SlideShare a Scribd company logo
1 of 10
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 1, February 2020, pp. 552~561
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i1.13196  552
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
Design and fabrication of A Ku-band low noise amplifier
using FR-4 substrate
Linh Ta Phuong1
, Bernard Journet2
, Duong Bach Gia3
1
Vietnam Space Center, Ministry of Science and Technology, Vietnam
2
LPQM (CNRS UMR-8537) École normale supérieure Paris-Saclay, CentraleSupelec, Université Paris-Saclay, France
3
VNU University of Engineering and Technology, Hanoi, Vietnam
Article Info ABSTRACT
Article history:
Received May 22, 2019
Revised Oct 27, 2019
Accepted Nov 30, 2019
The low noise amplifier (LNA) plays an important role in many
communication systems, especially at the receiver’s front-ends. In modern
RF designs, The LNA is usually fabricated on a microstrip printed circuit
board (PCB) due to its simplicity and ability of integrating flexibly with
other components in a receiving circuitry unit. At frequencies lower than
6 GHz, the most prevalent substrate material for a microstrip LNA is FR-4
while at higher frequencies of over 10 GHz, it is challenging to design
the LNA using this material without causing considerable losses to the RF
signal. There are many works related to design microstrip LNA at high
frequencies, however, the dielectric substrates used in most of them were
high-cost materials for low dielectric loss. This paper introduces an LNA
topology using the common, low-cost FR-4 substrate which can be operated
in Ku-band for applications such as small satellites’ receivers, with
the expected noise figure of lower than 1 dB, gain of around 10 dB and
the return loss of around -10 dB. The stepped impedance matching technique
has been used for transmission line optimization. The simulated and
measured results are presented.
Keywords:
FR-4
Ku-band
Low noise amplifier
Stepped impedance matching
This is an open access article under the CC BY-SA license.
Corresponding Author:
Bernard Journet,
Quantum and Molecular Photonics Laboratory, ENS Paris-Saclay,
61 Avenue du Président Wilson, 94230 Cachan, France.
Email: bernard.journet@ens-cachan.fr
1. INTRODUCTION
Low noise amplifier (LNA) has been widely applied in various communication systems, especially
in the radio receiver’s front-ends. Its main advantage is to amplify receiving signals which have very low
amplitude to an acceptable power level that can be figured out by the receiver without causing detrimental
effects to the total signal-to-noise (SNR) ratio of the receiver unit. When go through the LNA, both signal
and noise are amplified, thus, the LNA is usually integrated together with a bandpass filter in order to retrieve
the signal from the unwanted following noises.
For radio links such as satellite communication, the LNA of the receiver is commonly fabricated in
printed circuit board (PCB) technology, in which, the Microstrip has a predominance over other types of
electrical transmission line. The most popular material to used for the PCB Microstrip is the flame-retardant
#4 (FR-4) epoxy glass. This dielectric material has some advantages over the others when using as a substrate
for RF and PCB applications such as low cost, good mechanical properties, provides constant loss tangent
over a wide band of frequencies [1]. However, the significant drawbacks of the FR-4 is its high insertion loss
TELKOMNIKA Telecommun Comput El Control 
Design and fabrication of a Ku-band low noise amplifier using FR-4 substrate (Linh Ta Phuong)
553
at high frequencies; from the electrical performance point of view, the FR-4 is not truly a high frequency
circuit material [2]. The attenuation of the RF signal (dB/inch) when running through a microstrip line can be
calculated as follow [3]:
α=2.3f ⋅ tan(δ ) ⋅ εeff (1)
where:
α–Attenuation in dB / Inch.
f–Frequency in GHz
tan(δ)–Loss Tangent of the material
εeff–Effective Relative dielectric constant of the material
Based on (1), for a standard FR-4 with dielectric constant (εr)=4.35 and tan(δ)=0.0023,
the attenuation α is 0.04 at 2 GHz and 0.2 at 10 GHz, respectively. For other material, such as Rogers RT
Duroid 5880 with (εr)=2.2 and tan(δ)=0.0004, this value is about 0.004 at 2 GHz and 0.02 at 10 GHz,
respectively. Furthermore, E.L.Holzman showed that for microstrip parallel-coupled resonator using FR-4
substrate with a dielectric constant of 4.5, the insertion loss (S21) increased rapidly from 2 GHz to
15 GHz [4], as illustrated in Figure 1.
Figure 1. The measured insertion loss of microstrip parallel-coupled resonator versus simulated insertion loss
of Advanced Design System (ADS) [4]
It is clearly seen from Figure 1 that the increase of S21 is about 3.5 dB from 2 GHz to 15 GHz, this is
even more drastically when comparing the S21 at the resonant frequency of 2.7 GHz (around 1.9 dB) with that
of 13.4 GHz (around 11.9 dB). These results show that when using the FR-4, it is really challenging to design
an LNA of over 10 GHz without causing significant attenuation to the signal. To avoid the ambiguity in
terminology, the S21 parameter hereby can be understood as insertion loss for non-amplifying circuits and as
gain for amplifying circuits, both are measured in dB. The others S-parameters, S11 and S22, are the input
return loss and output return loss of the 2-port network.
There are previous works related to research, design and fabricate the LNA using FR-4, but only
limited in the frequency range of under 6 GHz: J. Rajendral and R. Peter (2014) [5] designed an L-band LNA
using the ATF-58143 high electron mobility transistor for RF front end, with a moderate gain of about 13 dB
and input return loss of 10 dB in the frequency range between 0.9 and 1.5 GHz. M.Arsalan and F.Wu [6]
demonstrated a novel implementation of a pHEMT LNA that can be applied to satellite communications
tracking receiver. The LNA has one stage, working between frequency span of 2-2.2 GHz with the transducer
gain of over 10 dB. A wideband, three cascaded LNA worked in L-band and S-band has been presented by
J.Lv et al. [7], in which, a novel equalization was proposed and demonstrated. This LNA, due to the effect of
the equalization, attained an impressive high gain in the operating frequency range, about 38 dB, while
the input and out return losses are approximately 7 dB and 8 dB, respectively. M. Z. A. A. Aziz et al. [8]
developed a single stage low noise amplifier circuit design for the frequency band of 5 GHz to 6 GHz, with
the gain of around 7.78 dB in the whole span, the S11 of below-10 dB from 5.5 GHz to 6 GHz.
G. L. Ning et al. [9] presented a design of concurrent LNA for multi-band applications, in which, a
2 cascaded common-source staged LNA is matched by stepped-impedance transformers. By using this
technique, the gain and input return loss over the whole designed frequency band of 2–6 GHz are around
21 dB and 10 dB, respectively.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 552 - 561
554
There are also some LNA designs at X-band and over, but none using FR-4: Girlando et al. [10]
