Molecular Genetics Guiding Treatment
of Acute Myeloid Leukemia
Hartmut Döhner, MD
Ulm University, Germany
German-Austrian AML Study Group (AMLSG)
IV Eurasian Hematology Forum
St. Petersburg, 3-5 March 2016
• Heterogeneity: more than 100 recurrent myeloid
disease-associated genetic lesions identified
DNMT3A
TET2
IDH1
IDH2
MLL
SRSF2
SF3B1
U2AF1
ZRSR2
RUNX1
ASXL1
EZH2
BCOR
STAG2
RAD21
TP53
WT1
NF1
KIT
NRAS
CBL
…
Translation of Molecular Genetics into
Clinical Care: Challenges
• New molecular markers currently do not impact
routine clinical practice
• Lack of sufficiently sized studies to capture the
enormous molecular heterogeneity
• Published marker studies selected for younger
patients or other patient subsets, e.g., only de novo
AML or cytogenetically-normal AML considered
• Prognostic impact for some markers established,
but lack of predictive value of most markers
Papaemmanuil E,* Gerstung M,* …, Döhner H,* Campbell P.* Blood 2015 126:803 (abstr).
Genomic Landscape of AML
• Targeted resequencing of 111 myeloid cancer genes (combined with cytogenetic profiles) in 1540 AML
• 5,236 driver mutations (i.e., fusion genes, copy number alterations, gene mutations) involving 77 loci
• 6 genes mutated in >10% pts; 13 genes 5-10% pts; 24 genes 2-5% pts; 37 genes <2% pts
Segregation of AML cases into 11
non-overlapping molecular classes:
• NPM1 mutation, with significant contribution
from DNA methylation / hydroxymethylation
genes DNMT3A, TET2, IDH1, IDH2
• Biallelic CEBPA mutation
• TP53 mutation and / or chromos. aneuploidies
• Splicing factor genes (SRSF2, SF3B1, U2AF1,
ZRSR2) or regulators of chromatin and
transcription (ASXL1, EZH2, BCOR, PHF6,
STAG2, MLLPTD, RUNX1, KMD5A, KMD6A)
• 6 balanced rearrangements: inv(16), t(15;17),
t(8;21), t(11q23), inv(3), t(6;9)
 ~ 80% of AML unambigously classified
Genomic
rearrangements NPM1 CEBPA
TP53 /
Chromos.
aneuploidies
Chromatin /
SF
No
class
IDH2
R172
• IDH2R172 mutation (DNMT3A in ~70%)
Genomic Structure Informs AML Classification
CR, complete remission; RD, refractory disease; DiCR, death in CR; DaR, death after relapse;
AaR, alive after relapse; AinCR, alive in CR
Gene-Gene Interactions: NPM1-Mutated AML
Chromatin / SF class
Clinical Impact: Chromatin / Splicing Factor Class
• Associated with older age, lower WBC counts, antecedent myeloid
disorders, multilineage dysplasia, and inferior outcome
• Cluster of RUNX1, SRSF2, STAG2, EZH2, and ASXL1 tightly
correlated; similar clusters found in high-risk MDS and high-risk MPN
Papaemmanuil E, et al. Blood. 2013;122(22):3616-27; Haferlach T, et al. Leukemia. 2014;28(2):241-7;
Vannucchi AM, et al. Leukemia. 2013;27(9):1861-9; Taskesen E, et al. Blood. 2014;123(21):3327-35.
• Mutations in SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2,
BCOR, or STAG2 have been associated with AML sharing clinico-
pathologic features of clinically confirmed secondary AML
Lindsley RC, et al. Blood. 2015;125(9):1367-76.
• RUNX1 mutations inform about half of this class - considered as a
provisional entity in the new WHO classification (2016)
 Chromatin / splicing factor class:
Signature for a continuum of high-risk myeloid disorders (high-risk
MDS - AML), frequently found in older patients, poor outcome
Clinical Impact of Splicing Factor Mutations in AML
SRSF2wt
SRSF2mut
U2AF1wt
U2AF1mut
SF3B1wt
SF3B1mut
ZRSR2wt
ZRSR2mut
Papaemmanuil E,* Gerstung M,* …, Döhner H,* Campbell P.* Blood 2015 126:803 (abstr).
