INTRODUCTION TO DIGITAL SIGNAL PROCESSING
SIGNAL
Analog Digital
PROCESSING
• Analysis, synthesis and modify
• Analog signal processing
• Digital signal processing
www.iammanuprasad.com
BASIC BLOCKS OF DIGITAL SIGNAL PROCESSING
Pre filter
AD
Converter
Digital
Signal
Processor
DA
Converter
Post filter
Analog
input
Analog
output
www.iammanuprasad.com
Discrete Fourier Transform (DFT)
• DFT is a powerful computation tool which allows us to evaluate the Fourier transform on a digital computer or
specifically designed hardware
• We notate like this
š‘‹ š‘˜ = ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’āˆ’
š‘—2šœ‹š‘˜š‘›
š‘ , 0 ≤ k ≤ N āˆ’ 1
DFT IDFT
š‘„(š‘›) =
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹ š‘˜ š‘’
š‘—2šœ‹š‘˜š‘›
š‘ , 0 ≤ n ≤ N āˆ’ 1
Let us define a term š‘Šš‘ = š‘’āˆ’
š‘—2šœ‹
š‘ which is known as twiddle factor and substitute in above equations
š‘‹ š‘˜ = ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘Šš‘
š‘›š‘˜
, 0 ≤ k ≤ N āˆ’ 1 š‘„(š‘›) =
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹ š‘˜ š‘¤š‘
āˆ’š‘›š‘˜
, 0 ≤ n ≤ N āˆ’ 1
š‘‹ š‘˜ = š·š¹š‘‡[š‘„ š‘› ] š‘„ š‘› = š¼š·š¹š‘‡[š‘‹ š‘˜ ]
www.iammanuprasad.com
Let us take an example
Q) Find the DFT of the sequence š‘„ š‘› = {1,1,0,0}
š‘‹ š‘˜ = ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’āˆ’
š‘—2šœ‹š‘˜š‘›
š‘ , 0 ≤ k ≤ N āˆ’ 1
š‘‹ š‘˜ = ą·
š‘›=0
3
š‘„ š‘› š‘’āˆ’
š‘—2šœ‹š‘˜š‘›
4 , 0 ≤ k ≤ N āˆ’ 1
š‘ = 4
š‘˜ = 0
š‘‹ 0 = ą·
š‘›=0
3
š‘„ š‘› š‘’āˆ’
š‘—2šœ‹0š‘›
4
= š‘„ 0 + š‘„ 1 + š‘„ 2 + š‘„ 3
= 1 + 1 + 0 + 0 = 2
š‘‹ 1 = ą·
š‘›=0
3
š‘„ š‘› š‘’āˆ’
š‘—šœ‹š‘›
2
= š‘„ 0 + š‘„ 1 š‘’āˆ’
š‘—šœ‹
2 + š‘„ 2 š‘’āˆ’š‘—šœ‹
+ š‘„ 3 š‘’āˆ’
š‘—3šœ‹
2
= 1 + 1 cos
šœ‹
2
āˆ’ š‘— sin
šœ‹
2
+ 0 + 0 = 1 āˆ’ š‘—
š‘˜ = 1
š‘‹ 2 = ą·
š‘›=0
3
š‘„ š‘› š‘’āˆ’
š‘—šœ‹2š‘›
2
= š‘„ 0 + š‘„ 1 š‘’āˆ’š‘—šœ‹
+ š‘„ 2 š‘’āˆ’š‘—2šœ‹
+ š‘„ 3 š‘’āˆ’š‘—3šœ‹
= 1 + 1 cos šœ‹ āˆ’ š‘— sin šœ‹ + 0 + 0 = 1 āˆ’ 1 = 0
š‘˜ = 2
š‘‹ 3 = ą·
š‘›=0
3
š‘„ š‘› š‘’āˆ’
š‘—šœ‹3š‘›
2
= 1 + 1 cos
3šœ‹
2
āˆ’ š‘— sin
3šœ‹
2
+ 0 + 0 = 1 + š‘—
š‘˜ = 3
= š‘„ 0 + š‘„ 1 š‘’āˆ’
š‘—3šœ‹
2 + š‘„ 2 š‘’āˆ’š‘—3šœ‹
+ š‘„ 3 š‘’āˆ’
š‘—9šœ‹
2
š‘‹ š‘˜ = 2, 1 āˆ’ š‘—, 0,1 + š‘—
www.iammanuprasad.com
DFT as linear transformation (Matrix method)
š‘‹ š‘˜ = ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’š‘Šš‘
š‘›š‘˜
, 0 ≤ k ≤ N āˆ’ 1
š‘Šš‘ = š‘’āˆ’
š‘—2šœ‹
š‘
Lets put n = 0,1,2, … N-1
š‘‹ š‘˜ = š‘„ 0 . 1 + š‘„ 1 . š‘Šš‘
1š‘˜
+ š‘„ 2 . š‘Šš‘
2š‘˜
+ ⋯ + š‘„ š‘ āˆ’ 1 š‘Š
š‘
(š‘āˆ’1)š‘˜
š‘˜ = 0
š‘‹ 0 = š‘„ 0 + š‘„ 1 + š‘„ 2 + ⋯ + š‘„ š‘ āˆ’ 1
š‘˜ = 1
š‘‹ 1 = š‘„ 0 + š‘„ 1 . š‘Šš‘
1
+ š‘„ 2 . š‘Šš‘
2
+ ⋯ + š‘„ š‘ āˆ’ 1 š‘Š
š‘
(š‘āˆ’1)
š‘˜ = š‘ āˆ’ 1
š‘‹ š‘ āˆ’ 1 = š‘„ 0 + š‘„ 1 . š‘Š
š‘
(š‘āˆ’1)
+ š‘„ 2 . š‘Š
š‘
2(š‘āˆ’1)
+ ⋯ + š‘„ š‘ āˆ’ 1 š‘Š
š‘
(š‘āˆ’1)(š‘āˆ’1)
ā‹®
We can also represent the equation in matrix format
š‘‹(0)
š‘‹(1)
š‘‹(2)
š‘‹(3)
ā‹®
š‘‹(š‘ āˆ’ 1)
=
1 1 1 1 … 1
1
1
1
ā‹®
š‘Šš‘
1
š‘Šš‘
2
š‘Šš‘
3
ā‹®
š‘Šš‘
2
š‘Šš‘
4
š‘Šš‘
6
ā‹®
š‘Šš‘
3
š‘Šš‘
6
š‘Šš‘
9
ā‹®
…
…
…
…
š‘Š
š‘
š‘āˆ’1
š‘Š
š‘
2(š‘āˆ’1)
š‘Š
š‘
3(š‘āˆ’1)
ā‹®
1 š‘Š
š‘
š‘āˆ’1
š‘Š
š‘
2(š‘āˆ’1)
š‘Š
š‘
3(š‘āˆ’1)
… š‘Š
š‘
š‘āˆ’1 š‘āˆ’1
š‘„(0)
š‘„(1)
š‘„(2)
š‘„(3)
ā‹®
š‘„(š‘ āˆ’ 1)
š‘‹š‘ = š‘Šš‘š‘„š‘
š‘„š‘ = š‘Šš‘
āˆ’1
š‘‹š‘
š‘Šš‘
āˆ’1
=
1 1 … 1
1
ā‹®
š‘Šš‘
āˆ’1
ā‹®
⋱ š‘Š
š‘
āˆ’(š‘āˆ’1)
1 š‘Š
š‘
āˆ’ š‘āˆ’1
… š‘Š
š‘
āˆ’(š‘āˆ’1)(š‘āˆ’1)
š‘„(š‘›) =
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹ š‘˜ š‘¤š‘
āˆ’š‘›š‘˜
, 0 ≤ n ≤ N āˆ’ 1
IDFT
DFT
š‘„(š‘›) =
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹ š‘˜ š‘¤š‘
š‘›š‘˜ āˆ—
Symbolically we can
write as
š‘„(š‘›) =
1
š‘
š‘‹š‘š‘Šš‘
āˆ—
š‘Šš‘
āˆ’1
=
1
š‘
š‘Šš‘
āˆ—
Comparing we get
www.iammanuprasad.com
Twiddle factor matrix
š‘Šš‘ = š‘’āˆ’
š‘—2šœ‹
š‘
Lies on the unit circle in the complex plane from 0 to 2Ļ€ angle and it gets
repeated for every cycle
š‘Š2 =
š‘Š2
0
š‘Š2
0
š‘Š2
0
š‘Š2
1 =
1 1
1 āˆ’1
š‘Š0
š‘Š1
š‘Š2
š‘Š3
1
āˆ’1
āˆ’š‘—
š‘—
š‘Š4 =
š‘Š4
0
š‘Š4
0
š‘Š4
0
š‘Š4
0
š‘Š4
0
š‘Š4
1
š‘Š4
2
š‘Š4
3
š‘Š4
0
š‘Š4
2
š‘Š4
4
š‘Š4
6
š‘Š4
0
š‘Š4
3
š‘Š4
6
š‘Š4
9
=
1 1 1 1
1 āˆ’š‘— āˆ’1 š‘—
1 āˆ’1 1 āˆ’1
1 š‘— āˆ’1 āˆ’š‘—
Imaginary
axis
Real axis
š‘’š‘—šœƒ
= cos šœƒ + š‘—š‘ š‘–š‘› šœƒ
Phase change ( 00 - 3600) -
anticlockwise
Since e-jĪø – clockwise
, š‘Š4
, š‘Š8
, š‘Š5
, š‘Š9
, š‘Š6
, š‘Š10
, š‘Š7
, š‘Š11
š‘Š1
www.iammanuprasad.com
Relationship of the DFT to Fourier Transform
š‘‹ š‘’š‘—šœ”
= ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’āˆ’š‘—šœ”š‘›
Fourier-Transform DFT
š‘‹ š‘˜ = ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’āˆ’
š‘—2šœ‹š‘˜š‘›
š‘
Comparing the above equations we get to find that DFT of x(n)
is a sampled version of the FT of the sequence
Relationship between DFT & Fourie Transform
š‘‹ š‘˜ = į‰š
š‘‹(š‘’š‘—šœ”)
šœ”=
2šœ‹š‘˜
š‘
, š‘˜ = 0,1,2, … š‘ āˆ’ 1
www.iammanuprasad.com
Relationship of the DFT to Z-Transform
š‘‹ š‘ = ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘§āˆ’š‘›
Z-Transform IDFT
š‘„(š‘›) =
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹ š‘˜ š‘’
š‘—2šœ‹š‘˜š‘›
š‘
š‘‹ š‘ = ą·
š‘›=0
š‘āˆ’1
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹ š‘˜ š‘’
š‘—2šœ‹š‘˜š‘›
š‘ š‘§āˆ’š‘›
Substitute the value of x(n)
=
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹(š‘˜) ą·
š‘›=0
š‘āˆ’1
š‘’
š‘—2šœ‹š‘˜š‘›
š‘ š‘§āˆ’š‘›
=
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹(š‘˜) ą·
š‘›=0
š‘āˆ’1
š‘’
š‘—2šœ‹š‘˜
š‘ š‘§āˆ’1
š‘›
ą·
š‘˜=0
š‘āˆ’1
š‘Žš‘›
=
1 āˆ’ aN
1 āˆ’ a
š‘‹(š‘§) =
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹(š‘˜)
1 āˆ’ š‘’
š‘—2šœ‹š‘˜
š‘ š‘§āˆ’1
š‘
1 āˆ’ š‘’
š‘—2šœ‹š‘˜
š‘ š‘§āˆ’1
=
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹(š‘˜)
1 āˆ’ š‘’š‘—2šœ‹š‘˜
š‘§āˆ’š‘