presented a LNA topology for X-band and the beginning of Ku-band based on the 46 GHz-fT pure bipolar
technology, with the gains of 11.5 dB and 8 dB at 8 GHz and 12 GHz, respectively. C. Wang [11] introduced
a wideband LNA using noise neutralizing technique, which is expected to apply to 3–10 GHz ultrawideband
system. This topology had a gain of around 12 dB, with very good gain flatness from 2 GHz to 10 GHz.
However, the gain values decreased rapidly at frequencies over 12 GHz, thus, this topology cannot cover
the Ku-band.
The scope of our work is to design and fabricate a microstrip LNA using FR-4 that can be integrated
to Ku-band receiver front-ends, especially for small satellite (SmallSat) applications, where low cost and
short lead time are two inseparable factors of the SmallSat development. For details, the FR-4 material can be
experimentally used instead of traditional high frequency materials, thus offering major cost reduction.
Moreover, the design procedure and technique are being simplified in order to easily produce in any
radiocommunications laboratory, as well as apply to mass-production for small satellites’ testing and
performance assurance at subsystem level [12]. This paper is organized as follows: section 2 is
the introduction of technology used for the amplifier’s active device and impedance matching technique,
as well as the design and simulation of the proposed LNA. The experimental results are demonstrated in
section 3 and the conclusions are drawn in section 4.
2. DESIGN AND SIMULATION RESULTS OF THE LOW NOISE AMPLIFER
The desired LNA has one stage only, the block diagram is shown in Figure 2. There are various
technologies used in designing the active device for the LNA at Ku-band: Deng et al. [13], Afshar et al. [14],
M. Yamagata and H. Hashemi [15], Liou et al. [16] developed the X/Ku-band LNA topologies based on
the CMOS technology. The GaAs MESFET was demonstrated in the LNA designs of Bashir et al. [17],
Islam et al. [18]. Furthermore, LNAs using high electron mobility transistor (HEMT) were reported in
the journals of M. Fallahnejad and A. Kashaniniya [19] and Shoaib et al. [20]. A two-staged Ku-band LNA
for satellite applications was presented by P. Bishoyi and S. S. Karthikeyan [21]. F. Guo and Z. Yao designed
a GaN LNA in order to compare the power handling of their module with that of the traditional GaAs
LNA [22].
The measured results of these works will be shown in the next section. In this design, we used
hetero junction field effect transistor (HJFET), and the NE3515S02 model has been chosen. Though
providing middle output power, the NE3515S02’s advantages are very low noise figure and high associated
gain. This FET is a suitable choice for LNA or buffer amplifiers from X to Ku-band. In our case, for DC
biasing, we chose the DC operation point (bias point) at VDS = 2V, ID = 40mA in order to keep the device in
its active region. The corresponding gate to source voltage VGS is -0.2V and the corresponding power
dissipation is less than 150 mW.
Figure 2. The block diagram of the proposed LNA
In general, the advantages of JFET technology is exhibiting very high input resistance and low
output resistance, providing high thermal stability and high degree of isolation between the input and output
of the transistor. It is a good choice for microstrip LNA, with respect to the impedance matching aspect.
In order to deliver the maximum amount of power from the source to the load, the input and output
impedances (Zin and Zout) of the transistor need to be matched with the source and load impedances (ZS and
ZL). We do the impedance matching for the standard ZS and ZL of 50 Ohms. The figure below demonstrates
the LNA with matching network.
TELKOMNIKA Telecommun Comput El Control 
Design and fabrication of a Ku-band low noise amplifier using FR-4 substrate (Linh Ta Phuong)
555
In Figure 3, ГS, ГL, Гin and Гout are the reflection coefficients of the source, the load, the input and
out put of the transistor, respectively. Z0 is the characteristic impedance of the transmission lines which are
connected to the source and the load, in our case, its value is 50Ω. When goes through the input and output
matching networks, the Z0 is transformed to the corresponding complex impedances of the transistor’s input
and output. GS, G0 and GL are the gain factors of the input matching network, the transistor itself and
the output matching network in turn. The overall transducer gain is GT=GS.G0.GL. Since G0 is unique at a
certain frequency of a given transistor, the overall gain of the amplifier is only being controlled by varying
the values of GS and GL of the impedance matching networks [24]. The impedance matching technique used
for this LNA topology is stepped impedance matching. This is a method in which, the impedance values
changed flexibly from the input to the output of the impedance matching network. It can be easily applied to
the microstrip PCB by changing the width and length of the microstrip transmission lines. By using stepped
impedance matching, the physical length of the transmission lines can be shortened, thus decrease
the attenuation of the RF signal when travelling through these. This point is very important when fabricating
the microwave circuits with high attenuation substrate like FR-4. Furthermore, the operation bandwidth of
the LNA can be improved when applying this matching technique and the dimensions of the circuit can be
considerably reduced. Figure 4 illustrates a typical stepped impedance transformer.
In Figure 4, impedance of the ith
stage that looks toward the termination can be calculated
as follow [9]:
𝑍𝑖
′
= 𝑍𝑖
𝑍𝑖+1
′ +𝑗𝑍 𝑖tan⁡(𝛽𝑙 𝑖)
𝑍 𝑖+𝑗𝑍𝑖+1
′ tan⁡(𝛽𝑙 𝑖)
(2)
where i = 1,2,….,n and β is the propagation constant. li is the physical length and Zi is the characteristic
impedance of the ith
stage. In general, the principle in designing our stepped impedance transformer is similar
to that of [25], but for a much higher frequency range.
Figure 3. The block diagram of the single stage LNA with matching network (redrawn from [23])
Figure 4. Principal diagram of the stepped impedance transformer [9]
For impedance matching, the input and output reflection coefficients (S11 and S22) of NE3515S02 at
the chosen frequencies in Ku-band was taken from the device’s datasheet, based on these values, the input
and output impedances of the transistor can be calculated. Consequently, by using (2) recursively,
the characteristic impedances Zi of each stepped impedance section can be determined. The electrical length
of each section has been chosen equal to a quarter wavelength or a multiple of this value, thus the LNA can
be operated in several frequency ranges in the Ku-band. The corresponding physical length and width of each
section can then be calculated, as showed in Table 1.
It is noticed in the above tables that the dimensions of the stepped impedance transformers varied
nonlinearly over the four sections. This allowed us to versatilely modify the impedance values through each
section, thus change the values of the corresponding quality factor (Q) of them. For details, when degrading