Update of 2010 ELN Recommendations
Risk Categorya Genetic Lesion
Favorable t(8;21)(q22;q22); RUNX1-RUNX1T1
inv(16)(p13.1q22); CBFB-MYH11
Mutated NPM1 without FLT3-ITDb (normal karyotype)
Biallelic mutated CEBPA
Intermediate-I Mutated NPM1 and FLT3-ITDb (normal karyotype)
Wild type NPM1 and FLT3-ITDb (normal karyotype)
Wild type NPM1 without FLT3-ITD (normal karyotype)
Intermediate-II t(9;11)(p21.3;q23.3); MLLT3-KMT2A
Cytogenetic abnormalities not classified as favorable or adverse
Adverse t(6;9)(p23;q34.1); DEK-NUP214
t(v;11q23); KMT2A rearranged
t(9;22)(q34.1;q11.2); BCR-ABL1
inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)
Complex karyotype (≥3), -5 or del(5q); -7; -17/abn(17p)
Mutated RUNX1c
Mutated ASXL1c
Mutated TP53d
a Prognostic impact of a marker is treatment-dependent and may change with new therapies
b Prognostic impact of FLT3-ITD dependent on mutant to wildtype ITD allelic ratio
c These mutations should not be used as adverse prognostic marker if they co-occur with favorable-risk AML subtypes
d TP53 mutations frequently occur in AML with complex karyotype; in this context they portend a particularly poor prognosis
Döhner H, Weisdorf DJ, Bloomfield CD.
N Engl J Med. 2015;373:1136-52.
Selected Newer Agents in
Clinical Development in AML
*
*
*
*
To be continued next page
Molecular Markers Guiding Therapy: FLT3
Relative selectivity and potency (IC50)
of TKIs against FLT3-ITD
Galanis A, et al. Cancer Res 2012;72:3660 (abstract).
• 1st generation TKIs non-selective; unfavorable safety profile; when used as
single agent, only transient blast reductions observed
• 2nd generation TKIs (quizartinib [AC220], crenolanib, gilteritinib [ASP2215])
more selective and more potent
Lestaurtinib
Chemo +/- lestaurtinib in relapsed/refractory AML with FLT3 mutation (Levis M, et al. Blood 2011)
Chemo +/- lestaurtinib in newly diagnosed AML with FLT3 mutations (Burnett A, et al. ASH 2014)
Sorafenib
Chemo +/- sorafenib in older pts. with AML (Serve H, et al. JCO 2013)
Chemo +/- sorafenib in younger pts. with AML (Röllig C, et al. Lancet Oncol 2015)
Midostaurin
Chemo +/- midostaurin in younger pts. with FLT3 mutations (RATIFY) (Stone R, et al. ASH 2015)
Quizartinib (AC220)
Quizartinib vs salvage chemotherapy in relapsed/refractory AML with FLT3-ITD (QuANTUM-R)
Chemo +/- quizartinib in patients with newly diagnosed FLT3-ITD+ AML (QuANTUM-First)
Crenolanib
MiDAC +/- crenolanib in relapsed / refractory AML with FLT3 mutations (AMLSG 20-13)
Gilteritinib (ASP2215)
ASP2215 vs. salvage chemotherapy in pts. with relapsed/refractory AML with FLT3 mutation
Phase III Trials Using FLT3 Inhibitors
Phase III Study of Chemotherapy + Midostaurin (PKC412)
or Placebo in Newly Diagnosed Patients ≤ 60 Years of Age
with FLT3 Mutated Acute Myeloid Leukemia (RATIFY)
CALGB, AMLSG, CETLAM, ECOG, EORTC, GIMEMA, NCIC, OSHO, PETHEMA, SAL, SWOG
R
Induction Consolidation x4** Maintenance
n=717; screened: 3,279 (May 2008 – Sept 2011)
* Patients may receive hydroxyurea during screening phase
** Patients with an HLA-compatible family donor may proceed to allogeneic HSCT
ClinicalTrials.gov NCT00651261
Daunorubicin
Cytarabine
+ Placebo
High-Dose
Cytarabine
+ Placebo
Placebo
Daunorubicin
Cytarabine
+ Midostaurin
High-Dose
Cytarabine
+ Midostaurin
Midostaurin
FLT3
mutation
screening
within
48 hours*
* controlled for FLT3 subtype (TKD, ITD-Low, ITD-High)
Arm 4-year Survival
MIDO 51.4% (95%CI: 46, 57)
PBO 44.2% (95%CI: 39, 50)
Hazard Ratio*: 0.77
1-sided log-rank p-value*: 0.0074
RATIFY-Study: Overall Survival (Primary Endpoint)
Stone R, et al. Blood 2015 126:6 (abstr).