1 āˆ’ š‘’
š‘—2šœ‹š‘˜
š‘ š‘§āˆ’1
In the above condition š‘’š‘—2šœ‹š‘˜
= 1 for all the values of k
=
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹(š‘˜)
1 āˆ’ š‘§āˆ’š‘
1 āˆ’ š‘’
š‘—2šœ‹š‘˜
š‘ š‘§āˆ’1
š‘‹ š‘§ =
1 āˆ’ š‘§āˆ’š‘
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹(š‘˜)
1 āˆ’ š‘’
š‘—2šœ‹š‘˜
š‘ š‘§āˆ’1
Relationship between DFT & Z- Transform
www.iammanuprasad.com
Properties of Discrete Fourier Transform
Periodicity
Linearity
If X(k) is N-point DFT of a finite duration sequences x(n) then
š‘„ š‘› + š‘ = š‘„ š‘› š‘“š‘œš‘Ÿ š‘Žš‘™š‘™ š‘›
X š‘˜ + š‘ = š‘‹ š‘˜ š‘“š‘œš‘Ÿ š‘Žš‘™š‘™ š‘˜
If two finite sequences x1(n) and x2(n) are linearly combined as
š‘„3 š‘› = š‘Žš‘„1 š‘› + š‘š‘„2(š‘›)
Then DFT of the sequence
š‘‹3 š‘˜ = š‘Žš‘‹1 š‘˜ + š‘š‘‹2(š‘˜)
š‘Žš‘„1 š‘› + š‘š‘„2(š‘›)
š·š¹š‘‡
š‘Žš‘‹1 š‘˜ + š‘š‘‹2(š‘˜)
Circular time shift
If X(k) is N-point DFT of a finite duration sequences x(n) then
š·š¹š‘‡ š‘„ š‘› āˆ’ š‘š š‘
= š‘‹ š‘˜ š‘’āˆ’
š‘—2šœ‹š‘˜š‘š
š‘
Proof
š‘„(š‘›) =
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹ š‘˜ š‘’
š‘—2šœ‹š‘˜š‘›
š‘ , 0 ≤ n ≤ N āˆ’ 1
IDFT
Put n=n-m
š‘„(š‘› āˆ’ š‘š) =
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹ š‘˜ š‘’
š‘—2šœ‹š‘˜(š‘›āˆ’š‘š)
š‘
=
1
š‘
ą·
š‘˜=0
š‘āˆ’1
š‘‹ š‘˜ š‘’
š‘—2šœ‹š‘˜š‘›
š‘ š‘’
āˆ’š‘—2šœ‹š‘˜š‘š
š‘
š‘„(š‘› āˆ’ š‘š) = š‘„(š‘›)š‘’
āˆ’š‘—2šœ‹š‘˜š‘š
š‘
Take DFT on both sides
š·š¹š‘‡{š‘„(š‘› āˆ’ š‘š)} = š‘‹(š‘˜)š‘’
āˆ’š‘—2šœ‹š‘˜š‘š
š‘
www.iammanuprasad.com
Q) Consider a finite length sequences x(n) shown in figure. The five point DF of x(n) is denoted by
X(k). Plot the sequences whose DFT is
š‘Œ š‘˜ = š‘’
āˆ’4šœ‹š‘˜
5 š‘‹(š‘˜)
1
2 2
1
0 1
-1 2 3
Solution
š·š¹š‘‡ š‘„ š‘› āˆ’ š‘š š‘
= š‘‹ š‘˜ š‘’āˆ’
š‘—2šœ‹š‘˜š‘š
š‘
š·š¹š‘‡ š‘„ š‘› āˆ’ 2 5
= š‘‹ š‘˜ š‘’āˆ’
š‘—2šœ‹š‘˜2
5 , š‘› = 0,1, … , 4
š‘¦ 0 = š‘„ 0 āˆ’ 2 5
For n=0 āž”
š‘¦ 1 = š‘„ 1 āˆ’ 2 5
= š‘„ 5 + 1 āˆ’ 2 = š‘„ 4 = 0
For n=1 āž”
š‘¦ 2 = š‘„ 2 āˆ’ 2 5
For n=2 āž”
š‘¦ 3 = š‘„ 3 āˆ’ 2 5
= š‘„ 5 + 3 āˆ’ 2 = š‘„ 6 = š‘„ 6 āˆ’ 5 = š‘„ 1 = 2
For n=3 āž”
Exceeding the limit 0 ≤ š‘› ≤ 4
š‘¦ 4 = š‘„ 4 āˆ’ 2 5
= š‘„ 5 + 4 āˆ’ 2 = š‘„ 7 = š‘„ 7 āˆ’ 5 = š‘„ 2 = 2
For n=4 āž”
š‘¦ š‘› = 1,0,1,2,2
1
2
0 1
-1 2 3
1
2
4
š‘„(š‘›)
š‘¦(š‘›)
= š‘„ 5 + 0 āˆ’ 2 = š‘„ 3 = 1
= š‘„ 5 + 2 āˆ’ 2 = š‘„ 5 = š‘„ 5 āˆ’ 5 = š‘„ 0 = 1
www.iammanuprasad.com
Properties of Discrete Fourier Transform
Time reversal of the sequence
The time reversal of N-point sequence x(n) is attained by
wrapping the sequence x(n) around the circle in clockwise direction.
š‘„ āˆ’š‘› š‘
= š·š¹š‘‡ š‘„ š‘ āˆ’ š‘› = š‘‹ š‘ āˆ’ š‘˜
š·š¹š‘‡ š‘„ š‘› š‘’
š‘—2šœ‹š‘™š‘›
š‘ = š‘‹ š‘˜ āˆ’ š‘™ š‘
Circular frequency shift
If X(k) is N-point DFT of a finite duration sequences x(n) then
Proof
DFT
Put k=k-l
= ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘›š‘’āˆ’
š‘—2šœ‹š‘˜š‘›
š‘ š‘’
š‘—2šœ‹š‘™š‘›
š‘
š‘„(š‘˜ āˆ’ š‘™) = š‘‹ š‘˜ š‘’
š‘—2šœ‹š‘™š‘›
š‘
Take DFT on both sides
š‘‹ š‘˜ āˆ’ š‘™ š‘
= š·š¹š‘‡ š‘„(š‘›)š‘’
š‘—2šœ‹š‘™š‘›
š‘
š‘‹ š‘˜ = ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’āˆ’
š‘—2šœ‹š‘˜š‘›
š‘ , 0 ≤ k ≤ N āˆ’ 1
š‘‹ š‘˜ āˆ’ š‘™ = ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’āˆ’
š‘—2šœ‹(š‘˜āˆ’š‘™)š‘›
š‘
www.iammanuprasad.com
Properties of Discrete Fourier Transform
Complex conjugate property
š·š¹š‘‡ š‘„āˆ—
š‘› = š‘‹āˆ—
š‘ āˆ’ š‘˜ = š‘‹āˆ—
āˆ’š‘˜ š‘
If X(k) is N-point DFT of a finite duration sequences x(n) then
Proof
š·š¹š‘‡ š‘„ š‘› = ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’āˆ’
š‘—2šœ‹š‘˜š‘›
š‘
š·š¹š‘‡ š‘„āˆ—
š‘› = ą·
š‘›=0
š‘āˆ’1
š‘„āˆ—
š‘› š‘’āˆ’
š‘—2šœ‹š‘˜š‘›
š‘
š·š¹š‘‡ š‘„ š‘› = ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’
š‘—2šœ‹š‘˜š‘›
š‘
āˆ—
š‘’āˆ’
š‘—2šœ‹š‘›š‘
š‘ = š‘’āˆ’š‘—2šœ‹š‘›
= 1
= ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’
š‘—2šœ‹š‘˜š‘›
š‘ š‘’āˆ’
š‘—2šœ‹š‘›š‘
š‘
āˆ—
= ą·
š‘›=0
š‘āˆ’1
š‘„ š‘› š‘’āˆ’
š‘—2šœ‹š‘› š‘āˆ’š‘˜
š‘
āˆ—
š·š¹š‘‡ š‘„ š‘› = š‘‹ š‘ āˆ’ š‘˜ āˆ—
www.iammanuprasad.com
Q) Let X(k) be a 14 point DFT of a length 14 real sequence x(n). The first 8 samples of X(k) are given by,
X(0) = 12,
X(1) = -1+3j ,
X(2) = 3+4j,
X(3) = 1-5j,
X(4) = -2+2j,
X(5) = 6+3j,
X(6) = -2-3j,
X(7) = 10. Determine the remining samples
Solution
Given N=14
š·š¹š‘‡ š‘„ š‘› = š‘‹ š‘ āˆ’ š‘˜ āˆ—
š‘‹ 8
For n=8 āž”
š‘‹ 9 = š‘‹āˆ—
š‘ āˆ’ š‘˜ = š‘‹āˆ—
14 āˆ’ 9 = š‘‹āˆ—
5 = 6 āˆ’ 3š‘—
For n=9 āž”
š‘‹ 10 = š‘‹āˆ—
š‘ āˆ’ š‘˜ = š‘‹āˆ—
14 āˆ’ 10 = š‘‹āˆ—
4 = āˆ’2 āˆ’ 2š‘—
For n=10 āž”
š‘‹ 11 = š‘‹āˆ—
š‘ āˆ’ š‘˜ = š‘‹āˆ—
14 āˆ’ 11 = š‘‹āˆ—
3 = 1 + 5š‘—
For n=11 āž”
š‘‹ 12 = š‘‹āˆ—
š‘ āˆ’ š‘˜ = š‘‹āˆ—
14 āˆ’ 12 = š‘‹āˆ—
2 = 3 āˆ’ 4š‘—
For n=12 āž”
š‘‹ 13 = š‘‹āˆ—
š‘ āˆ’ š‘˜ = š‘‹āˆ—
14 āˆ’ 13 = š‘‹āˆ—
1 = āˆ’1 āˆ’ 3š‘—
For n=13 āž”
= š‘‹āˆ—
š‘ āˆ’ š‘˜ = š‘‹āˆ—
14 āˆ’ 8 = š‘‹āˆ—
6 = āˆ’2 + 3š‘—
www.iammanuprasad.com
Linear Convolution
Consider a discrete sequence x(n) of length L and impulse sequence h(n) of length M,
the equation for linear convolution is
š‘¦ š‘› = ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž š‘› āˆ’ š‘˜
Where length of y(n) is L+M-1
Let’s discuss it with an example
Q) Find the convolution of x(n) = {1,2,3,1}, h(n)={1,1,1,}
Solution
L = 4, M = 3
š‘¦ š‘› = ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž š‘› āˆ’ š‘˜ Of length → 4+3-1 = 6
š‘¦ 0 = ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž āˆ’š‘˜
For n=0 āž”
1
2
3
1
x(k)
0 1
-1 2 3
-2
-3
1 1 1
0 1
-1 2 3
-2
-3
h(k)
0 1
-1 2 3
-2
-3
1 1 1
h(-k)
= 1.0 + 1.0 + 1.1 + 0.2 + 0.3 + 0.1 = 1
www.iammanuprasad.com
1
2
3
1
x(k)
0 1
-1 2 3
2
3
1 1 1
0 1
-1 2 3
2
3
h(k)
0 1
-1 2 3
2
3
1 1 1
h(-k)
š‘¦ 1 = ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž 1 āˆ’ š‘˜
For n=1 āž”