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 552 - 561
556
the quality factor, the gain decreased but a wider bandwidth has been reached, and vice versa. Consequently,
the bandwidth can be adjusted (narrower or wider) with respect to the design requirement of the LNA.
The FR-4 material used for the LNA has the following characteristics: Relative dielectric constant: 4.34, loss
tangent: 0.0023, dielectric height: 1.6 mm, conductor thickness: 0.035 mm, roughness: 0.0095.
The simulated results (in Decibel) of the input reflection coefficient (S11) and insertion loss (S21) have been
executed by the Advanced Design System (ADS) 2014, provided by Keysight. The schematic design is
illustrated in Figure 5.
Table 1. The design values of stepped impedance transformer for the input and output branch matching
Section
Input branch Output branch
Width (mm) Length (mm) Zi (Ohms) Width (mm) Length (mm) Z(Ohms)
1 3.87 7.22 43.9 3.87 5.32 43.9
2 9.8 2.12 22.4 7.68 2.12 27.1
3 5.8 11.5 33.3 5.8 10.46 33.3
4 2.75 4.03 54 2.6 10.1 55.8
Figure 5. The simulation schematic of the Ku-band LNA using FR-4,
with stepped impedance matching network
Figure 6 shows the simulated results of the gain and return loss of the proposed LNA in 3 frequency
ranges, centered at 12.2 GHz, 14.9 GHz and 17.6 GHz, respectively. It is clearly seen that in the above
figures, the S21 and S11 is approximately 11.9 dB and-18 dB at 12.2 GHz, 12.5 dB and-24 dB at 14.9 GHz and
around 9.5 dB and-9 dB at 17.6 GHz. It means that our LNA has the ability of operating in several frequency
ranges from the beginning to the end of the Ku-band. Figure 7 shows the simulated results of the noise figure
(in dB) in the 3 mentioned frequency ranges. As can be seen in the above figure, the noise figures of all
the mentioned frequency ranges are below 1 dB. The simulated results met the design requirement, thus,
the noise is predicted to have no detrimental effect to the designed LNA.
TELKOMNIKA Telecommun Comput El Control 
Design and fabrication of a Ku-band low noise amplifier using FR-4 substrate (Linh Ta Phuong)
557
(a) (b)
(c)
Figure 6. The simulated results of S11 and S21 in the frequency range of
(a) 11–14 GHz (b) 14–16 GHz (c) 16–19 GHz
(a) (b)
(c)
Figure 7. The simulated result of the noise figure seen from the input in the frequency ranges which centered
at (a) 12.2 GHz, (b) 14.9 GHz, (c) 17.6 GHz
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 552 - 561
558
3. MEASURED RESULTS
The LNA circuit was designed and fabricated in our laboratory based on the ADS package and
the LPKF ProtoMat C40 machine. For testing and measuring, the Agilent E8257D Signal Generator has been
used to provide an incoming signal to the input of the LNA module, the Agilent E4446A Spectrum Analyzer
then received the output signal of the LNA and displayed it in the frequency domain, as shown in Figure 8.
Figure 9 shows the measured results of the Ku-band LNA, which are corresponding to the above simulated
results. The measured frequency ranged from 12 GHz to 18 GHz. The measure was done by collecting
the amplitude values of the receiving signal over the measured frequency ranges with the frequency step
of 10 MHz.
(a) (b)
Figure 8. (a) The experimental measurement, (b) The fabricated LNA
(a) (b)
(c)
Figure 9. The measured results of S21 in the frequency range of
(a) 11–4 GHz, (b) 14–16 GHz, (c) 16–19 GHz
TELKOMNIKA Telecommun Comput El Control 
Design and fabrication of a Ku-band low noise amplifier using FR-4 substrate (Linh Ta Phuong)
559
In Figure 9 (a), the frequency is about 12.2 GHz, which is well-matched with the above prediction.
The -10 dB bandwidth is approximately 400 MHz, which is narrower than that of the simulated result.
However, the peaked gain is considerably higher (15 dB compared with 11.9 dB). As can be seen in
Figure 9 (b), in the frequency region of 14–16 GHz, the gain values have two maxima of around 11 dB and
10 dB at the frequencies of 14.37 GHz and 15.15 GHz, respectively. This result is different from the S21
curve in Figure 6 (b), it mainly caused by the attenuation effect of the FR-4 substrate in real environment.
However, the highest gain values at these frequencies are acceptable.
Like the two above experimental results, the trend of the S21 curve in Figure 9 (c) showed a more
selective characteristic than the simulated result. The measured gain is approximately 10 dB at 17.8 GHz,
which is almost similar to the simulation. The frequency bandwidth is being tightened as predicted in
the previous section. The measured -10 dB bandwidth is around 200 MHz. The trade-off between gain and
bandwidth is also being illustrated in Figure 9 (a) and Figure 9 (b). Table 2 shows the comparison between
our purposed LNA and the LNA’s previous works.
Table 2. Comparison of the design parameters of proposed LNA and other LNAs operate in Ku-band
References Technology Frequencies (GHz) Gain (dB) Note
This work HJFET
12.2
14.4 and 15.1
17.6
15
10
15
Demonstration for
narrowband frequencies
Bashir et. al. [17] GaAs MESFET 12 GHz 14.2 Simulation results only
Islam et. al. [18] GaAs MESFET 12 GHz 8.9
M.Fallahnejad, A.Kashaniniya [19] HEMT
10 GHz
15 GHz
13
15
Simulation results only
Shoaib et. al. [20] PHEMT 12.7 GHz 8.4
Deng et. al. [13] CMOS (0.18µm) 14 to 15 >10
B.Afshar, A.M. Niknejad [14] CMOS (0.18µm) 11 GHz
12 (2 stages)
8 (single stage)
Liou et. al. [16] CMOS (0.18µm)
12
15 (midband)
18
10.1
9.7
8.2
M.Yamagata, H.Hashemi [15] CMOS (0.13µm) 10.1 13-14
In general, the average S21 of our work from 12 GHz to 18 GHz is not as good as that of
the mentioned works. This is due to the fact that our fabricated substrate is FR-4, a high attenuation material
at the frequencies of over 10 GHz, thus our topology can hardly be used as a wideband LNA at the Ku-band.
However, when zooming in the narrow frequency spans with the center frequencies demonstrated above,
the measured gains are well suited for the narrowband LNA’s applications. In this case, the gain flatness is
not a major parameter as it does in the wideband LNA. Furthermore, the narrowband gains can be easily
tuned to the desired center frequencies in the whole Ku-band by modifying the stepped impedance
transmission lines.
4. CONCLUSION
This paper introduced about a Ku-band low noise amplifier using the common FR-4 substrate.
By using this type of material, we can primarily solve out the problem of balancing between cost and
performance of the high frequency LNA. Furthermore, by applying the stepped impedance matching
technique, the circuit’s length is significantly reduced and it leads to the ability of integrating this with small
receiver’s modules, such as the receiver front-ends of the small satellites. The simulated and measured results
are being presented, and the gain values over the experimental frequency ranges are approximated to
the maximum gain value of the NE3515S02 HJFET’s datasheet in Ku-band. Though there were some
differences of the peaked gain at lower frequency ranges between simulation and measurement, it still proved
that the proposed LNA module can be operated as a narrowband amplifier in the entire Ku-band with high