Phase II study of chemotherapy + midostaurin
followed by allogeneic HCT and midostaurin
maintenance in AML with FLT3-ITD (18-70 yrs)
AMLSG 16-10 Trial
1-yr maintenance
Midostaurin**
1-yr maintenance
Start: 30 d after allo
1st priority
2nd priority
* Optional 1st consolidation before allo HSCT
**Midostaurin: start on day 8, thereafter continuous dosing
ClinicalTrials.gov Identifier: NCT01477606 (active since 2011)
Supported by Novartis
n=440
Midostaurin
MidostaurinDauno
Cytarabine
High-Dose
Cytarabine*
Early Allogeneic
HCT
3x High-Dose
Cytarabine
FLT3-
mutation
screening
within
48 hours*
Molecular Markers Guiding Therapy: KIT in CBF-AML
• KIT mutations in 30-35% of CBF-AML
• Mutant Kit sufficient cooperative event in CBF
leukemogenesis
• Impact on prognosis: in general inferior
• High KIT expression: Unfavorable in t(8;21) AML
Gao et al. PLoS One. 2015.
exon 8
exon 17
KIT
Dasatinib
• Inhibition of wild-type and mutant KIT
Schittenhelm et al. Cancer Res. 2006.
• Synergistic effect of dasatinib and cytarabine in
t(8;21)-positive and KIT mutated leukemia
Wang et al. Proc Natl Acad Sci (USA). 2011.
• Inhibition of human AML progenitor cells (SRC)
Dos Santos et al. Blood. 2013.
• in vitro differentiation of AML cells
Fang et al. PLoS One. 2013.
• in vivo differentiation of t(8;21)+ AML blasts
Chevalier et al. Leukemia. 2010.
Daunorubicin
Cytarabine
+ Dasatinib
High-Dose
Cytarabine*
+ Dasatinib
Dasatinib
1 year
Induction Consolidation x 4 Maintenance
*Cytarabine: 18-60yrs: 3g/m2, q12hr, d1-3; >60yrs: 1g/m2, q12hr, d1-3
ClinicalTrials.gov Identifier: NCT00850382 (AMLSG)
P. Paschka. EHA 2015 (abstr S515)
Phase Ib n=89
Phase Ib Study of Chemotherapy + Dasatinib
in Patients with Newly Diagnosed
Core-Binding Factor (CBF) AML - AMLSG 11-08
Overall Survival by Type of CBF-AML and Age
Paschka P, et al. EHA 2015 (abstr S515)
AML with t(8;21)
Age (yrs): 52 (27-73)
AML with inv(16)
Age (yrs): 47 (19-72)
Median follow-up: 36.0 months
Years Years
18-60 years (n=25)
CR rate 92%
>60 years (n=9)
CR rate 100%
18-60 years (n=43)
CR rate 93%
>60 years (n=12)
CR rate 92%
%
0 1 2 3 4 5
0
25
50
75
100
0 1 2 3 4 5
0
25
50
75
100
Induction Consolidation x3
R
Daunorubicin
Cytarabine
Daunorubicin
Cytarabine
+Dasatinib
High-Dose
Cytarabine*
High-Dose
Cytarabine*
+Dasatinib
CBF
Mutation
Screening
Within
48 Hours
All adult patients eligible for intensive therapy, no upper age limit
* Cytarabine: 18-60yrs: 3g/m2, q12hr, d1-3; >60yrs: 1g/m2, q12hr, d1-3
ClinicalTrials.gov NCT02013648
n=277
1-yr
Dasatinib
Maintenance
MRD assessment by RQ-PCR
Salvage / transplantation if MRD persists or recurs
Phase III Study of Chemotherapy with or without
Dasatinib in Patients with Core-Binding Factor AML
AMLSG 21-13
7,4
2,8
6,8
7,7
7,1
8,0
6,3
0,00,0
2,1
5,9
5,6
8,6
12,3 12,1
14,3
3,7
0,7
1,5
2,3
4,1
2,0
2,5
0,0
%
IDH1R132 IDH2R140 IDH2R172
n=2,464 pts.
19.7% 22.3% 20.9%5.6% 14.2% 15.5%
Frequency of IDH1 and IDH2 mutations by age
Molecular Markers Guiding Therapy: IDH1/2
IDH1 and IDH2 Inhibitors in Clinical Development
• Targeted inhibition of mutant IDH2 in leukemia cells induces differentiation
Wang F, et al. Science 2013;340:622-6.