= 1.0 + 1.1 + 1.2 + 0.3 + 0.1 = 3
= ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž āˆ’š‘˜ + 1
0 1
-1 2 3
2
3
1 1 1
h(-k+1)
š‘¦ 2 = ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž 2 āˆ’ š‘˜
For n=2 āž”
= 1.1 + 1.2 + 1.3 + 0.1 = 6
= ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž āˆ’š‘˜ + 2
0 1
-1 2 3
2
3
h(-k+2)
š‘¦ 3 = ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž 3 āˆ’ š‘˜
For n=3 āž”
= 0.1 + 1.2 + 1.3 + 1.1 = 6
= ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž āˆ’š‘˜ + 3
0 1
-1 2 3
2
3
h(-k+3)
š‘¦ 4 = ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž 4 āˆ’ š‘˜
For n=4 āž”
= 0.1 + 0.2 + 1.3 + 1.1 = 4
= ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž āˆ’š‘˜ + 4
0 1
-1 2 3
2
3
h(-k+4)
0 1
-1 2 3
2
3
h(-k+5)
š‘¦ 5 = ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž 5 āˆ’ š‘˜
For n=5 āž”
= 0.1 + 0.2 + 0.3 + 1.1 = 1
= ą·
š‘˜=āˆ’āˆž
āˆž
š‘„ š‘˜ ā„Ž āˆ’š‘˜ + 5
š‘¦ š‘› = 1,3,6,6,4,1
1 1 1
1 1 1
1 1 1
1 1 1
www.iammanuprasad.com
Q) Find the convolution of x(n) = {1,2,3,1}, h(n)={1,1,1,}
Solution
1
2
3
1
1 1 1
1 1 1
2 2 2
3 3 3
1 1 1
+
+
+
+
+
+
š‘¦ š‘› = 1,3,6,6,4,1
www.iammanuprasad.com
Circular Convolution
Consider two discrete sequence x1(n) & x2(n) of length N with DFTs X1(k), X2(k)
š‘„3 š‘› = ą·
š‘š=0
š‘āˆ’1
š‘„1 š‘š š‘„2 š‘› āˆ’ š‘š š‘
Also
Q) Find the circular convolution of x(n) = {1,2,3,4}, h(n)={1,-1,1,}
Solution
L = 4, M = 3
š‘„3 š‘› = š‘„1 š‘› āŠ™ š‘„2 š‘›
Let’s discuss it with an example
š·š¹š‘‡ š‘„1 š‘› āŠ™ š‘„2 š‘› = š‘‹1 š‘˜ . š‘‹2 š‘˜
Matrix method
Since lengths are not same we do zero-padding
ā„Ž š‘› = 1, āˆ’1,1,0
1
2
3
4
4
1
2
3
3
4
1
2
2
3
4
1
1
-1
1
0
=
(1.1)+(4.-1)+(3.1)+(2.0) = 0
(2.1)+(1.-1)+(4.1)+(3.0) = 5
(3.1)+(2.-1)+(1.1)+(4.0) = 2
(4.1)+(3.-1)+(2.1)+(2.0) = 3
š‘¦ š‘› = 0,5,2,3
www.iammanuprasad.com
Circular Convolution
Concentric Circle method / Stockholm's Method
Q) Find the circular convolution of x(n) = {1,2,3,4}, h(n)={1,-1,1,}
Let’s discuss it with an example
Solution
L = 4, M = 3
Since lengths are not same we do zero-padding
ā„Ž š‘› = 1, āˆ’1,1,0
1
2
3
4
š‘¦ 0 = 1.1 + 2.0 + 3.1 + (4. āˆ’1)
For n=0 āž” = 0
š‘¦ 1 = 1. āˆ’1 + 2.1 + 3.0 + (4.1)
For n=1 āž” = 5
1
āˆ’1
1
0
š‘¦ 2 = 1.1 + 2. āˆ’1 + 3.1 + (4.0)
For n=2 āž” = 2
š‘¦ 3 = 1.0 + 2.1 + 3. āˆ’1 + (4.1)
For n=3 āž” = 3
š‘¦ š‘› = 0,5,2,3
www.iammanuprasad.com
Linear convolution using circular convolution
Let there are two sequence x(n) with L and h(n) with length M. in linear convolution the length of output in L+M-1. In circular
convolution the length of the both input is L=M
Let’s discuss with an example
š‘„ š‘› = 1,2,3,1,0,0
Q) Find the convolution of the sequences x(n) = {1,2,3,1}, h(n)={1,1,1,}
First we have to make the length of the x(n) and h(n) by adding zeros
(M-1 zeros)
ā„Ž š‘› = 1,1,1,0,0,0 (L-1 zeros)
1
2
3
1
0
0
0
1
2
3
1
0
0
0
1
2
3
1
1
0
0
1
2
3
1
1
1
0
0
0
=
(1.1)+(0.1)+(0.1)+(1.0) +(3.0) +(2.0) = 1
(2.1)+(1.1)+(0.1)+(0.0) +(1.0) +(3.0) = 3
(3.1)+(2.1)+(1.1)+(0.0) +(0.0) +(1.0) = 6
(1.1)+(3.1)+(2.1)+(1.0) +(0.0) +(0.0) = 6
š‘¦ š‘› = 1,3,6,6,4,1
3
1
0
0
1
2
2
3
1
0
0
1
(0.1)+(1.1)+(3.1)+(2.0) +(1.0) +(0.0) = 4
(0.1)+(0.1)+(1.1)+(3.0) +(2.0) +(1.0) = 1
www.iammanuprasad.com
Filtering of long duration sequences
1) Overlap – save method
Let’s consider an input sequence x(n) of length Ls and response h(n)of length M, the steps to
follow overlap – save method is
Step 1 : input x(n) is divided into length L (L≄M)
Step 2 : Calculate the length N=L+M-1
Step 3 : Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from
previous segment, making each of length N
Step 4 : Make impulse response to length N by adding zeros
Step 5 ; Find the circular convolution of each new segments with new h(n)
Step 6 : Linearly combine each results and take sequence of length Ls+M-1 from that by discarding/removing first
M-1 points
www.iammanuprasad.com
1) Overlap – save method
Q) Find the convolution of the sequences x(n) = {3,-1,0,1,3,2,0,1,2,1} and h(n) ={1,1,1}
Solution
Given , Ls = 10 & M=3
Step 1 : input x(n) is divided into length L
š‘„1 š‘› = 3, āˆ’1,0
š‘„2 š‘› = 1,3,2
š‘„3 š‘› = 0,1,2
š‘„4 š‘› = 1,0,0
Step 2 : Calculate the length N=L+M-1
š‘ = šæ + š‘€ āˆ’ 1 = 3 + 3 āˆ’ 1 = 5
Lets guess the value of L =3 (šæ ≄ š‘€)
www.iammanuprasad.com
Step 3 : Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from
previous segment, making each of length N
š‘„1 š‘› = 0,0,3, āˆ’1,0
š‘„2 š‘› = āˆ’1,0, 1,3,2
1) Overlap – save method
š‘„3 š‘› = 3,2,0,1,2
š‘„4 š‘› = 1,2,1,0,0
M-1 = 3-1 = 2
Step 4 : Make impulse response to length N by adding zeros
ā„Ž š‘› = 1,1,1,0,0
š‘„1 š‘› = 3, āˆ’1,0
š‘„2 š‘› = 1,3,2
š‘„3 š‘› = 0,1,2
š‘„4 š‘› = 1,0,0
www.iammanuprasad.com
Step 5 ; Find the circular convolution of each new segments with new h(n)
1) Overlap – save method
0 0 āˆ’1 3 0
0 0 0 āˆ’1 3
3
āˆ’1
0
0
3
āˆ’1
0
0
3
0
0
0
āˆ’1
0
0
š‘¦1 š‘› = š‘„1 š‘› āŠ™ ā„Ž(š‘›) = 0,0,3, āˆ’1,0 āŠ™ 1,1,1,0,0 1
1
1
0
0
= āˆ’1,0,3,2,2
š‘¦2(š‘›) = š‘„2 š‘› āŠ™ ā„Ž(š‘›) = āˆ’1,0, 1,3,2 āŠ™ 1,1,1,0,0 = 4, 1, 0, 4, 6
š‘¦3(š‘›) = š‘„3 š‘› āŠ™ ā„Ž(š‘›) = 3,2,0,1,2 āŠ™ 1,1,1,0,0 = 6, 7, 5, 3, 3
š‘¦4(š‘›) = š‘„4 š‘› āŠ™ ā„Ž(š‘›) = 1,2,1,0,0 āŠ™ 1,1,1,0,0 = 1, 3, 4, 3, 1
Step 6 : Linearly combine each results and take sequence of length Ls+M-1 from that by discarding/removing first M-1
points
š‘¦ š‘› = {3, 2, 2, 0, 4, 6, 5, 3, 3, 4, 3, 1}
Check whether length of y(n) is Ls+M-1 , if yes
discard the higher sequences
M-1 = 3-1 = 2
Ls+M-1 = 10+3-1 = 12
www.iammanuprasad.com
1) Overlap – save method
Q) Find the convolution of the sequences x(n) = {1,2,-1,2,3,-2,-3,-1,1,1,2,-1} and h(n) ={1,2} using overlap-save method