selective frequency, and the bandwidth can be flexibly adjusted with respect to the design requirement
by varying the transmission lines’ dimensions of the impedance matching network.
REFERENCES
[1] A. R. Djordjevic, R. M. Biljie, V. D. Likar-Smiljanic and T. K. Sarkar, "Wideband frequency-domain
characterization of FR-4 and time-domain causality," IEEE Transactions on Electromagnetic Compatibility,
vol. 43, no. 4, pp. 662-667, Nov 2001.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 552 - 561
560
[2] J. Coonrod, et. al., “Selecting PCB Materials for High-Frequency Applications,” Microwave Engineering Europe,
pp. 18-21, 2012.
[3] Rick Hartley, “RF/Microwave PC Board Design and Layout Base Materials for High Speed, High Frequency PC
Boards,” [Online], Available: http://www.eas.uccs.edu/~mwickert/ece5250/notes/RFMicrowave-PCB-Design-and-
Layout.pdf
[4] E. L. Holzman, "Wideband measurement of the dielectric constant of an FR4 substrate using a parallel-coupled
microstrip resonator," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 7, pp. 3127-3130,
July 2006.
[5] J. Rajendran, R. Peter, “Design and simulation of low noise amplifier for RF front end at L band,” First
International Conference on Computational Systems and Communications (ICCSC), Trivandrum, pp. 86-89, 2014.
[6] M. Arsalan and F. Wu, "An S band tracking receiver LNA for satellite communications," 2018 International
Workshop on Antenna Technology (iWAT), Nanjing, pp. 1-4, 2018.
[7] Juncai Lv, Yongfang Bao, Jiurong Huang, "Wideband low noise amplifier using a novel equalization," 2016
Progress in Electromagnetic Research Symposium (PIERS), Shanghai, pp. 609-614, 2016.
[8] M. Z. A. A. Aziz, J. Din, M. K. A. Rahim, “Low noise amplifier circuit design for 5 GHz to 6 GHz,” RF and
Microwave Conference, Selangor, Malaysia, pp. 5-8, 2004.
[9] G. L. Ning, Z. Y. Lei, L. J. Zhang, R. Zou, L. Shao., “Design of concurrent low-noise amplifier for multi-band
applications,” Progress In Electromagnetics Research C, Marrakesh, Morocco, vol. 22, pp. 165-178, 2011.
[10] G. Girlando, G. Ferla, E. Ragonese and G. Palmisano, “Silicon bipolar LNAs in the X and Ku bands,” 9th
International Conference on Electronics, Circuits and Systems, Dubrovnik, Croatia, vol. 1, pp. 113-116, 2002.
[11] C. Wang and C. Wang, "A 90nm CMOS Low Noise Amplifier Using Noise Neutralizing for 3.1-10.6 GHz UWB
System," 2006 Proceedings of the 32nd
European Solid-State Circuits Conference, Montreux, pp. 251-254, 2006.
[12] M. N. Sweeting, "Modern Small Satellites-Changing the Economics of Space," Proceedings of the IEEE,
vol. 106, no. 3, pp. 343-361, March 2018.
[13] K. Deng, et al., “A Ku-band CMOS low-noise amplifier,” 2005 IEEE International Workshop on Radio-Frequency
Integration Technology: Integrated Circuits for Wideband Comm & Wireless Sensor Networks, Singapore,
pp. 183-186, 2005.
[14] B. Afshar and A. M. Niknejad, "X/Ku Band CMOS LNA Design Techniques," IEEE Custom Integrated Circuits
Conference 2006, San Jose, CA, pp. 389-392, 2006.
[15] M. Yamagata and H. Hashemi, "A Differential X/Ku-Band Low Noise Amplifier in 0.13-$mu$m CMOS
Technology," IEEE Microwave and Wireless Components Letters, vol. 17, no. 12, pp. 888-890, Dec 2007.
[16] Wan-Rone Liou, Siddarth Rai Mahendra and Tsung-Hsing Chen, "A wideband LNA design for Ku-Band
applications," 2010 International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu,
pp. 680-684, 2010.
[17] M. A. Bashir, M. M. Ahmed, U. Rafique and Q. D. Memon, "Design of a Ku-band high gain low noise amplifier,"
2013 IEEE International RF and Microwave Conference (RFM), Penang, pp. 168-171, 2013.
[18] M. R. Islam et al., “Design of a low noise amplifier with GaAs MESFET at Ku_Band,” International Conference
on Computer and Communication Engineering (ICCCE'10), Kuala Lumpur, pp. 1-5, 2010.
[19] M. Fallahnejad and A. Kashaniniya, “Design of Low Noise Amplifiers at 10 GHZ and 15 GHZ for Wireless
Communication Systems,” IOSR Journal of Electrical and Electronics Engineering, vol. 9, no. 5, pp. 47-53,
Jan 2014.
[20] N. Shoaib, M. Ahmad and I. Mahmood, "Design, fabrication & testing of Low Noise Amplifier at Ku-Band," 2008
2nd
International Conference on Advances in Space Technologies, Islamabad, pp. 18-23, 2008.
[21] P. Bishoyi and S. Karthikeyan, "Design of a two stage Ku band low noise amplifier for satellite applications," 2015
International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, pp. 0270-0273,
2015.
[22] F. Guo and Z. Yao, "Design of a Ku-band AlGaN/GaN low noise amplifier," Proceedings of 2014 3rd
Asia-Pacific
Conference on Antennas and Propagation, Harbin, pp. 1406-1408, 2014.
[23] D. M. Pozar, “Microwave Engineering,” Third Edition, New York: John Willey and Son, pp. 610, 2005.
[24] G. Gonzalez, “Microwave Transistor Amplifiers: Analysis and Design,” Second Edition, New Jersey: Prentice Hall.
pp. 228-229, 1997.
[25] K. Inderkumar, et. al., "Compact wideband quarter-wave transformer using stepped impedance microstrip
lines," 2017 2nd
International Conference on Communication Systems, Computing and IT Applications (CSCITA),
Mumbai, pp. 184-188, 2017.
TELKOMNIKA Telecommun Comput El Control 
Design and fabrication of a Ku-band low noise amplifier using FR-4 substrate (Linh Ta Phuong)
561
BIOGRAPHIES OF AUTHORS
Linh Ta Phuong received the M.Sc. Degree in Electronics and Telecommunications
Technology from University of Engineering and Technology, Vietnam National University in
2014 and M.Sc. Degree in Aerospace Engineering from Tohoku University in 2017. From
2015 up to now, he is a researcher in Vietnam National Space Center, Vietnam Academy of
Science and Technology. His researches mainly focus on microwave engineering,
communications in satellites, ground station and radio systems.
Email: tplinh@vnsc.org.vn
Bernard Journet was born in Lyon, France in 1956. From 1983 to 1984, he was a teacher of
the 1st year BTS Electronics class and 1st year Mechanics and Automatism class of Gustave
Eiffel Highschool. From 1984 to 1989, he was a teacher of the BTS class of Optics and
Precision and TF10 in the Fresnel High School. He has been an Associate Professor at the
department of Electronics, Electrotechniques and Automatic (EEA) of the ENS Paris-Saclay,
France from Oct.1, 1989 up to now. His field of research focuses on Optoelectronic Oscillator
and Applications for Optical and Microwave systems.
Email: bernard.journet@ens-cachan.fr
Duong Bach Gia was born in Ha Dong Dist., Hanoi, Vietnam in 1950. He received the
B.S degree in radio physics in 1972 and the Ph.D. degree in wireless physics from
University of Hanoi in 1988. From 1988 to 1990, he was a researcher assistant in
Leningrad University, Russia. From 1991 to 2005, he was a researcher in academy of air
force. He has been a lecturer and head of electronics and telecommunications center,
University of Engineering and Technology, Vietnam National University since 2006. He
was promoted to Associate Professor in 2009 and to Professor in 2016. His research
focuses on RF analog signal processing, RF chip design, radar engineering and
technology, automatic control.
Email: duongbg@vnu.edu.vn