• AG-120 and AG-221 are first-in-class, oral, potent, reversible and selective
inhibitors of mutated IDH1 and IDH2 proteins, respectively (phase I trials)
AG-221 (IDH2) Phase I
DiNardo C, et al. EHA 2015 (abstr P569)
AG-120: first-in-class, oral, potent, reversible and
selective inhibitor of mutated IDH1 protein (phase I trial)
De Botton, S, et al. EHA 2015 (abstr P563)
AG-120 (IDH1) Phase I
De Botton S, et al. EHA 2015 (abstr P563)
Modified from Takaki T, et al. Curr Opin Cell Biol 2008;20:650–60.
• Microtubule-kinetochore
attachment
• Mitotic progression • Spindle elongation
• Cleavage furrow
formation (cytokinesis)
• Checkpoint adaptation
and recovery
Metaphase
Anaphase
Prometaphase
Prophase
Telophase
Interphase
NH2 COOH
• Mitotic entry
(CDK1 activation)
• Centrosomal
microtubule
nucleation
Microtubules DNA
PLK functions
Centrosomes
Kinetochores
Midzone
Midbody
PLK1 localization
PLK1 deficiency, eg, volasertib
PLK1
PLK1: A Key Regulator of Mitosis
Patients at risk
LDAC
LDAC + volasertib
100
90
80
70
60
50
40
30
20
10
0
Survivaldistributionfunction(%)
45 37 26 22 19 14 10 7 7 6 5 5 4 2 1 1 0 0 0
42 32 25 25 21 18 15 15 13 13 12 11 8 7 5 1 1 1 0
Median OS
LDAC 5.2 months (95% CI: 3.2–9.1)
LDAC + volasertib 8.0 months (95% CI: 3.2–14.5)
HR=0.63 (95% CI: 0.40–1.00)
p=0.0465
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Time (months)
Döhner H, et al. Blood. 2014;124(9):1426-33.
Phase II: LDAC +/- Volasertib in Older Pts
Randomized phase II trial of intensive chemotherapy
with our without volasertib given prior of after
chemotherapy - AMLSG 20-13 Trial
DA
Induction
R V-DA
DA-V
DA
DA, daunorubicin, cytarabine; MiDAC, mitoxantrone, intermediate-dose cytarabine; V, volasertib
* Dose reduction of cytarabine in patients >60 yrs
§ Stratification for allogeneic HCT according to genetic risk profile and patient-related factors [HCT-CI];
an optional first consolidation cycle may be given prior to HCT
ClinicalTrials.gov NCT02198482
Consolidation*
MiDAC MiDAC MiDAC
V-DA V-MiDAC V-MiDAC V-MiDAC
DA-V MiDAC-V MiDAC-V MiDAC-V
Allo HCT§NR: off study
Trial
Midostaurin AMLSG 16-10
ATRA +/- GO AMLSG 09-09
NAPOLEON GIMEMA/AMLSG/SAL
APOLLO +/- ATO-ATRA-Ida
+/- Dasatinib AMLSG 21-13
+/- Volasertib (PLK1) AMLSG 20-13
+/- Crenolanib AMLSG 19-13
AG-120, AG-221 Agios
Palbociclib (CDK6) AMLSG 23-14
Genotype
AML FLT3mut
CBF-AML [KIT]
Gene Panel
Screening
24-48 hrs
AML NPM1mut
Other subtypes,
mainly high-risk
APL [PML-RARA]
AML MLLrearr
AML IDH1/2mut
Molecular Markers Guide Targeted Therapy in AML
Translating Genomics of AML into the Clinic
We have entered a new era in leukemia genomics, allowing for a
comprehensive, rapid and cost-effective molecular profiling.
Genetic lesions inform disease classification, disease ontogeny, and they
provide prognostic information.
Additional genetic markers (e.g., TP53, RUNX1, ASXL1) will be integrated
in the diagnostic work-up for disease classification and prognostication
(ELN 2016; WHO 2016). In clinical trials, more comprehensive genome
profiling will be implemented.
Some newer agents that target mutant proteins hold promise to improve
outcome (e.g., FLT3 inhibitors, IDH inhibitors).
Enter your patient, younger or older, on a clinical trial!
E. Papaemmanuil
M. Gestung
P. Campbell
Cambridge
J. Krauter
M. Heuser
G. Göhring
F. Thol
B. Schlegelberger
A. Ganser
MHH, Hannover
M. Agrawal
A. Corbacioglu
A. Dolnik
S. Kapp-Schwörer
J. Krönke
F. Kuchenbauer
N. Jahn
F. Rücker
D. Späth
F. Theis
V. Teleanu
R. Larson
G. Marcucci
C. Bloomfield
CALGB
R. Delwel
P. Valk
B. Löwenberg
Rotterdam
L. Bullinger
K. Döhner
V. Gaidzik
P. Paschka
R.F. Schlenk
Ulm University
SFB 1074 Experimental Models and
Clinical Translation in Leukemia

Dr_Döhner aml st. petersburg_04.03.2016

  • 1.