Solution
Given , Ls = 12 & M=2
Step 1 : input x(n) is divided into length L
š‘„1 š‘› = 1, 2, āˆ’1
š‘„2 š‘› = 2,3, āˆ’2
š‘„3 š‘› = āˆ’3, āˆ’1,1
š‘„4 š‘› = 1,2, āˆ’1
Step 2 : Calculate the length N=L+M-1
š‘ = šæ + š‘€ āˆ’ 1 = 3 + 2 āˆ’ 1 = 4
Lets guess the value of L =3 (šæ ≄ š‘€)
www.iammanuprasad.com
Step 3 : Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from
previous segment, making each of length N
š‘„1 š‘› = 0,1,2, āˆ’1
š‘„2 š‘› = āˆ’1,2,3, āˆ’2
1) Overlap – save method
š‘„3 š‘› = āˆ’2, āˆ’3, āˆ’1,1
š‘„4 š‘› = 1, 1, 2, āˆ’1
M-1 = 2-1 = 1
Step 4 : Make impulse response to length N by adding zeros
ā„Ž š‘› = 1, 2 , 0 , 0
š‘„1 š‘› = 1, 2, āˆ’1
š‘„2 š‘› = 2,3, āˆ’2
š‘„3 š‘› = āˆ’3, āˆ’1,1
š‘„4 š‘› = 1,2, āˆ’1
š‘„5 š‘› = āˆ’1, 0,0,0
www.iammanuprasad.com
Step 5 ; Find the circular convolution of each new segments with new h(n)
1) Overlap – save method
0 āˆ’1 2 1
1 0 āˆ’1 2
2 1 0 āˆ’1
āˆ’1 2 1 0
š‘¦1 š‘› = š‘„1 š‘› āŠ™ ā„Ž(š‘›) = 0,1,2, āˆ’1 āŠ™ 1,2, 0,0 1
2
0
0
= āˆ’2, 1, 4, 3
š‘¦2(š‘›) = š‘„2 š‘› āŠ™ ā„Ž(š‘›) = āˆ’1,2,3, āˆ’2 āŠ™ 1,2,0,0 = āˆ’5, 0, 7, 4
š‘¦3(š‘›) = š‘„3 š‘› āŠ™ ā„Ž(š‘›) = āˆ’2, āˆ’3, āˆ’1,1 āŠ™ 1,2, 0,0 = 0, āˆ’7, āˆ’7, āˆ’1
š‘¦4(š‘›) = š‘„4 š‘› āŠ™ ā„Ž(š‘›) = 1, 1, 2, āˆ’1 āŠ™ 1,2,0,0 = āˆ’1, 3, 4, 3
Step 6 : Linearly combine each results and take sequence of length Ls+M-1 from that by discarding/removing first M-1
points
š‘¦ š‘› = {1,4,3,0,7,4, āˆ’7, āˆ’7, āˆ’1,3,4,3, āˆ’2,0,0}
Check whether length of y(n) is Ls+M-1 , if yes
discard the higher sequences
š‘¦5(š‘›) = š‘„5 š‘› āŠ™ ā„Ž(š‘›) = āˆ’1, 0,0,0 āŠ™ 1,2,0,0 = āˆ’1, āˆ’2, 0, 0
š‘¦ š‘› = {1,4,3,0,7,4, āˆ’7, āˆ’7, āˆ’1,3,4,3, āˆ’2}
Ls+M-1 = 12+2-1 = 13
www.iammanuprasad.com
Filtering of long duration sequences
2) Overlap – add method
Let’s consider an input sequence x(n) of length L1 and response h(n) of length M, the steps to
follow overlap – save method is
Step 1 : input x(n) is divided into length L (L≄M)
Step 2 : Calculate the length N=L+M-1
Step 3 : Add M-1 zeros on each segment (length = L) of x(n)
Step 4 : Make impulse response to length N by adding zeros
Step 5 ; Find the circular convolution of each new segments with new h(n)
Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L1+M-1
www.iammanuprasad.com
1) Overlap – add method
Q) Find the convolution of the sequences x(n) = {3,-1,0,1,3,2,0,1,2,1} and h(n) ={1,1,1}
Solution
Given , L1 = 10 & M=3
Step 1: input x(n) is divided into length L (L≄M)
š‘„1 š‘› = 3, āˆ’1,0
š‘„2 š‘› = 1,3,2
š‘„3 š‘› = 0,1,2
š‘„4 š‘› = 1,0,0
Step 2 : Calculate the length N=L+M-1
š‘ = šæ + š‘€ āˆ’ 1 = 3 + 3 āˆ’ 1 = 5
Lets guess the value of L =3 (šæ ≤ š‘€)
www.iammanuprasad.com
Step 3 : Add M-1 zeros on each segment (length = L) of x(n)
š‘„1 š‘› = 3, āˆ’1, 0, 0, 0
š‘„2 š‘› = 1, 3, 2, 0, 0
1) Overlap – add method
š‘„3 š‘› = 0, 1, 2, 0, 0
š‘„4 š‘› = 1, 0, 0, 0, 0
M-1 = 3-1 = 2
Step 4 : Make impulse response to length N by adding zeros
ā„Ž š‘› = 1,1,1,0,0
š‘„1 š‘› = 3, āˆ’1,0
š‘„2 š‘› = 1,3,2
š‘„3 š‘› = 0,1,2
š‘„4 š‘› = 1,0,0
www.iammanuprasad.com
Step 5 ; Find the circular convolution of each new segments with new h(n)
1) Overlap – add method
3 0 0 0 āˆ’1
āˆ’1 3 0 0 0
0
0
0
āˆ’1
0
0
3
āˆ’1
0
0
3
āˆ’1
0
0
3
š‘¦1 š‘› = š‘„1 š‘› āŠ™ ā„Ž(š‘›) = 3, āˆ’1, 0, 0, 0, āŠ™ 1,1,1,0,0 1
1
1
0
0
= 3,2,2, āˆ’1,0
š‘¦2(š‘›) = š‘„2 š‘› āŠ™ ā„Ž(š‘›) = 1, 3, 2, 0, 0 āŠ™ 1,1,1,0,0 = 1,4,6,5,2
š‘¦3(š‘›) = š‘„3 š‘› āŠ™ ā„Ž(š‘›) = 0, 1, 2, 0, 0 āŠ™ 1,1,1,0,0 = 0,1,3,3,2
š‘¦4(š‘›) = š‘„4 š‘› āŠ™ ā„Ž(š‘›) = 1, 0, 0, 0, 0 āŠ™ 1,1,1,0,0 = 1,1,1,0,0
Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L1+M-1
š‘¦ š‘› = {3, 2, 2, 0, 4, 6, 5, 3, 3, 4, 3, 1}
Check whether length of y(n) is L1+M-1 , if yes
discard the higher sequences
3, 2, 2, āˆ’1, 0
1, 4, 6, 5, 2
0,1, 3, 3, 2
1, 1, 1, 0, 0
{3, 2, 2, 0, 4, 6, 5, 3, 3, 4, 3, 1, 0,0}
L1+M-1 = 10+3-1 = 12
www.iammanuprasad.com
1) Overlap – add method
Q) Find the convolution of the sequences x(n) = {1,2,-1,2,3,-2,-3,-1,1,1,2,-1} and h(n) ={1,2} using overlap-add method
Solution
Given , Ls = 12 & M=2
Step 1 : input x(n) is divided into length L
š‘„1 š‘› = 1, 2, āˆ’1
š‘„2 š‘› = 2,3, āˆ’2
š‘„3 š‘› = āˆ’3, āˆ’1,1
š‘„4 š‘› = 1,2, āˆ’1
Step 2 : Calculate the length N=L+M-1
š‘ = šæ + š‘€ āˆ’ 1 = 3 + 2 āˆ’ 1 = 4
Lets guess the value of L =3 (šæ ≄ š‘€)
www.iammanuprasad.com
Step 3 : Add M-1 zeros on each segment (length = L) of x(n)
š‘„1 š‘› = 1, 2, āˆ’1, 0
š‘„2 š‘› = 2,3, āˆ’2,0
1) Overlap – save method
š‘„3 š‘› = āˆ’3, āˆ’1,1,0
š‘„4 š‘› = 1, 2, āˆ’1,0
M-1 = 2-1 = 1
Step 4 : Make impulse response to length N by adding zeros
ā„Ž š‘› = 1, 2 , 0 , 0
š‘„1 š‘› = 1, 2, āˆ’1
š‘„2 š‘› = 2,3, āˆ’2
š‘„3 š‘› = āˆ’3, āˆ’1,1
š‘„4 š‘› = 1,2, āˆ’1
www.iammanuprasad.com
Step 5 ; Find the circular convolution of each new segments with new h(n)
1) Overlap – save method
1 0 āˆ’1 2
2 1 0 āˆ’1
āˆ’1 2 1 0
0 āˆ’1 2 1
š‘¦1 š‘› = š‘„1 š‘› āŠ™ ā„Ž(š‘›) = 1,2, āˆ’1,0 āŠ™ 1,2, 0,0 1
2
0
0
= 1, 4, 3,2
š‘¦2(š‘›) = š‘„2 š‘› āŠ™ ā„Ž(š‘›) = 2,3, āˆ’2,0 āŠ™ 1,2,0,0 = 2,7, 4, āˆ’4
š‘¦3(š‘›) = š‘„3 š‘› āŠ™ ā„Ž(š‘›) = āˆ’3, āˆ’1,1,0 āŠ™ 1,2, 0,0 = āˆ’3, āˆ’7, āˆ’1,2
š‘¦4(š‘›) = š‘„4 š‘› āŠ™ ā„Ž(š‘›) = 1, 2, āˆ’1,0 āŠ™ 1,2,0,0 = 1, 4 , 3, āˆ’2
Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L1+M-1
Check whether length of y(n) is Ls+M-1 , if yes
discard the higher sequences
š‘¦ š‘› = {1,4,3,0,7,4, āˆ’7, āˆ’7, āˆ’1,3,4,3, āˆ’2}
1, 4, 3, 2
āˆ’2, 7, 4, āˆ’4
āˆ’3, āˆ’7, āˆ’1, 2
1, 4, 3, āˆ’2
{1, 4, 3, 0, 7, 4, āˆ’7, āˆ’7, āˆ’1, 3, 4, 3, āˆ’2, }
Ls+M-1 = 12+2-1 = 13
www.iammanuprasad.com

digital signal processing - Module 1 PPT.pdf

  • 1.
