà l'estat del transistor? Quin valor tindran Ib i Ic?
El transistor condueix (està en amplificació) i les corrents seran
c) En quin estat del transistor el LED estarà encès?
Quan el transistor està conduint
d) Serà suficient la intensitat del col·lector per encendre el LED?
Si
___EXERCICI___
11.4mA
Ω1000
0.6V12V
R
VU
i
b
beg
b 




456mA11.4mA·40iβi bc 
CIRCUITS AMB TRANSISTORS (III)
 Al circuit següent, contesteu:
a) En la posició que es troba l'interruptor S, quin és l'estat del transistor? Quin valor
tenen Ib i Ic si el transistor de un guany de 40?
b) Si tanquem l'interruptor S, quin serà l'estat del transistor? Quin valor tindran Ib i Ic.
c) Quina diferència de funcionament hi ha amb el circuit anterior?
___EXERCICI___
CIRCUITS AMB TRANSISTORS (IV)
 Al circuit següent, contesteu:
a) En la posició que es troba l'interruptor S, quin és l'estat del transistor? Quin valor
tenen Ib i Ic si el transistor de un guany de 40 ?
El transistor condueix (està en amplificació) i les corrents seran
b) Si tanquem l'interruptor S, quin serà l'estat del transistor? Quin valor tindran Ib i Ic?
El transistor no condueix (està tallat) i per tant les corrents són 0
c) Quina diferència de funcionament hi ha amb el circuit anterior?
Ara el transistor condueix quan obrim l’interruptor
___EXERCICI___
5.7mA
Ω2000
0.6V12V
RR
VU
i
21 bb
beg
b 





mA2285.7mA·40iβi bc 

electrónica analógica

  • 1.
    ELECTRÒNICA ANALÒGICA COMPONENTS ICIRCUITS ELECTRÒNICS BÀSICS IES Cap de Llevant Departament de Tecnologia
  • 2.
    DEFINIM ELECTRÒNICA  ELECTRICITAT:estudi de la generació, transport i distribució de l’energia elèctrica  ELECTRÒNICA: es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente. El corrent elèctric travessa components semiconductors i altres components electrònics.
  • 3.
    QUÈ SÓN ELSSEMICONDUCTORS?  Són materials que a baixes temperatures es comporten com a aïllants però que en altres condicions presenten certa conductivitat elèctrica.  Principals semiconductors: SEMICONDUCTORS silici germani arseniür de gal·li Carburi de silici
  • 4.
    COMPONENTS ELECTRÒNICS Resistències • Fixes •Variables • Potenciòmetres • Variables amb la temperatura (NTC’s i PTC’s) • Variables amb la llum (LDR) Condensadors • Fixes • Variables Diodes Transistors • pnp • npn
  • 5.
  • 6.
    LES RESISTÈNCIES  Sóncomponents que ofereixen oposició al pas del corrent elèctric.  FUNCIONS:  Limitar o regular la quantitat de corrent que circula pel circuit. (Divisors de tensió i de intensitat)  Protegir alguns components pels quals no pot circular una intensitat elevada.  CARACTERÍSTIQUES:  Valor nominal: valor en ohms (Ω)  tolerancia: desviació màxima o màxim error respecte de valor nominal (el que donen les franges). S’expressa en %
  • 7.
    LES RESISTÈNCIES FIXES Es un fil de carbó (grafit) o metàl·lic (wolframi p.e) enrotllat a una base cilíndrica y el seu valor nominal i tolerància ve indicat mitjançant un codi de colors CODI DE COLORS
  • 8.
    LES RESISTÈNCIES VARIABLES(I) •Es basen en una resistència damunt de la qual llisca un contacte mòbil. Segons on es col·loca el seu valor varia entre 0 i R ohms POTENCIÒMETRES •La resistència disminueix quan augmenta la quantitat de llum que reben RESISTÈNCIES VARIABLES AMB LA LLUM (LDR) •NTC: si la Tª augmenta el valor disminueix •PTC: si la Tª augmenta el valor augmenta RESISTÈNCIES VARIABLES AMB LA TEMPERATURA FUNCIONAMENT LDR FUNCIONAMENT TERMISTORS
  • 9.
  • 10.
  • 11.
    DEFINICIÓ I ESTRUCTURA És un component que serveix per emmagatzemar energia durant un curt temps i alliberar-la posteriorment, gràcies ala processos de càrrega i descàrrega.  El formen dues plaques metàl·liques separades per un aïllant (dielèctric). Cada placa duu un terminal per fer la connexió al circuit FUNCIONAMENT CONDENSADORS
  • 12.