    Molecular Genetics GuidingTreatment of Acute Myeloid Leukemia Hartmut Döhner, MD Ulm University, Germany German-Austrian AML Study Group (AMLSG) IV Eurasian Hematology Forum St. Petersburg, 3-5 March 2016
  • 2.
    • Heterogeneity: morethan 100 recurrent myeloid disease-associated genetic lesions identified DNMT3A TET2 IDH1 IDH2 MLL SRSF2 SF3B1 U2AF1 ZRSR2 RUNX1 ASXL1 EZH2 BCOR STAG2 RAD21 TP53 WT1 NF1 KIT NRAS CBL … Translation of Molecular Genetics into Clinical Care: Challenges • New molecular markers currently do not impact routine clinical practice • Lack of sufficiently sized studies to capture the enormous molecular heterogeneity • Published marker studies selected for younger patients or other patient subsets, e.g., only de novo AML or cytogenetically-normal AML considered • Prognostic impact for some markers established, but lack of predictive value of most markers
  • 3.
    Papaemmanuil E,* GerstungM,* …, Döhner H,* Campbell P.* Blood 2015 126:803 (abstr). Genomic Landscape of AML • Targeted resequencing of 111 myeloid cancer genes (combined with cytogenetic profiles) in 1540 AML • 5,236 driver mutations (i.e., fusion genes, copy number alterations, gene mutations) involving 77 loci • 6 genes mutated in >10% pts; 13 genes 5-10% pts; 24 genes 2-5% pts; 37 genes <2% pts
  • 4.
    Segregation of AMLcases into 11 non-overlapping molecular classes: • NPM1 mutation, with significant contribution from DNA methylation / hydroxymethylation genes DNMT3A, TET2, IDH1, IDH2 • Biallelic CEBPA mutation • TP53 mutation and / or chromos. aneuploidies • Splicing factor genes (SRSF2, SF3B1, U2AF1, ZRSR2) or regulators of chromatin and transcription (ASXL1, EZH2, BCOR, PHF6, STAG2, MLLPTD, RUNX1, KMD5A, KMD6A) • 6 balanced rearrangements: inv(16), t(15;17), t(8;21), t(11q23), inv(3), t(6;9)  ~ 80% of AML unambigously classified Genomic rearrangements NPM1 CEBPA TP53 / Chromos. aneuploidies Chromatin / SF No class IDH2 R172 • IDH2R172 mutation (DNMT3A in ~70%) Genomic Structure Informs AML Classification
  • 5.
    CR, complete remission;RD, refractory disease; DiCR, death in CR; DaR, death after relapse; AaR, alive after relapse; AinCR, alive in CR Gene-Gene Interactions: NPM1-Mutated AML
  • 6.
    Chromatin / SFclass Clinical Impact: Chromatin / Splicing Factor Class • Associated with older age, lower WBC counts, antecedent myeloid disorders, multilineage dysplasia, and inferior outcome • Cluster of RUNX1, SRSF2, STAG2, EZH2, and ASXL1 tightly correlated; similar clusters found in high-risk MDS and high-risk MPN Papaemmanuil E, et al. Blood. 2013;122(22):3616-27; Haferlach T, et al. Leukemia. 2014;28(2):241-7; Vannucchi AM, et al. Leukemia. 2013;27(9):1861-9; Taskesen E, et al. Blood. 2014;123(21):3327-35. • Mutations in SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR, or STAG2 have been associated with AML sharing clinico- pathologic features of clinically confirmed secondary AML Lindsley RC, et al. Blood. 2015;125(9):1367-76. • RUNX1 mutations inform about half of this class - considered as a provisional entity in the new WHO classification (2016)  Chromatin / splicing factor class: Signature for a continuum of high-risk myeloid disorders (high-risk MDS - AML), frequently found in older patients, poor outcome
  • 7.
    Clinical Impact ofSplicing Factor Mutations in AML SRSF2wt SRSF2mut U2AF1wt U2AF1mut SF3B1wt SF3B1mut ZRSR2wt ZRSR2mut Papaemmanuil E,* Gerstung M,* …, Döhner H,* Campbell P.* Blood 2015 126:803 (abstr).
  • 8.