    INTRODUCTION TO DIGITALSIGNAL PROCESSING SIGNAL Analog Digital PROCESSING • Analysis, synthesis and modify • Analog signal processing • Digital signal processing www.iammanuprasad.com
  • 2.
    BASIC BLOCKS OFDIGITAL SIGNAL PROCESSING Pre filter AD Converter Digital Signal Processor DA Converter Post filter Analog input Analog output www.iammanuprasad.com
  • 3.
    Discrete Fourier Transform(DFT) • DFT is a powerful computation tool which allows us to evaluate the Fourier transform on a digital computer or specifically designed hardware • We notate like this š‘‹ š‘˜ = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’āˆ’ š‘—2šœ‹š‘˜š‘› š‘ , 0 ≤ k ≤ N āˆ’ 1 DFT IDFT š‘„(š‘›) = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹ š‘˜ š‘’ š‘—2šœ‹š‘˜š‘› š‘ , 0 ≤ n ≤ N āˆ’ 1 Let us define a term š‘Šš‘ = š‘’āˆ’ š‘—2šœ‹ š‘ which is known as twiddle factor and substitute in above equations š‘‹ š‘˜ = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘Šš‘ š‘›š‘˜ , 0 ≤ k ≤ N āˆ’ 1 š‘„(š‘›) = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹ š‘˜ š‘¤š‘ āˆ’š‘›š‘˜ , 0 ≤ n ≤ N āˆ’ 1 š‘‹ š‘˜ = š·š¹š‘‡[š‘„ š‘› ] š‘„ š‘› = š¼š·š¹š‘‡[š‘‹ š‘˜ ] www.iammanuprasad.com
  • 4.
    Let us takean example Q) Find the DFT of the sequence š‘„ š‘› = {1,1,0,0} š‘‹ š‘˜ = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’āˆ’ š‘—2šœ‹š‘˜š‘› š‘ , 0 ≤ k ≤ N āˆ’ 1 š‘‹ š‘˜ = ą· š‘›=0 3 š‘„ š‘› š‘’āˆ’ š‘—2šœ‹š‘˜š‘› 4 , 0 ≤ k ≤ N āˆ’ 1 š‘ = 4 š‘˜ = 0 š‘‹ 0 = ą· š‘›=0 3 š‘„ š‘› š‘’āˆ’ š‘—2šœ‹0š‘› 4 = š‘„ 0 + š‘„ 1 + š‘„ 2 + š‘„ 3 = 1 + 1 + 0 + 0 = 2 š‘‹ 1 = ą· š‘›=0 3 š‘„ š‘› š‘’āˆ’ š‘—šœ‹š‘› 2 = š‘„ 0 + š‘„ 1 š‘’āˆ’ š‘—šœ‹ 2 + š‘„ 2 š‘’āˆ’š‘—šœ‹ + š‘„ 3 š‘’āˆ’ š‘—3šœ‹ 2 = 1 + 1 cos šœ‹ 2 āˆ’ š‘— sin šœ‹ 2 + 0 + 0 = 1 āˆ’ š‘— š‘˜ = 1 š‘‹ 2 = ą· š‘›=0 3 š‘„ š‘› š‘’āˆ’ š‘—šœ‹2š‘› 2 = š‘„ 0 + š‘„ 1 š‘’āˆ’š‘—šœ‹ + š‘„ 2 š‘’āˆ’š‘—2šœ‹ + š‘„ 3 š‘’āˆ’š‘—3šœ‹ = 1 + 1 cos šœ‹ āˆ’ š‘— sin šœ‹ + 0 + 0 = 1 āˆ’ 1 = 0 š‘˜ = 2 š‘‹ 3 = ą· š‘›=0 3 š‘„ š‘› š‘’āˆ’ š‘—šœ‹3š‘› 2 = 1 + 1 cos 3šœ‹ 2 āˆ’ š‘— sin 3šœ‹ 2 + 0 + 0 = 1 + š‘— š‘˜ = 3 = š‘„ 0 + š‘„ 1 š‘’āˆ’ š‘—3šœ‹ 2 + š‘„ 2 š‘’āˆ’š‘—3šœ‹ + š‘„ 3 š‘’āˆ’ š‘—9šœ‹ 2 š‘‹ š‘˜ = 2, 1 āˆ’ š‘—, 0,1 + š‘— www.iammanuprasad.com
  • 5.
    DFT as lineartransformation (Matrix method) š‘‹ š‘˜ = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’š‘Šš‘ š‘›š‘˜ , 0 ≤ k ≤ N āˆ’ 1 š‘Šš‘ = š‘’āˆ’ š‘—2šœ‹ š‘ Lets put n = 0,1,2, … N-1 š‘‹ š‘˜ = š‘„ 0 . 1 + š‘„ 1 . š‘Šš‘ 1š‘˜ + š‘„ 2 . š‘Šš‘ 2š‘˜ + ⋯ + š‘„ š‘ āˆ’ 1 š‘Š š‘ (š‘āˆ’1)š‘˜ š‘˜ = 0 š‘‹ 0 = š‘„ 0 + š‘„ 1 + š‘„ 2 + ⋯ + š‘„ š‘ āˆ’ 1 š‘˜ = 1 š‘‹ 1 = š‘„ 0 + š‘„ 1 . š‘Šš‘ 1 + š‘„ 2 . š‘Šš‘ 2 + ⋯ + š‘„ š‘ āˆ’ 1 š‘Š š‘ (š‘āˆ’1) š‘˜ = š‘ āˆ’ 1 š‘‹ š‘ āˆ’ 1 = š‘„ 0 + š‘„ 1 . š‘Š š‘ (š‘āˆ’1) + š‘„ 2 . š‘Š š‘ 2(š‘āˆ’1) + ⋯ + š‘„ š‘ āˆ’ 1 š‘Š š‘ (š‘āˆ’1)(š‘āˆ’1) ā‹® We can also represent the equation in matrix format š‘‹(0) š‘‹(1) š‘‹(2) š‘‹(3) ā‹® š‘‹(š‘ āˆ’ 1) = 1 1 1 1 … 1 1 1 1 ā‹® š‘Šš‘ 1 š‘Šš‘ 2 š‘Šš‘ 3 ā‹® š‘Šš‘ 2 š‘Šš‘ 4 š‘Šš‘ 6 ā‹® š‘Šš‘ 3 š‘Šš‘ 6 š‘Šš‘ 9 ā‹® … … … … š‘Š š‘ š‘āˆ’1 š‘Š š‘ 2(š‘āˆ’1) š‘Š š‘ 3(š‘āˆ’1) ā‹® 1 š‘Š š‘ š‘āˆ’1 š‘Š š‘ 2(š‘āˆ’1) š‘Š š‘ 3(š‘āˆ’1) … š‘Š š‘ š‘āˆ’1 š‘āˆ’1 š‘„(0) š‘„(1) š‘„(2) š‘„(3) ā‹® š‘„(š‘ āˆ’ 1) š‘‹š‘ = š‘Šš‘š‘„š‘ š‘„š‘ = š‘Šš‘ āˆ’1 š‘‹š‘ š‘Šš‘ āˆ’1 = 1 1 … 1 1 ā‹® š‘Šš‘ āˆ’1 ā‹® ⋱ š‘Š š‘ āˆ’(š‘āˆ’1) 1 š‘Š š‘ āˆ’ š‘āˆ’1 … š‘Š š‘ āˆ’(š‘āˆ’1)(š‘āˆ’1) š‘„(š‘›) = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹ š‘˜ š‘¤š‘ āˆ’š‘›š‘˜ , 0 ≤ n ≤ N āˆ’ 1 IDFT DFT š‘„(š‘›) = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹ š‘˜ š‘¤š‘ š‘›š‘˜ āˆ— Symbolically we can write as š‘„(š‘›) = 1 š‘ š‘‹š‘š‘Šš‘ āˆ— š‘Šš‘ āˆ’1 = 1 š‘ š‘Šš‘ āˆ— Comparing we get www.iammanuprasad.com
  • 6.
    Twiddle factor matrix š‘Šš‘= š‘’āˆ’ š‘—2šœ‹ š‘ Lies on the unit circle in the complex plane from 0 to 2Ļ€ angle and it gets repeated for every cycle š‘Š2 = š‘Š2 0 š‘Š2 0 š‘Š2 0 š‘Š2 1 = 1 1 1 āˆ’1 š‘Š0 š‘Š1 š‘Š2 š‘Š3 1 āˆ’1 āˆ’š‘— š‘— š‘Š4 = š‘Š4 0 š‘Š4 0 š‘Š4 0 š‘Š4 0 š‘Š4 0 š‘Š4 1 š‘Š4 2 š‘Š4 3 š‘Š4 0 š‘Š4 2 š‘Š4 4 š‘Š4 6 š‘Š4 0 š‘Š4 3 š‘Š4 6 š‘Š4 9 = 1 1 1 1 1 āˆ’š‘— āˆ’1 š‘— 1 āˆ’1 1 āˆ’1 1 š‘— āˆ’1 āˆ’š‘— Imaginary axis Real axis š‘’š‘—šœƒ = cos šœƒ + š‘—š‘ š‘–š‘› šœƒ Phase change ( 00 - 3600) - anticlockwise Since e-jĪø – clockwise , š‘Š4 , š‘Š8 , š‘Š5 , š‘Š9 , š‘Š6 , š‘Š10 , š‘Š7 , š‘Š11 š‘Š1 www.iammanuprasad.com
  • 7.
    Relationship of theDFT to Fourier Transform š‘‹ š‘’š‘—šœ” = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’āˆ’š‘—šœ”š‘› Fourier-Transform DFT š‘‹ š‘˜ = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’āˆ’ š‘—2šœ‹š‘˜š‘› š‘ Comparing the above equations we get to find that DFT of x(n) is a sampled version of the FT of the sequence Relationship between DFT & Fourie Transform š‘‹ š‘˜ = į‰š š‘‹(š‘’š‘—šœ”) šœ”= 2šœ‹š‘˜ š‘ , š‘˜ = 0,1,2, … š‘ āˆ’ 1 www.iammanuprasad.com
  • 8.