More Related Content

What's hot

Physical layer overview
Physical layer overviewPhysical layer overview
Physical layer overviewakruthi k
 
Microwave link Design using Matlab tool
Microwave link Design using Matlab toolMicrowave link Design using Matlab tool
Microwave link Design using Matlab toolSHIV DUTT
 
Wireless Communication and Networking by WilliamStallings Chap2
Wireless Communication and Networking  by WilliamStallings Chap2Wireless Communication and Networking  by WilliamStallings Chap2
Wireless Communication and Networking by WilliamStallings Chap2Senthil Kanth
 
study of ttc link and parallel coupled filter design
study of ttc link and parallel coupled filter designstudy of ttc link and parallel coupled filter design
study of ttc link and parallel coupled filter designManoj Kumar
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined RadiosSimen Li
 
It 802 d_intro&wlan
It 802 d_intro&wlanIt 802 d_intro&wlan
It 802 d_intro&wlanDebasis Das
 
Microwave Link Design - PTP Transmission
Microwave  Link Design - PTP TransmissionMicrowave  Link Design - PTP Transmission
Microwave Link Design - PTP TransmissionMohamed Sewailam
 
Data encoding and modulation
Data encoding and modulationData encoding and modulation
Data encoding and modulationShankar Gangaju
 
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMFUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMCarlos Antonio Leal Saballos
 
Orthogonal frequency division multiplexing
Orthogonal frequency division multiplexing Orthogonal frequency division multiplexing
Orthogonal frequency division multiplexing raj4619
 
Chap 5 (small scale fading)
Chap 5 (small scale fading)Chap 5 (small scale fading)
Chap 5 (small scale fading)asadkhan1327
 
802.11n Technology - Presented by Meru Networks and DTC
802.11n Technology - Presented by Meru Networks and DTC802.11n Technology - Presented by Meru Networks and DTC
802.11n Technology - Presented by Meru Networks and DTCDigitalTelecom
 

What's hot (20)

Rf fundamentals
Rf fundamentalsRf fundamentals
Rf fundamentals
 
Physical layer overview
Physical layer overviewPhysical layer overview
Physical layer overview
 