    Update of 2010ELN Recommendations Risk Categorya Genetic Lesion Favorable t(8;21)(q22;q22); RUNX1-RUNX1T1 inv(16)(p13.1q22); CBFB-MYH11 Mutated NPM1 without FLT3-ITDb (normal karyotype) Biallelic mutated CEBPA Intermediate-I Mutated NPM1 and FLT3-ITDb (normal karyotype) Wild type NPM1 and FLT3-ITDb (normal karyotype) Wild type NPM1 without FLT3-ITD (normal karyotype) Intermediate-II t(9;11)(p21.3;q23.3); MLLT3-KMT2A Cytogenetic abnormalities not classified as favorable or adverse Adverse t(6;9)(p23;q34.1); DEK-NUP214 t(v;11q23); KMT2A rearranged t(9;22)(q34.1;q11.2); BCR-ABL1 inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1) Complex karyotype (≥3), -5 or del(5q); -7; -17/abn(17p) Mutated RUNX1c Mutated ASXL1c Mutated TP53d a Prognostic impact of a marker is treatment-dependent and may change with new therapies b Prognostic impact of FLT3-ITD dependent on mutant to wildtype ITD allelic ratio c These mutations should not be used as adverse prognostic marker if they co-occur with favorable-risk AML subtypes d TP53 mutations frequently occur in AML with complex karyotype; in this context they portend a particularly poor prognosis
  • 9.
    Döhner H, WeisdorfDJ, Bloomfield CD. N Engl J Med. 2015;373:1136-52. Selected Newer Agents in Clinical Development in AML * * * * To be continued next page
  • 10.
    Molecular Markers GuidingTherapy: FLT3 Relative selectivity and potency (IC50) of TKIs against FLT3-ITD Galanis A, et al. Cancer Res 2012;72:3660 (abstract). • 1st generation TKIs non-selective; unfavorable safety profile; when used as single agent, only transient blast reductions observed • 2nd generation TKIs (quizartinib [AC220], crenolanib, gilteritinib [ASP2215]) more selective and more potent
  • 11.
    Lestaurtinib Chemo +/- lestaurtinibin relapsed/refractory AML with FLT3 mutation (Levis M, et al. Blood 2011) Chemo +/- lestaurtinib in newly diagnosed AML with FLT3 mutations (Burnett A, et al. ASH 2014) Sorafenib Chemo +/- sorafenib in older pts. with AML (Serve H, et al. JCO 2013) Chemo +/- sorafenib in younger pts. with AML (Röllig C, et al. Lancet Oncol 2015) Midostaurin Chemo +/- midostaurin in younger pts. with FLT3 mutations (RATIFY) (Stone R, et al. ASH 2015) Quizartinib (AC220) Quizartinib vs salvage chemotherapy in relapsed/refractory AML with FLT3-ITD (QuANTUM-R) Chemo +/- quizartinib in patients with newly diagnosed FLT3-ITD+ AML (QuANTUM-First) Crenolanib MiDAC +/- crenolanib in relapsed / refractory AML with FLT3 mutations (AMLSG 20-13) Gilteritinib (ASP2215) ASP2215 vs. salvage chemotherapy in pts. with relapsed/refractory AML with FLT3 mutation Phase III Trials Using FLT3 Inhibitors
  • 12.
    Phase III Studyof Chemotherapy + Midostaurin (PKC412) or Placebo in Newly Diagnosed Patients ≤ 60 Years of Age with FLT3 Mutated Acute Myeloid Leukemia (RATIFY) CALGB, AMLSG, CETLAM, ECOG, EORTC, GIMEMA, NCIC, OSHO, PETHEMA, SAL, SWOG R Induction Consolidation x4** Maintenance n=717; screened: 3,279 (May 2008 – Sept 2011) * Patients may receive hydroxyurea during screening phase ** Patients with an HLA-compatible family donor may proceed to allogeneic HSCT ClinicalTrials.gov NCT00651261 Daunorubicin Cytarabine + Placebo High-Dose Cytarabine + Placebo Placebo Daunorubicin Cytarabine + Midostaurin High-Dose Cytarabine + Midostaurin Midostaurin FLT3 mutation screening within 48 hours*
  • 13.
    * controlled forFLT3 subtype (TKD, ITD-Low, ITD-High) Arm 4-year Survival MIDO 51.4% (95%CI: 46, 57) PBO 44.2% (95%CI: 39, 50) Hazard Ratio*: 0.77 1-sided log-rank p-value*: 0.0074 RATIFY-Study: Overall Survival (Primary Endpoint) Stone R, et al. Blood 2015 126:6 (abstr).
  • 14.