    Relationship of theDFT to Z-Transform š‘‹ š‘ = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘§āˆ’š‘› Z-Transform IDFT š‘„(š‘›) = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹ š‘˜ š‘’ š‘—2šœ‹š‘˜š‘› š‘ š‘‹ š‘ = ą· š‘›=0 š‘āˆ’1 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹ š‘˜ š‘’ š‘—2šœ‹š‘˜š‘› š‘ š‘§āˆ’š‘› Substitute the value of x(n) = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹(š‘˜) ą· š‘›=0 š‘āˆ’1 š‘’ š‘—2šœ‹š‘˜š‘› š‘ š‘§āˆ’š‘› = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹(š‘˜) ą· š‘›=0 š‘āˆ’1 š‘’ š‘—2šœ‹š‘˜ š‘ š‘§āˆ’1 š‘› ą· š‘˜=0 š‘āˆ’1 š‘Žš‘› = 1 āˆ’ aN 1 āˆ’ a š‘‹(š‘§) = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹(š‘˜) 1 āˆ’ š‘’ š‘—2šœ‹š‘˜ š‘ š‘§āˆ’1 š‘ 1 āˆ’ š‘’ š‘—2šœ‹š‘˜ š‘ š‘§āˆ’1 = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹(š‘˜) 1 āˆ’ š‘’š‘—2šœ‹š‘˜ š‘§āˆ’š‘ 1 āˆ’ š‘’ š‘—2šœ‹š‘˜ š‘ š‘§āˆ’1 In the above condition š‘’š‘—2šœ‹š‘˜ = 1 for all the values of k = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹(š‘˜) 1 āˆ’ š‘§āˆ’š‘ 1 āˆ’ š‘’ š‘—2šœ‹š‘˜ š‘ š‘§āˆ’1 š‘‹ š‘§ = 1 āˆ’ š‘§āˆ’š‘ š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹(š‘˜) 1 āˆ’ š‘’ š‘—2šœ‹š‘˜ š‘ š‘§āˆ’1 Relationship between DFT & Z- Transform www.iammanuprasad.com
  • 9.
    Properties of DiscreteFourier Transform Periodicity Linearity If X(k) is N-point DFT of a finite duration sequences x(n) then š‘„ š‘› + š‘ = š‘„ š‘› š‘“š‘œš‘Ÿ š‘Žš‘™š‘™ š‘› X š‘˜ + š‘ = š‘‹ š‘˜ š‘“š‘œš‘Ÿ š‘Žš‘™š‘™ š‘˜ If two finite sequences x1(n) and x2(n) are linearly combined as š‘„3 š‘› = š‘Žš‘„1 š‘› + š‘š‘„2(š‘›) Then DFT of the sequence š‘‹3 š‘˜ = š‘Žš‘‹1 š‘˜ + š‘š‘‹2(š‘˜) š‘Žš‘„1 š‘› + š‘š‘„2(š‘›) š·š¹š‘‡ š‘Žš‘‹1 š‘˜ + š‘š‘‹2(š‘˜) Circular time shift If X(k) is N-point DFT of a finite duration sequences x(n) then š·š¹š‘‡ š‘„ š‘› āˆ’ š‘š š‘ = š‘‹ š‘˜ š‘’āˆ’ š‘—2šœ‹š‘˜š‘š š‘ Proof š‘„(š‘›) = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹ š‘˜ š‘’ š‘—2šœ‹š‘˜š‘› š‘ , 0 ≤ n ≤ N āˆ’ 1 IDFT Put n=n-m š‘„(š‘› āˆ’ š‘š) = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹ š‘˜ š‘’ š‘—2šœ‹š‘˜(š‘›āˆ’š‘š) š‘ = 1 š‘ ą· š‘˜=0 š‘āˆ’1 š‘‹ š‘˜ š‘’ š‘—2šœ‹š‘˜š‘› š‘ š‘’ āˆ’š‘—2šœ‹š‘˜š‘š š‘ š‘„(š‘› āˆ’ š‘š) = š‘„(š‘›)š‘’ āˆ’š‘—2šœ‹š‘˜š‘š š‘ Take DFT on both sides š·š¹š‘‡{š‘„(š‘› āˆ’ š‘š)} = š‘‹(š‘˜)š‘’ āˆ’š‘—2šœ‹š‘˜š‘š š‘ www.iammanuprasad.com
  • 10.
    Q) Consider afinite length sequences x(n) shown in figure. The five point DF of x(n) is denoted by X(k). Plot the sequences whose DFT is š‘Œ š‘˜ = š‘’ āˆ’4šœ‹š‘˜ 5 š‘‹(š‘˜) 1 2 2 1 0 1 -1 2 3 Solution š·š¹š‘‡ š‘„ š‘› āˆ’ š‘š š‘ = š‘‹ š‘˜ š‘’āˆ’ š‘—2šœ‹š‘˜š‘š š‘ š·š¹š‘‡ š‘„ š‘› āˆ’ 2 5 = š‘‹ š‘˜ š‘’āˆ’ š‘—2šœ‹š‘˜2 5 , š‘› = 0,1, … , 4 š‘¦ 0 = š‘„ 0 āˆ’ 2 5 For n=0 āž” š‘¦ 1 = š‘„ 1 āˆ’ 2 5 = š‘„ 5 + 1 āˆ’ 2 = š‘„ 4 = 0 For n=1 āž” š‘¦ 2 = š‘„ 2 āˆ’ 2 5 For n=2 āž” š‘¦ 3 = š‘„ 3 āˆ’ 2 5 = š‘„ 5 + 3 āˆ’ 2 = š‘„ 6 = š‘„ 6 āˆ’ 5 = š‘„ 1 = 2 For n=3 āž” Exceeding the limit 0 ≤ š‘› ≤ 4 š‘¦ 4 = š‘„ 4 āˆ’ 2 5 = š‘„ 5 + 4 āˆ’ 2 = š‘„ 7 = š‘„ 7 āˆ’ 5 = š‘„ 2 = 2 For n=4 āž” š‘¦ š‘› = 1,0,1,2,2 1 2 0 1 -1 2 3 1 2 4 š‘„(š‘›) š‘¦(š‘›) = š‘„ 5 + 0 āˆ’ 2 = š‘„ 3 = 1 = š‘„ 5 + 2 āˆ’ 2 = š‘„ 5 = š‘„ 5 āˆ’ 5 = š‘„ 0 = 1 www.iammanuprasad.com
  • 11.
    Properties of DiscreteFourier Transform Time reversal of the sequence The time reversal of N-point sequence x(n) is attained by wrapping the sequence x(n) around the circle in clockwise direction. š‘„ āˆ’š‘› š‘ = š·š¹š‘‡ š‘„ š‘ āˆ’ š‘› = š‘‹ š‘ āˆ’ š‘˜ š·š¹š‘‡ š‘„ š‘› š‘’ š‘—2šœ‹š‘™š‘› š‘ = š‘‹ š‘˜ āˆ’ š‘™ š‘ Circular frequency shift If X(k) is N-point DFT of a finite duration sequences x(n) then Proof DFT Put k=k-l = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘›š‘’āˆ’ š‘—2šœ‹š‘˜š‘› š‘ š‘’ š‘—2šœ‹š‘™š‘› š‘ š‘„(š‘˜ āˆ’ š‘™) = š‘‹ š‘˜ š‘’ š‘—2šœ‹š‘™š‘› š‘ Take DFT on both sides š‘‹ š‘˜ āˆ’ š‘™ š‘ = š·š¹š‘‡ š‘„(š‘›)š‘’ š‘—2šœ‹š‘™š‘› š‘ š‘‹ š‘˜ = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’āˆ’ š‘—2šœ‹š‘˜š‘› š‘ , 0 ≤ k ≤ N āˆ’ 1 š‘‹ š‘˜ āˆ’ š‘™ = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’āˆ’ š‘—2šœ‹(š‘˜āˆ’š‘™)š‘› š‘ www.iammanuprasad.com
  • 12.
    Properties of DiscreteFourier Transform Complex conjugate property š·š¹š‘‡ š‘„āˆ— š‘› = š‘‹āˆ— š‘ āˆ’ š‘˜ = š‘‹āˆ— āˆ’š‘˜ š‘ If X(k) is N-point DFT of a finite duration sequences x(n) then Proof š·š¹š‘‡ š‘„ š‘› = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’āˆ’ š‘—2šœ‹š‘˜š‘› š‘ š·š¹š‘‡ š‘„āˆ— š‘› = ą· š‘›=0 š‘āˆ’1 š‘„āˆ— š‘› š‘’āˆ’ š‘—2šœ‹š‘˜š‘› š‘ š·š¹š‘‡ š‘„ š‘› = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’ š‘—2šœ‹š‘˜š‘› š‘ āˆ— š‘’āˆ’ š‘—2šœ‹š‘›š‘ š‘ = š‘’āˆ’š‘—2šœ‹š‘› = 1 = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’ š‘—2šœ‹š‘˜š‘› š‘ š‘’āˆ’ š‘—2šœ‹š‘›š‘ š‘ āˆ— = ą· š‘›=0 š‘āˆ’1 š‘„ š‘› š‘’āˆ’ š‘—2šœ‹š‘› š‘āˆ’š‘˜ š‘ āˆ— š·š¹š‘‡ š‘„ š‘› = š‘‹ š‘ āˆ’ š‘˜ āˆ— www.iammanuprasad.com
  • 13.
    Q) Let X(k)be a 14 point DFT of a length 14 real sequence x(n). The first 8 samples of X(k) are given by, X(0) = 12, X(1) = -1+3j , X(2) = 3+4j, X(3) = 1-5j, X(4) = -2+2j, X(5) = 6+3j, X(6) = -2-3j, X(7) = 10. Determine the remining samples Solution Given N=14 š·š¹š‘‡ š‘„ š‘› = š‘‹ š‘ āˆ’ š‘˜ āˆ— š‘‹ 8 For n=8 āž” š‘‹ 9 = š‘‹āˆ— š‘ āˆ’ š‘˜ = š‘‹āˆ— 14 āˆ’ 9 = š‘‹āˆ— 5 = 6 āˆ’ 3š‘— For n=9 āž” š‘‹ 10 = š‘‹āˆ— š‘ āˆ’ š‘˜ = š‘‹āˆ— 14 āˆ’ 10 = š‘‹āˆ— 4 = āˆ’2 āˆ’ 2š‘— For n=10 āž” š‘‹ 11 = š‘‹āˆ— š‘ āˆ’ š‘˜ = š‘‹āˆ— 14 āˆ’ 11 = š‘‹āˆ— 3 = 1 + 5š‘— For n=11 āž” š‘‹ 12 = š‘‹āˆ— š‘ āˆ’ š‘˜ = š‘‹āˆ— 14 āˆ’ 12 = š‘‹āˆ— 2 = 3 āˆ’ 4š‘— For n=12 āž” š‘‹ 13 = š‘‹āˆ— š‘ āˆ’ š‘˜ = š‘‹āˆ— 14 āˆ’ 13 = š‘‹āˆ— 1 = āˆ’1 āˆ’ 3š‘— For n=13 āž” = š‘‹āˆ— š‘ āˆ’ š‘˜ = š‘‹āˆ— 14 āˆ’ 8 = š‘‹āˆ— 6 = āˆ’2 + 3š‘— www.iammanuprasad.com
  • 14.