Microwave link Design using Matlab tool
Microwave link Design using Matlab toolMicrowave link Design using Matlab tool
Microwave link Design using Matlab tool
 
Rf fundamentals
Rf fundamentalsRf fundamentals
Rf fundamentals
 
Wireless Communication and Networking by WilliamStallings Chap2
Wireless Communication and Networking  by WilliamStallings Chap2Wireless Communication and Networking  by WilliamStallings Chap2
Wireless Communication and Networking by WilliamStallings Chap2
 
study of ttc link and parallel coupled filter design
study of ttc link and parallel coupled filter designstudy of ttc link and parallel coupled filter design
study of ttc link and parallel coupled filter design
 
Multiband Transceivers - [Chapter 5] Software-Defined Radios
Multiband Transceivers - [Chapter 5]  Software-Defined RadiosMultiband Transceivers - [Chapter 5]  Software-Defined Radios
Multiband Transceivers - [Chapter 5] Software-Defined Radios
 
It 802 d_intro&wlan
It 802 d_intro&wlanIt 802 d_intro&wlan
It 802 d_intro&wlan
 
Microwave Link Design - PTP Transmission
Microwave  Link Design - PTP TransmissionMicrowave  Link Design - PTP Transmission
Microwave Link Design - PTP Transmission
 
Lab10 20 may 2020
Lab10 20 may 2020Lab10 20 may 2020
Lab10 20 may 2020
 
Data encoding and modulation
Data encoding and modulationData encoding and modulation
Data encoding and modulation
 
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDMFUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
FUNDAMENTALS OF MICROWAVE RADIO COMMUNICATION FOR IP AND TDM
 
Orthogonal frequency division multiplexing
Orthogonal frequency division multiplexing Orthogonal frequency division multiplexing
Orthogonal frequency division multiplexing
 
Chap 5 (small scale fading)
Chap 5 (small scale fading)Chap 5 (small scale fading)
Chap 5 (small scale fading)
 
12012 ah apj rf fundamentals
12012 ah apj   rf fundamentals12012 ah apj   rf fundamentals
12012 ah apj rf fundamentals
 
802.11n Technology - Presented by Meru Networks and DTC
802.11n Technology - Presented by Meru Networks and DTC802.11n Technology - Presented by Meru Networks and DTC
802.11n Technology - Presented by Meru Networks and DTC
 
Chirps
ChirpsChirps
Chirps
 
OFDM
OFDMOFDM
OFDM
 
Dq33705710
Dq33705710Dq33705710
Dq33705710
 
04 transmission media
04 transmission media04 transmission media
04 transmission media
 

Similar to Design and fabrication of A Ku-band low noise amplifier using FR-4 substrate

08 13sept 8080 10000-1-ed a new (edit ari)
08 13sept 8080 10000-1-ed a new (edit ari)08 13sept 8080 10000-1-ed a new (edit ari)
08 13sept 8080 10000-1-ed a new (edit ari)IAESIJEECS
 
Low Noise Amplifier using Darlington Pair At 90nm Technology
Low Noise Amplifier using Darlington Pair At 90nm Technology Low Noise Amplifier using Darlington Pair At 90nm Technology
Low Noise Amplifier using Darlington Pair At 90nm Technology IJECEIAES
 
A Miniature L-slot Microstrip Printed Antenna for RFID
A Miniature L-slot Microstrip Printed Antenna for RFIDA Miniature L-slot Microstrip Printed Antenna for RFID
A Miniature L-slot Microstrip Printed Antenna for RFIDTELKOMNIKA JOURNAL
 
Dual-band aperture coupled antenna with harmonic suppression capability
Dual-band aperture coupled antenna with harmonic suppression capabilityDual-band aperture coupled antenna with harmonic suppression capability
Dual-band aperture coupled antenna with harmonic suppression capabilityTELKOMNIKA JOURNAL
 
A New Compact CPW-Fed Dual-Band Uniplanar Antenna for RFID Applications
A New Compact CPW-Fed Dual-Band Uniplanar Antenna for RFID ApplicationsA New Compact CPW-Fed Dual-Band Uniplanar Antenna for RFID Applications
A New Compact CPW-Fed Dual-Band Uniplanar Antenna for RFID ApplicationsTELKOMNIKA JOURNAL
 
Research, design and fabrication of a microwave active filter for nanosatelli...
Research, design and fabrication of a microwave active filter for nanosatelli...Research, design and fabrication of a microwave active filter for nanosatelli...
Research, design and fabrication of a microwave active filter for nanosatelli...TELKOMNIKA JOURNAL
 
A 3 – 14 GHZ LOW NOISE AMPLIFIER FOR ULTRA WIDE BAND APPLICATIONS
A 3 – 14 GHZ LOW NOISE AMPLIFIER FOR ULTRA WIDE BAND APPLICATIONSA 3 – 14 GHZ LOW NOISE AMPLIFIER FOR ULTRA WIDE BAND APPLICATIONS
A 3 – 14 GHZ LOW NOISE AMPLIFIER FOR ULTRA WIDE BAND APPLICATIONSVLSICS Design
 
A bandwidth reconfigurable antenna for devices in low UWB-applications
A bandwidth reconfigurable antenna for devices in low UWB-applicationsA bandwidth reconfigurable antenna for devices in low UWB-applications
A bandwidth reconfigurable antenna for devices in low UWB-applicationsTELKOMNIKA JOURNAL
 
Pentagon and circular ring slot loaded rectangular microstrip monopole
Pentagon and circular ring slot loaded rectangular microstrip monopolePentagon and circular ring slot loaded rectangular microstrip monopole
Pentagon and circular ring slot loaded rectangular microstrip monopoleIAEME Publication
 
A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...
A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...
A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...IRJET Journal
 
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...TELKOMNIKA JOURNAL
 
A microwave active filter for nanosatellite’s receiver front-ends at s-bands
A microwave active filter for nanosatellite’s receiver front-ends at s-bandsA microwave active filter for nanosatellite’s receiver front-ends at s-bands
A microwave active filter for nanosatellite’s receiver front-ends at s-bandsIJECEIAES
 