    Phase II studyof chemotherapy + midostaurin followed by allogeneic HCT and midostaurin maintenance in AML with FLT3-ITD (18-70 yrs) AMLSG 16-10 Trial 1-yr maintenance Midostaurin** 1-yr maintenance Start: 30 d after allo 1st priority 2nd priority * Optional 1st consolidation before allo HSCT **Midostaurin: start on day 8, thereafter continuous dosing ClinicalTrials.gov Identifier: NCT01477606 (active since 2011) Supported by Novartis n=440 Midostaurin MidostaurinDauno Cytarabine High-Dose Cytarabine* Early Allogeneic HCT 3x High-Dose Cytarabine FLT3- mutation screening within 48 hours*
  • 15.
    Molecular Markers GuidingTherapy: KIT in CBF-AML • KIT mutations in 30-35% of CBF-AML • Mutant Kit sufficient cooperative event in CBF leukemogenesis • Impact on prognosis: in general inferior • High KIT expression: Unfavorable in t(8;21) AML Gao et al. PLoS One. 2015. exon 8 exon 17 KIT Dasatinib • Inhibition of wild-type and mutant KIT Schittenhelm et al. Cancer Res. 2006. • Synergistic effect of dasatinib and cytarabine in t(8;21)-positive and KIT mutated leukemia Wang et al. Proc Natl Acad Sci (USA). 2011. • Inhibition of human AML progenitor cells (SRC) Dos Santos et al. Blood. 2013. • in vitro differentiation of AML cells Fang et al. PLoS One. 2013. • in vivo differentiation of t(8;21)+ AML blasts Chevalier et al. Leukemia. 2010.
  • 16.
    Daunorubicin Cytarabine + Dasatinib High-Dose Cytarabine* + Dasatinib Dasatinib 1year Induction Consolidation x 4 Maintenance *Cytarabine: 18-60yrs: 3g/m2, q12hr, d1-3; >60yrs: 1g/m2, q12hr, d1-3 ClinicalTrials.gov Identifier: NCT00850382 (AMLSG) P. Paschka. EHA 2015 (abstr S515) Phase Ib n=89 Phase Ib Study of Chemotherapy + Dasatinib in Patients with Newly Diagnosed Core-Binding Factor (CBF) AML - AMLSG 11-08
  • 17.
    Overall Survival byType of CBF-AML and Age Paschka P, et al. EHA 2015 (abstr S515) AML with t(8;21) Age (yrs): 52 (27-73) AML with inv(16) Age (yrs): 47 (19-72) Median follow-up: 36.0 months Years Years 18-60 years (n=25) CR rate 92% >60 years (n=9) CR rate 100% 18-60 years (n=43) CR rate 93% >60 years (n=12) CR rate 92% % 0 1 2 3 4 5 0 25 50 75 100 0 1 2 3 4 5 0 25 50 75 100
  • 18.
    Induction Consolidation x3 R Daunorubicin Cytarabine Daunorubicin Cytarabine +Dasatinib High-Dose Cytarabine* High-Dose Cytarabine* +Dasatinib CBF Mutation Screening Within 48Hours All adult patients eligible for intensive therapy, no upper age limit * Cytarabine: 18-60yrs: 3g/m2, q12hr, d1-3; >60yrs: 1g/m2, q12hr, d1-3 ClinicalTrials.gov NCT02013648 n=277 1-yr Dasatinib Maintenance MRD assessment by RQ-PCR Salvage / transplantation if MRD persists or recurs Phase III Study of Chemotherapy with or without Dasatinib in Patients with Core-Binding Factor AML AMLSG 21-13
  • 19.
    7,4 2,8 6,8 7,7 7,1 8,0 6,3 0,00,0 2,1 5,9 5,6 8,6 12,3 12,1 14,3 3,7 0,7 1,5 2,3 4,1 2,0 2,5 0,0 % IDH1R132 IDH2R140IDH2R172 n=2,464 pts. 19.7% 22.3% 20.9%5.6% 14.2% 15.5% Frequency of IDH1 and IDH2 mutations by age Molecular Markers Guiding Therapy: IDH1/2
  • 20.
    IDH1 and IDH2Inhibitors in Clinical Development • Targeted inhibition of mutant IDH2 in leukemia cells induces differentiation Wang F, et al. Science 2013;340:622-6. • AG-120 and AG-221 are first-in-class, oral, potent, reversible and selective inhibitors of mutated IDH1 and IDH2 proteins, respectively (phase I trials) AG-221 (IDH2) Phase I DiNardo C, et al. EHA 2015 (abstr P569) AG-120: first-in-class, oral, potent, reversible and selective inhibitor of mutated IDH1 protein (phase I trial) De Botton, S, et al. EHA 2015 (abstr P563) AG-120 (IDH1) Phase I De Botton S, et al. EHA 2015 (abstr P563)
  • 21.