    Linear Convolution Consider adiscrete sequence x(n) of length L and impulse sequence h(n) of length M, the equation for linear convolution is š‘¦ š‘› = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž š‘› āˆ’ š‘˜ Where length of y(n) is L+M-1 Let’s discuss it with an example Q) Find the convolution of x(n) = {1,2,3,1}, h(n)={1,1,1,} Solution L = 4, M = 3 š‘¦ š‘› = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž š‘› āˆ’ š‘˜ Of length → 4+3-1 = 6 š‘¦ 0 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž āˆ’š‘˜ For n=0 āž” 1 2 3 1 x(k) 0 1 -1 2 3 -2 -3 1 1 1 0 1 -1 2 3 -2 -3 h(k) 0 1 -1 2 3 -2 -3 1 1 1 h(-k) = 1.0 + 1.0 + 1.1 + 0.2 + 0.3 + 0.1 = 1 www.iammanuprasad.com
  • 15.
    1 2 3 1 x(k) 0 1 -1 23 2 3 1 1 1 0 1 -1 2 3 2 3 h(k) 0 1 -1 2 3 2 3 1 1 1 h(-k) š‘¦ 1 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž 1 āˆ’ š‘˜ For n=1 āž” = 1.0 + 1.1 + 1.2 + 0.3 + 0.1 = 3 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž āˆ’š‘˜ + 1 0 1 -1 2 3 2 3 1 1 1 h(-k+1) š‘¦ 2 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž 2 āˆ’ š‘˜ For n=2 āž” = 1.1 + 1.2 + 1.3 + 0.1 = 6 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž āˆ’š‘˜ + 2 0 1 -1 2 3 2 3 h(-k+2) š‘¦ 3 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž 3 āˆ’ š‘˜ For n=3 āž” = 0.1 + 1.2 + 1.3 + 1.1 = 6 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž āˆ’š‘˜ + 3 0 1 -1 2 3 2 3 h(-k+3) š‘¦ 4 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž 4 āˆ’ š‘˜ For n=4 āž” = 0.1 + 0.2 + 1.3 + 1.1 = 4 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž āˆ’š‘˜ + 4 0 1 -1 2 3 2 3 h(-k+4) 0 1 -1 2 3 2 3 h(-k+5) š‘¦ 5 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž 5 āˆ’ š‘˜ For n=5 āž” = 0.1 + 0.2 + 0.3 + 1.1 = 1 = ą· š‘˜=āˆ’āˆž āˆž š‘„ š‘˜ ā„Ž āˆ’š‘˜ + 5 š‘¦ š‘› = 1,3,6,6,4,1 1 1 1 1 1 1 1 1 1 1 1 1 www.iammanuprasad.com
  • 16.
    Q) Find theconvolution of x(n) = {1,2,3,1}, h(n)={1,1,1,} Solution 1 2 3 1 1 1 1 1 1 1 2 2 2 3 3 3 1 1 1 + + + + + + š‘¦ š‘› = 1,3,6,6,4,1 www.iammanuprasad.com
  • 17.
    Circular Convolution Consider twodiscrete sequence x1(n) & x2(n) of length N with DFTs X1(k), X2(k) š‘„3 š‘› = ą· š‘š=0 š‘āˆ’1 š‘„1 š‘š š‘„2 š‘› āˆ’ š‘š š‘ Also Q) Find the circular convolution of x(n) = {1,2,3,4}, h(n)={1,-1,1,} Solution L = 4, M = 3 š‘„3 š‘› = š‘„1 š‘› āŠ™ š‘„2 š‘› Let’s discuss it with an example š·š¹š‘‡ š‘„1 š‘› āŠ™ š‘„2 š‘› = š‘‹1 š‘˜ . š‘‹2 š‘˜ Matrix method Since lengths are not same we do zero-padding ā„Ž š‘› = 1, āˆ’1,1,0 1 2 3 4 4 1 2 3 3 4 1 2 2 3 4 1 1 -1 1 0 = (1.1)+(4.-1)+(3.1)+(2.0) = 0 (2.1)+(1.-1)+(4.1)+(3.0) = 5 (3.1)+(2.-1)+(1.1)+(4.0) = 2 (4.1)+(3.-1)+(2.1)+(2.0) = 3 š‘¦ š‘› = 0,5,2,3 www.iammanuprasad.com
  • 18.
    Circular Convolution Concentric Circlemethod / Stockholm's Method Q) Find the circular convolution of x(n) = {1,2,3,4}, h(n)={1,-1,1,} Let’s discuss it with an example Solution L = 4, M = 3 Since lengths are not same we do zero-padding ā„Ž š‘› = 1, āˆ’1,1,0 1 2 3 4 š‘¦ 0 = 1.1 + 2.0 + 3.1 + (4. āˆ’1) For n=0 āž” = 0 š‘¦ 1 = 1. āˆ’1 + 2.1 + 3.0 + (4.1) For n=1 āž” = 5 1 āˆ’1 1 0 š‘¦ 2 = 1.1 + 2. āˆ’1 + 3.1 + (4.0) For n=2 āž” = 2 š‘¦ 3 = 1.0 + 2.1 + 3. āˆ’1 + (4.1) For n=3 āž” = 3 š‘¦ š‘› = 0,5,2,3 www.iammanuprasad.com
  • 19.
    Linear convolution usingcircular convolution Let there are two sequence x(n) with L and h(n) with length M. in linear convolution the length of output in L+M-1. In circular convolution the length of the both input is L=M Let’s discuss with an example š‘„ š‘› = 1,2,3,1,0,0 Q) Find the convolution of the sequences x(n) = {1,2,3,1}, h(n)={1,1,1,} First we have to make the length of the x(n) and h(n) by adding zeros (M-1 zeros) ā„Ž š‘› = 1,1,1,0,0,0 (L-1 zeros) 1 2 3 1 0 0 0 1 2 3 1 0 0 0 1 2 3 1 1 0 0 1 2 3 1 1 1 0 0 0 = (1.1)+(0.1)+(0.1)+(1.0) +(3.0) +(2.0) = 1 (2.1)+(1.1)+(0.1)+(0.0) +(1.0) +(3.0) = 3 (3.1)+(2.1)+(1.1)+(0.0) +(0.0) +(1.0) = 6 (1.1)+(3.1)+(2.1)+(1.0) +(0.0) +(0.0) = 6 š‘¦ š‘› = 1,3,6,6,4,1 3 1 0 0 1 2 2 3 1 0 0 1 (0.1)+(1.1)+(3.1)+(2.0) +(1.0) +(0.0) = 4 (0.1)+(0.1)+(1.1)+(3.0) +(2.0) +(1.0) = 1 www.iammanuprasad.com
  • 20.
    Filtering of longduration sequences 1) Overlap – save method Let’s consider an input sequence x(n) of length Ls and response h(n)of length M, the steps to follow overlap – save method is Step 1 : input x(n) is divided into length L (L≄M) Step 2 : Calculate the length N=L+M-1 Step 3 : Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from previous segment, making each of length N Step 4 : Make impulse response to length N by adding zeros Step 5 ; Find the circular convolution of each new segments with new h(n) Step 6 : Linearly combine each results and take sequence of length Ls+M-1 from that by discarding/removing first M-1 points www.iammanuprasad.com
  • 21.
    1) Overlap –save method Q) Find the convolution of the sequences x(n) = {3,-1,0,1,3,2,0,1,2,1} and h(n) ={1,1,1} Solution Given , Ls = 10 & M=3 Step 1 : input x(n) is divided into length L š‘„1 š‘› = 3, āˆ’1,0 š‘„2 š‘› = 1,3,2 š‘„3 š‘› = 0,1,2 š‘„4 š‘› = 1,0,0 Step 2 : Calculate the length N=L+M-1 š‘ = šæ + š‘€ āˆ’ 1 = 3 + 3 āˆ’ 1 = 5 Lets guess the value of L =3 (šæ ≄ š‘€) www.iammanuprasad.com
  • 22.
    Step 3 :Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from previous segment, making each of length N š‘„1 š‘› = 0,0,3, āˆ’1,0 š‘„2 š‘› = āˆ’1,0, 1,3,2 1) Overlap – save method š‘„3 š‘› = 3,2,0,1,2 š‘„4 š‘› = 1,2,1,0,0 M-1 = 3-1 = 2 Step 4 : Make impulse response to length N by adding zeros ā„Ž š‘› = 1,1,1,0,0 š‘„1 š‘› = 3, āˆ’1,0 š‘„2 š‘› = 1,3,2 š‘„3 š‘› = 0,1,2 š‘„4 š‘› = 1,0,0 www.iammanuprasad.com
  • 23.
    Step 5 ;Find the circular convolution of each new segments with new h(n) 1) Overlap – save method 0 0 āˆ’1 3 0 0 0 0 āˆ’1 3 3 āˆ’1 0 0 3 āˆ’1 0 0 3 0 0 0 āˆ’1 0 0 š‘¦1 š‘› = š‘„1 š‘› āŠ™ ā„Ž(š‘›) = 0,0,3, āˆ’1,0 āŠ™ 1,1,1,0,0 1 1 1 0 0 = āˆ’1,0,3,2,2 š‘¦2(š‘›) = š‘„2 š‘› āŠ™ ā„Ž(š‘›) = āˆ’1,0, 1,3,2 āŠ™ 1,1,1,0,0 = 4, 1, 0, 4, 6 š‘¦3(š‘›) = š‘„3 š‘› āŠ™ ā„Ž(š‘›) = 3,2,0,1,2 āŠ™ 1,1,1,0,0 = 6, 7, 5, 3, 3 š‘¦4(š‘›) = š‘„4 š‘› āŠ™ ā„Ž(š‘›) = 1,2,1,0,0 āŠ™ 1,1,1,0,0 = 1, 3, 4, 3, 1 Step 6 : Linearly combine each results and take sequence of length Ls+M-1 from that by discarding/removing first M-1 points š‘¦ š‘› = {3, 2, 2, 0, 4, 6, 5, 3, 3, 4, 3, 1} Check whether length of y(n) is Ls+M-1 , if yes discard the higher sequences M-1 = 3-1 = 2 Ls+M-1 = 10+3-1 = 12 www.iammanuprasad.com
  • 24.