    CAPACITAT D’UN CONDENSADOR CAPACITAT: És el paràmetre que caracteritza el condensador. Representa la relació entre la càrrega elèctrica que emmagatzema i el voltatge al qual es sotmet. Depèn de la mida i forma de les plaques i de la seva separació  Es mesura en FARADS. Però com que la unitat és molt gran s’empren submúltiples: Mil·lifarad (10-3) Microfarad (10-6) Nanofarad (10-9) Picofarad (10-12) (Volts)V (Coulombs)Q (Farads)C 
  • 13.
    CÀRREGA I DESCÀRREGA(I) CÀRREGA DEL CONDENSADOR: El LED està apagat DESCÀRREGA DEL CONDENSADOR: El LED està il·luminat  Què passarà amb el LED?
  • 14.
    CÀRREGA I DESCÀRREGA(II)  La constant de temps (ζ) és el temps que tarda el condensador en carregar- se o descarregar-se un 63.2% CONDENSADORS
  • 15.
    APLICACIONS DELS CONDENSADORS Protecció d’elements del circuit: exemple interruptors  Filtres de freqüència  Sintonitzadors de freqüència: exemple la ràdio  Carregadors: exemple flash d’una càmera de fotos  Temporitzadors: exemple llum interior d’un cotxe, llums al carrer
  • 16.
    APLICACIONS DELS CONDENSADORS(II)  Conversió AC-DC
  • 17.
  • 18.
    DEFINIM DÍODE  Componentelectrònic semiconductor que es caracteritza per permetre el pas del corrent elèctric únicament en el sentit ànode(+) → càtode(-) quan es posa a una diferència de potencial superior a 0.65V. DIODES
  • 19.
    POLARITZACIÓ D’UN DÍODE Al fet d’aportar una font externa de tensió elèctrica per tal de subministrar l’energia necessària a les càrregues perquè puguin travessar la unió P-N es diu POLARTIZAR  La polarització pot ser INVERSA (no condueix) o DIRECTA. (condueix)
  • 20.
    APLICACIONS (I)  Rectificaciód’ona (Conversió de corrent altern en corrent continu,...)  Demodulació de ràdio
  • 21.
    APLICACIONS (II)  Donardirecció al corrent i protecció de components  Fotocél·lules  Comandaments a distància
  • 22.
     Tecnologia OLED:díode orgànic d’emissió de llum  Diodes làser (depilació definitiva, impressores làser, lectors de codis de barres,...) APLICACIONS (III)
  • 23.
    EL DÍODE LED(LIGHT EMITING DIODE)  El seu comportament és idèntic als díodes, es torna conductor quan la polaritat és directa i la seva particularitat és que s’il·lumina.  El voltatge necessari perquè es torni conductor és superior que als díodes normals i és d’uns 2 V, i la intensitat de corrent que hi circula és d’uns 20 mA.  Consumeixen 30 vegades menys que una bombeta Aplicacions: 1.- Indicacions lluminoses (standby,...) 2.- Senyals de tràfic 3.- Comandaments a distància (infrarroig) 4.- Panells informatius 5.- Il·luminació 6.- llums dels cotxes
  • 24.
    CÀLCUL DE LARESISTÈNCIA DE PROTECCIÓ D’UN DIODE (I)  Quan connectem un diode a una pila, necessitem posar una resistència en sèrie amb ell per protegir-lo, ja que un diode no pot funcionar amb una tensió gran  Podem calcular el valor de la resistència aplicant la llei d’Ohm  La tensió que hi ha al diode, serà tensió aportada per la pila menys la que hi ha a la resistència: drf VVV  df VIRV  I VV R df    Podemos considerar que, en general, un LED trabaja con una tensión de 2 V y consume una corriente de 0,02 A. (También podríamos considerar como válidas una tensión de 1,5 V y una corriente de 0,015 A).
  • 25.
    CÀLCUL DE LARESISTÈNCIA DE PROTECCIÓ D’UN DIODE (II)  Volem construir un circuit per a una pista d'Scalextric de forma que, en passar el cotxe per la meta, sigui detectat per un sensor i ha d'encendre un LED, mentre el cotxe hi és present. El circuit ha d'anar alimentat per una pila de 4,5 V. Quin valor haurà de tenir el resistor si la intensitat en el LED ha de ser de 0,029 A. Dibuixeu l'esquema suposant que el sensor és un contacte normalment obert. Ω86.2 0.029A 2V4.5V I VV R df      ___EXERCICI___
  • 26.