    Modified from TakakiT, et al. Curr Opin Cell Biol 2008;20:650–60. • Microtubule-kinetochore attachment • Mitotic progression • Spindle elongation • Cleavage furrow formation (cytokinesis) • Checkpoint adaptation and recovery Metaphase Anaphase Prometaphase Prophase Telophase Interphase NH2 COOH • Mitotic entry (CDK1 activation) • Centrosomal microtubule nucleation Microtubules DNA PLK functions Centrosomes Kinetochores Midzone Midbody PLK1 localization PLK1 deficiency, eg, volasertib PLK1 PLK1: A Key Regulator of Mitosis
  • 22.
    Patients at risk LDAC LDAC+ volasertib 100 90 80 70 60 50 40 30 20 10 0 Survivaldistributionfunction(%) 45 37 26 22 19 14 10 7 7 6 5 5 4 2 1 1 0 0 0 42 32 25 25 21 18 15 15 13 13 12 11 8 7 5 1 1 1 0 Median OS LDAC 5.2 months (95% CI: 3.2–9.1) LDAC + volasertib 8.0 months (95% CI: 3.2–14.5) HR=0.63 (95% CI: 0.40–1.00) p=0.0465 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 Time (months) Döhner H, et al. Blood. 2014;124(9):1426-33. Phase II: LDAC +/- Volasertib in Older Pts
  • 23.
    Randomized phase IItrial of intensive chemotherapy with our without volasertib given prior of after chemotherapy - AMLSG 20-13 Trial DA Induction R V-DA DA-V DA DA, daunorubicin, cytarabine; MiDAC, mitoxantrone, intermediate-dose cytarabine; V, volasertib * Dose reduction of cytarabine in patients >60 yrs § Stratification for allogeneic HCT according to genetic risk profile and patient-related factors [HCT-CI]; an optional first consolidation cycle may be given prior to HCT ClinicalTrials.gov NCT02198482 Consolidation* MiDAC MiDAC MiDAC V-DA V-MiDAC V-MiDAC V-MiDAC DA-V MiDAC-V MiDAC-V MiDAC-V Allo HCT§NR: off study
  • 24.
    Trial Midostaurin AMLSG 16-10 ATRA+/- GO AMLSG 09-09 NAPOLEON GIMEMA/AMLSG/SAL APOLLO +/- ATO-ATRA-Ida +/- Dasatinib AMLSG 21-13 +/- Volasertib (PLK1) AMLSG 20-13 +/- Crenolanib AMLSG 19-13 AG-120, AG-221 Agios Palbociclib (CDK6) AMLSG 23-14 Genotype AML FLT3mut CBF-AML [KIT] Gene Panel Screening 24-48 hrs AML NPM1mut Other subtypes, mainly high-risk APL [PML-RARA] AML MLLrearr AML IDH1/2mut Molecular Markers Guide Targeted Therapy in AML
  • 25.
    Translating Genomics ofAML into the Clinic We have entered a new era in leukemia genomics, allowing for a comprehensive, rapid and cost-effective molecular profiling. Genetic lesions inform disease classification, disease ontogeny, and they provide prognostic information. Additional genetic markers (e.g., TP53, RUNX1, ASXL1) will be integrated in the diagnostic work-up for disease classification and prognostication (ELN 2016; WHO 2016). In clinical trials, more comprehensive genome profiling will be implemented. Some newer agents that target mutant proteins hold promise to improve outcome (e.g., FLT3 inhibitors, IDH inhibitors). Enter your patient, younger or older, on a clinical trial!
  • 26.
    E. Papaemmanuil M. Gestung P.Campbell Cambridge J. Krauter M. Heuser G. Göhring F. Thol B. Schlegelberger A. Ganser MHH, Hannover M. Agrawal A. Corbacioglu A. Dolnik S. Kapp-Schwörer J. Krönke F. Kuchenbauer N. Jahn F. Rücker D. Späth F. Theis V. Teleanu R. Larson G. Marcucci C. Bloomfield CALGB R. Delwel P. Valk B. Löwenberg Rotterdam L. Bullinger K. Döhner V. Gaidzik P. Paschka R.F. Schlenk Ulm University SFB 1074 Experimental Models and Clinical Translation in Leukemia