    1) Overlap –save method Q) Find the convolution of the sequences x(n) = {1,2,-1,2,3,-2,-3,-1,1,1,2,-1} and h(n) ={1,2} using overlap-save method Solution Given , Ls = 12 & M=2 Step 1 : input x(n) is divided into length L š‘„1 š‘› = 1, 2, āˆ’1 š‘„2 š‘› = 2,3, āˆ’2 š‘„3 š‘› = āˆ’3, āˆ’1,1 š‘„4 š‘› = 1,2, āˆ’1 Step 2 : Calculate the length N=L+M-1 š‘ = šæ + š‘€ āˆ’ 1 = 3 + 2 āˆ’ 1 = 4 Lets guess the value of L =3 (šæ ≄ š‘€) www.iammanuprasad.com
  • 25.
    Step 3 :Add M-1 zeros to the start to first segment, each segment (length = L) has its first M-1 points coming from previous segment, making each of length N š‘„1 š‘› = 0,1,2, āˆ’1 š‘„2 š‘› = āˆ’1,2,3, āˆ’2 1) Overlap – save method š‘„3 š‘› = āˆ’2, āˆ’3, āˆ’1,1 š‘„4 š‘› = 1, 1, 2, āˆ’1 M-1 = 2-1 = 1 Step 4 : Make impulse response to length N by adding zeros ā„Ž š‘› = 1, 2 , 0 , 0 š‘„1 š‘› = 1, 2, āˆ’1 š‘„2 š‘› = 2,3, āˆ’2 š‘„3 š‘› = āˆ’3, āˆ’1,1 š‘„4 š‘› = 1,2, āˆ’1 š‘„5 š‘› = āˆ’1, 0,0,0 www.iammanuprasad.com
  • 26.
    Step 5 ;Find the circular convolution of each new segments with new h(n) 1) Overlap – save method 0 āˆ’1 2 1 1 0 āˆ’1 2 2 1 0 āˆ’1 āˆ’1 2 1 0 š‘¦1 š‘› = š‘„1 š‘› āŠ™ ā„Ž(š‘›) = 0,1,2, āˆ’1 āŠ™ 1,2, 0,0 1 2 0 0 = āˆ’2, 1, 4, 3 š‘¦2(š‘›) = š‘„2 š‘› āŠ™ ā„Ž(š‘›) = āˆ’1,2,3, āˆ’2 āŠ™ 1,2,0,0 = āˆ’5, 0, 7, 4 š‘¦3(š‘›) = š‘„3 š‘› āŠ™ ā„Ž(š‘›) = āˆ’2, āˆ’3, āˆ’1,1 āŠ™ 1,2, 0,0 = 0, āˆ’7, āˆ’7, āˆ’1 š‘¦4(š‘›) = š‘„4 š‘› āŠ™ ā„Ž(š‘›) = 1, 1, 2, āˆ’1 āŠ™ 1,2,0,0 = āˆ’1, 3, 4, 3 Step 6 : Linearly combine each results and take sequence of length Ls+M-1 from that by discarding/removing first M-1 points š‘¦ š‘› = {1,4,3,0,7,4, āˆ’7, āˆ’7, āˆ’1,3,4,3, āˆ’2,0,0} Check whether length of y(n) is Ls+M-1 , if yes discard the higher sequences š‘¦5(š‘›) = š‘„5 š‘› āŠ™ ā„Ž(š‘›) = āˆ’1, 0,0,0 āŠ™ 1,2,0,0 = āˆ’1, āˆ’2, 0, 0 š‘¦ š‘› = {1,4,3,0,7,4, āˆ’7, āˆ’7, āˆ’1,3,4,3, āˆ’2} Ls+M-1 = 12+2-1 = 13 www.iammanuprasad.com
  • 27.
    Filtering of longduration sequences 2) Overlap – add method Let’s consider an input sequence x(n) of length L1 and response h(n) of length M, the steps to follow overlap – save method is Step 1 : input x(n) is divided into length L (L≄M) Step 2 : Calculate the length N=L+M-1 Step 3 : Add M-1 zeros on each segment (length = L) of x(n) Step 4 : Make impulse response to length N by adding zeros Step 5 ; Find the circular convolution of each new segments with new h(n) Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L1+M-1 www.iammanuprasad.com
  • 28.
    1) Overlap –add method Q) Find the convolution of the sequences x(n) = {3,-1,0,1,3,2,0,1,2,1} and h(n) ={1,1,1} Solution Given , L1 = 10 & M=3 Step 1: input x(n) is divided into length L (L≄M) š‘„1 š‘› = 3, āˆ’1,0 š‘„2 š‘› = 1,3,2 š‘„3 š‘› = 0,1,2 š‘„4 š‘› = 1,0,0 Step 2 : Calculate the length N=L+M-1 š‘ = šæ + š‘€ āˆ’ 1 = 3 + 3 āˆ’ 1 = 5 Lets guess the value of L =3 (šæ ≤ š‘€) www.iammanuprasad.com
  • 29.
    Step 3 :Add M-1 zeros on each segment (length = L) of x(n) š‘„1 š‘› = 3, āˆ’1, 0, 0, 0 š‘„2 š‘› = 1, 3, 2, 0, 0 1) Overlap – add method š‘„3 š‘› = 0, 1, 2, 0, 0 š‘„4 š‘› = 1, 0, 0, 0, 0 M-1 = 3-1 = 2 Step 4 : Make impulse response to length N by adding zeros ā„Ž š‘› = 1,1,1,0,0 š‘„1 š‘› = 3, āˆ’1,0 š‘„2 š‘› = 1,3,2 š‘„3 š‘› = 0,1,2 š‘„4 š‘› = 1,0,0 www.iammanuprasad.com
  • 30.
    Step 5 ;Find the circular convolution of each new segments with new h(n) 1) Overlap – add method 3 0 0 0 āˆ’1 āˆ’1 3 0 0 0 0 0 0 āˆ’1 0 0 3 āˆ’1 0 0 3 āˆ’1 0 0 3 š‘¦1 š‘› = š‘„1 š‘› āŠ™ ā„Ž(š‘›) = 3, āˆ’1, 0, 0, 0, āŠ™ 1,1,1,0,0 1 1 1 0 0 = 3,2,2, āˆ’1,0 š‘¦2(š‘›) = š‘„2 š‘› āŠ™ ā„Ž(š‘›) = 1, 3, 2, 0, 0 āŠ™ 1,1,1,0,0 = 1,4,6,5,2 š‘¦3(š‘›) = š‘„3 š‘› āŠ™ ā„Ž(š‘›) = 0, 1, 2, 0, 0 āŠ™ 1,1,1,0,0 = 0,1,3,3,2 š‘¦4(š‘›) = š‘„4 š‘› āŠ™ ā„Ž(š‘›) = 1, 0, 0, 0, 0 āŠ™ 1,1,1,0,0 = 1,1,1,0,0 Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L1+M-1 š‘¦ š‘› = {3, 2, 2, 0, 4, 6, 5, 3, 3, 4, 3, 1} Check whether length of y(n) is L1+M-1 , if yes discard the higher sequences 3, 2, 2, āˆ’1, 0 1, 4, 6, 5, 2 0,1, 3, 3, 2 1, 1, 1, 0, 0 {3, 2, 2, 0, 4, 6, 5, 3, 3, 4, 3, 1, 0,0} L1+M-1 = 10+3-1 = 12 www.iammanuprasad.com
  • 31.
    1) Overlap –add method Q) Find the convolution of the sequences x(n) = {1,2,-1,2,3,-2,-3,-1,1,1,2,-1} and h(n) ={1,2} using overlap-add method Solution Given , Ls = 12 & M=2 Step 1 : input x(n) is divided into length L š‘„1 š‘› = 1, 2, āˆ’1 š‘„2 š‘› = 2,3, āˆ’2 š‘„3 š‘› = āˆ’3, āˆ’1,1 š‘„4 š‘› = 1,2, āˆ’1 Step 2 : Calculate the length N=L+M-1 š‘ = šæ + š‘€ āˆ’ 1 = 3 + 2 āˆ’ 1 = 4 Lets guess the value of L =3 (šæ ≄ š‘€) www.iammanuprasad.com
  • 32.
    Step 3 :Add M-1 zeros on each segment (length = L) of x(n) š‘„1 š‘› = 1, 2, āˆ’1, 0 š‘„2 š‘› = 2,3, āˆ’2,0 1) Overlap – save method š‘„3 š‘› = āˆ’3, āˆ’1,1,0 š‘„4 š‘› = 1, 2, āˆ’1,0 M-1 = 2-1 = 1 Step 4 : Make impulse response to length N by adding zeros ā„Ž š‘› = 1, 2 , 0 , 0 š‘„1 š‘› = 1, 2, āˆ’1 š‘„2 š‘› = 2,3, āˆ’2 š‘„3 š‘› = āˆ’3, āˆ’1,1 š‘„4 š‘› = 1,2, āˆ’1 www.iammanuprasad.com
  • 33.
    Step 5 ;Find the circular convolution of each new segments with new h(n) 1) Overlap – save method 1 0 āˆ’1 2 2 1 0 āˆ’1 āˆ’1 2 1 0 0 āˆ’1 2 1 š‘¦1 š‘› = š‘„1 š‘› āŠ™ ā„Ž(š‘›) = 1,2, āˆ’1,0 āŠ™ 1,2, 0,0 1 2 0 0 = 1, 4, 3,2 š‘¦2(š‘›) = š‘„2 š‘› āŠ™ ā„Ž(š‘›) = 2,3, āˆ’2,0 āŠ™ 1,2,0,0 = 2,7, 4, āˆ’4 š‘¦3(š‘›) = š‘„3 š‘› āŠ™ ā„Ž(š‘›) = āˆ’3, āˆ’1,1,0 āŠ™ 1,2, 0,0 = āˆ’3, āˆ’7, āˆ’1,2 š‘¦4(š‘›) = š‘„4 š‘› āŠ™ ā„Ž(š‘›) = 1, 2, āˆ’1,0 āŠ™ 1,2,0,0 = 1, 4 , 3, āˆ’2 Step 6 : Add last and first M-1 points of each segments, discard/remove excess point than L1+M-1 Check whether length of y(n) is Ls+M-1 , if yes discard the higher sequences š‘¦ š‘› = {1,4,3,0,7,4, āˆ’7, āˆ’7, āˆ’1,3,4,3, āˆ’2} 1, 4, 3, 2 āˆ’2, 7, 4, āˆ’4 āˆ’3, āˆ’7, āˆ’1, 2 1, 4, 3, āˆ’2 {1, 4, 3, 0, 7, 4, āˆ’7, āˆ’7, āˆ’1, 3, 4, 3, āˆ’2, } Ls+M-1 = 12+2-1 = 13 www.iammanuprasad.com