Design of a uhf band lna using active inductor with ffp noise cancelling
Design of a uhf band lna using active inductor with ffp noise cancellingDesign of a uhf band lna using active inductor with ffp noise cancelling
Design of a uhf band lna using active inductor with ffp noise cancellingIAEME Publication
 
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICADUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICAijwmn
 
2009 IEEE AP-S-Compact Coaxial-Line-Fed Printed Monopole Antenna for Lower-Ba...
2009 IEEE AP-S-Compact Coaxial-Line-Fed Printed Monopole Antenna for Lower-Ba...2009 IEEE AP-S-Compact Coaxial-Line-Fed Printed Monopole Antenna for Lower-Ba...
2009 IEEE AP-S-Compact Coaxial-Line-Fed Printed Monopole Antenna for Lower-Ba...Saou-Wen Su
 
Octagon shaped slot loaded rectangular microstrip monopole antennas for
Octagon shaped slot loaded rectangular microstrip monopole antennas forOctagon shaped slot loaded rectangular microstrip monopole antennas for
Octagon shaped slot loaded rectangular microstrip monopole antennas forIAEME Publication
 
MTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptxMTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptxSupriaNandan
 
Paper id 312201516
Paper id 312201516Paper id 312201516
Paper id 312201516IJRAT
 
Design of a two stage differential low noise amplifier for uwb applications
Design of a two stage differential low noise amplifier for uwb applicationsDesign of a two stage differential low noise amplifier for uwb applications
Design of a two stage differential low noise amplifier for uwb applicationsIAEME Publication
 

Similar to Design and fabrication of A Ku-band low noise amplifier using FR-4 substrate (20)

08 13sept 8080 10000-1-ed a new (edit ari)
08 13sept 8080 10000-1-ed a new (edit ari)08 13sept 8080 10000-1-ed a new (edit ari)
08 13sept 8080 10000-1-ed a new (edit ari)
 
Low Noise Amplifier using Darlington Pair At 90nm Technology
Low Noise Amplifier using Darlington Pair At 90nm Technology Low Noise Amplifier using Darlington Pair At 90nm Technology
Low Noise Amplifier using Darlington Pair At 90nm Technology
 
A Miniature L-slot Microstrip Printed Antenna for RFID
A Miniature L-slot Microstrip Printed Antenna for RFIDA Miniature L-slot Microstrip Printed Antenna for RFID
A Miniature L-slot Microstrip Printed Antenna for RFID
 
Dual-band aperture coupled antenna with harmonic suppression capability
Dual-band aperture coupled antenna with harmonic suppression capabilityDual-band aperture coupled antenna with harmonic suppression capability
Dual-band aperture coupled antenna with harmonic suppression capability
 
A New Compact CPW-Fed Dual-Band Uniplanar Antenna for RFID Applications
A New Compact CPW-Fed Dual-Band Uniplanar Antenna for RFID ApplicationsA New Compact CPW-Fed Dual-Band Uniplanar Antenna for RFID Applications
A New Compact CPW-Fed Dual-Band Uniplanar Antenna for RFID Applications
 
Research, design and fabrication of a microwave active filter for nanosatelli...
Research, design and fabrication of a microwave active filter for nanosatelli...Research, design and fabrication of a microwave active filter for nanosatelli...
Research, design and fabrication of a microwave active filter for nanosatelli...
 
A 3 – 14 GHZ LOW NOISE AMPLIFIER FOR ULTRA WIDE BAND APPLICATIONS
A 3 – 14 GHZ LOW NOISE AMPLIFIER FOR ULTRA WIDE BAND APPLICATIONSA 3 – 14 GHZ LOW NOISE AMPLIFIER FOR ULTRA WIDE BAND APPLICATIONS
A 3 – 14 GHZ LOW NOISE AMPLIFIER FOR ULTRA WIDE BAND APPLICATIONS
 
A bandwidth reconfigurable antenna for devices in low UWB-applications
A bandwidth reconfigurable antenna for devices in low UWB-applicationsA bandwidth reconfigurable antenna for devices in low UWB-applications
A bandwidth reconfigurable antenna for devices in low UWB-applications
 
Pentagon and circular ring slot loaded rectangular microstrip monopole
Pentagon and circular ring slot loaded rectangular microstrip monopolePentagon and circular ring slot loaded rectangular microstrip monopole
Pentagon and circular ring slot loaded rectangular microstrip monopole
 
A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...
A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...
A Wideband Circularly Polarized Printed Monopole Antenna with Symmetric Groun...
 
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
A Compact Reconfigurable Dual Band-notched Ultra-wideband Antenna using Varac...
 
A microwave active filter for nanosatellite’s receiver front-ends at s-bands
A microwave active filter for nanosatellite’s receiver front-ends at s-bandsA microwave active filter for nanosatellite’s receiver front-ends at s-bands
A microwave active filter for nanosatellite’s receiver front-ends at s-bands
 
O01052126130
O01052126130O01052126130
O01052126130
 
Design of a uhf band lna using active inductor with ffp noise cancelling
Design of a uhf band lna using active inductor with ffp noise cancellingDesign of a uhf band lna using active inductor with ffp noise cancelling
Design of a uhf band lna using active inductor with ffp noise cancelling
 
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICADUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA
DUAL BAND F-ANTENNA FOR EUROPE AND NORTH AMERICA
 
2009 IEEE AP-S-Compact Coaxial-Line-Fed Printed Monopole Antenna for Lower-Ba...
2009 IEEE AP-S-Compact Coaxial-Line-Fed Printed Monopole Antenna for Lower-Ba...2009 IEEE AP-S-Compact Coaxial-Line-Fed Printed Monopole Antenna for Lower-Ba...
2009 IEEE AP-S-Compact Coaxial-Line-Fed Printed Monopole Antenna for Lower-Ba...
 