  • 27.
    DEFINICIÓ I ESTRUCTURA Operadors electrònics que poden funcionar com a interruptors controlats electrònicament i com a amplificadors de senyals elèctrics.  Estàn formats per tres capes de material semiconductor als quals se’ls connecten tres terminals: EMISSOR BASE COL·LECTOR TRANSISTORS
  • 28.
  • 29.
    TIPUS DE TRANSISTORS En funció de les capes de semiconductor tenim dos tipus diferents de transistor: Per polaritzar-lo es connecta el pol + al col·lector i a la base Per polaritzar-lo es connecta el pol - al col·lector i a la base
  • 30.
    FUNCIONAMENT  Segons comsigui l’intensitat de base, poden funcionar de 3 formes distintes: EN AMPLIFICACIÓ: el transistor permet un pas de corrent proporcional i sempre superior a la intensitat que arriba a la base. A la relació entre ambdues corrents s’anomena amplificació o guany EN SATURACIÓ: si la intensitat que arriba a la base es gran funciona com un interruptor tancat EN TALL: si la intensitat que arriba a la base és nul·la es comporta com un interruptor obert
  • 31.
    ELS SEUS CREADORS. Inventat als Laboratoris Bell d’Estats Units.  Reberen el Premi Nobel de Física l’any 1956 William Shockley John Bardeen Walter Brattain
  • 32.
    EL CIRCUIT INTEGRAT Un circuit integrat (CI, chip o microchip), és una pastilla petital de material semiconductor sobre la qual ese fabriquen circuits electrònics i protegida per un encapsulat de plàstico o ceàámica, que poseeix conductors metàlics per fer conexió amb el circuit imprés. . MICROPROCESADORS
  • 33.
    CIRCUITS AMB TRANSISTORS(I)  Al circuit següent, contesteu: a) En la posició que es troba l'interruptor S, quin és l'estat del transistor? Quin valor tenen Ib i Ic si el transistor de un guany de 40? b) Si tanquem l'interruptor S, quin serà l'estat del transistor? Quin valor tindran Ib i Ic. c) En quin estat del transistor el LED estarà encès? d) Serà suficient la intensitat del col·lector per encendre el LED? ___EXERCICI___
  • 34.
    CIRCUITS AMB TRANSISTORS(II)  Al circuit següent, contesteu: a) En la posició que es troba l'interruptor S, quin és l'estat del transistor? Quin valor tenen Ib i Ic si el transistor de un guany de 40 ? El transistor no condueix (està tallat) i per tant les corrents són 0 b) Si tanquem l'interruptor S, quin serà l'estat del transistor? Quin valor tindran Ib i Ic? El transistor condueix (està en amplificació) i les corrents seran c) En quin estat del transistor el LED estarà encès? Quan el transistor està conduint d) Serà suficient la intensitat del col·lector per encendre el LED? Si ___EXERCICI___ 11.4mA Ω1000 0.6V12V R VU i b beg b      456mA11.4mA·40iβi bc 
  • 35.
    CIRCUITS AMB TRANSISTORS(III)  Al circuit següent, contesteu: a) En la posició que es troba l'interruptor S, quin és l'estat del transistor? Quin valor tenen Ib i Ic si el transistor de un guany de 40? b) Si tanquem l'interruptor S, quin serà l'estat del transistor? Quin valor tindran Ib i Ic. c) Quina diferència de funcionament hi ha amb el circuit anterior? ___EXERCICI___
  • 36.
    CIRCUITS AMB TRANSISTORS(IV)  Al circuit següent, contesteu: a) En la posició que es troba l'interruptor S, quin és l'estat del transistor? Quin valor tenen Ib i Ic si el transistor de un guany de 40 ? El transistor condueix (està en amplificació) i les corrents seran b) Si tanquem l'interruptor S, quin serà l'estat del transistor? Quin valor tindran Ib i Ic? El transistor no condueix (està tallat) i per tant les corrents són 0 c) Quina diferència de funcionament hi ha amb el circuit anterior? Ara el transistor condueix quan obrim l’interruptor ___EXERCICI___ 5.7mA Ω2000 0.6V12V RR VU i 21 bb beg b       mA2285.7mA·40iβi bc 