Octagon shaped slot loaded rectangular microstrip monopole antennas for
Octagon shaped slot loaded rectangular microstrip monopole antennas forOctagon shaped slot loaded rectangular microstrip monopole antennas for
Octagon shaped slot loaded rectangular microstrip monopole antennas for
 
MTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptxMTECH 3RD SEM PPT-1.pptx
MTECH 3RD SEM PPT-1.pptx
 
Paper id 312201516
Paper id 312201516Paper id 312201516
Paper id 312201516
 
Design of a two stage differential low noise amplifier for uwb applications
Design of a two stage differential low noise amplifier for uwb applicationsDesign of a two stage differential low noise amplifier for uwb applications
Design of a two stage differential low noise amplifier for uwb applications
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Recently uploaded (20)

Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 

Design and fabrication of A Ku-band low noise amplifier using FR-4 substrate

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 1, February 2020, pp. 552~561 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i1.13196  552 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA Design and fabrication of A Ku-band low noise amplifier using FR-4 substrate Linh Ta Phuong1 , Bernard Journet2 , Duong Bach Gia3 1 Vietnam Space Center, Ministry of Science and Technology, Vietnam 2 LPQM (CNRS UMR-8537) École normale supérieure Paris-Saclay, CentraleSupelec, Université Paris-Saclay, France 3 VNU University of Engineering and Technology, Hanoi, Vietnam Article Info ABSTRACT Article history: Received May 22, 2019 Revised Oct 27, 2019 Accepted Nov 30, 2019 The low noise amplifier (LNA) plays an important role in many communication systems, especially at the receiver’s front-ends. In modern RF designs, The LNA is usually fabricated on a microstrip printed circuit board (PCB) due to its simplicity and ability of integrating flexibly with other components in a receiving circuitry unit. At frequencies lower than 6 GHz, the most prevalent substrate material for a microstrip LNA is FR-4 while at higher frequencies of over 10 GHz, it is challenging to design the LNA using this material without causing considerable losses to the RF signal. There are many works related to design microstrip LNA at high frequencies, however, the dielectric substrates used in most of them were high-cost materials for low dielectric loss. This paper introduces an LNA topology using the common, low-cost FR-4 substrate which can be operated in Ku-band for applications such as small satellites’ receivers, with the expected noise figure of lower than 1 dB, gain of around 10 dB and the return loss of around -10 dB. The stepped impedance matching technique has been used for transmission line optimization. The simulated and measured results are presented. Keywords: FR-4 Ku-band Low noise amplifier Stepped impedance matching This is an open access article under the CC BY-SA license. Corresponding Author: Bernard Journet, Quantum and Molecular Photonics Laboratory, ENS Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France. Email: bernard.journet@ens-cachan.fr 1. INTRODUCTION Low noise amplifier (LNA) has been widely applied in various communication systems, especially in the radio receiver’s front-ends. Its main advantage is to amplify receiving signals which have very low amplitude to an acceptable power level that can be figured out by the receiver without causing detrimental effects to the total signal-to-noise (SNR) ratio of the receiver unit. When go through the LNA, both signal and noise are amplified, thus, the LNA is usually integrated together with a bandpass filter in order to retrieve the signal from the unwanted following noises. For radio links such as satellite communication, the LNA of the receiver is commonly fabricated in printed circuit board (PCB) technology, in which, the Microstrip has a predominance over other types of electrical transmission line. The most popular material to used for the PCB Microstrip is the flame-retardant #4 (FR-4) epoxy glass. This dielectric material has some advantages over the others when using as a substrate for RF and PCB applications such as low cost, good mechanical properties, provides constant loss tangent over a wide band of frequencies [1]. However, the significant drawbacks of the FR-4 is its high insertion loss
  • 2. TELKOMNIKA Telecommun Comput El Control  Design and fabrication of a Ku-band low noise amplifier using FR-4 substrate (Linh Ta Phuong) 553 at high frequencies; from the electrical performance point of view, the FR-4 is not truly a high frequency circuit material [2]. The attenuation of the RF signal (dB/inch) when running through a microstrip line can be calculated as follow [3]: α=2.3f ⋅ tan(δ ) ⋅ εeff (1) where: α–Attenuation in dB / Inch. f–Frequency in GHz tan(δ)–Loss Tangent of the material εeff–Effective Relative dielectric constant of the material Based on (1), for a standard FR-4 with dielectric constant (εr)=4.35 and tan(δ)=0.0023, the attenuation α is 0.04 at 2 GHz and 0.2 at 10 GHz, respectively. For other material, such as Rogers RT Duroid 5880 with (εr)=2.2 and tan(δ)=0.0004, this value is about 0.004 at 2 GHz and 0.02 at 10 GHz, respectively. Furthermore, E.L.Holzman showed that for microstrip parallel-coupled resonator using FR-4 substrate with a dielectric constant of 4.5, the insertion loss (S21) increased rapidly from 2 GHz to 15 GHz [4], as illustrated in Figure 1. Figure 1. The measured insertion loss of microstrip parallel-coupled resonator versus simulated insertion loss of Advanced Design System (ADS) [4] It is clearly seen from Figure 1 that the increase of S21 is about 3.5 dB from 2 GHz to 15 GHz, this is even more drastically when comparing the S21 at the resonant frequency of 2.7 GHz (around 1.9 dB) with that of 13.4 GHz (around 11.9 dB). These results show that when using the FR-4, it is really challenging to design an LNA of over 10 GHz without causing significant attenuation to the signal. To avoid the ambiguity in terminology, the S21 parameter hereby can be understood as insertion loss for non-amplifying circuits and as gain for amplifying circuits, both are measured in dB. The others S-parameters, S11 and S22, are the input return loss and output return loss of the 2-port network. There are previous works related to research, design and fabricate the LNA using FR-4, but only limited in the frequency range of under 6 GHz: J. Rajendral and R. Peter (2014) [5] designed an L-band LNA using the ATF-58143 high electron mobility transistor for RF front end, with a moderate gain of about 13 dB and input return loss of 10 dB in the frequency range between 0.9 and 1.5 GHz. M.Arsalan and F.Wu [6] demonstrated a novel implementation of a pHEMT LNA that can be applied to satellite communications tracking receiver. The LNA has one stage, working between frequency span of 2-2.2 GHz with the transducer gain of over 10 dB. A wideband, three cascaded LNA worked in L-band and S-band has been presented by J.Lv et al. [7], in which, a novel equalization was proposed and demonstrated. This LNA, due to the effect of the equalization, attained an impressive high gain in the operating frequency range, about 38 dB, while the input and out return losses are approximately 7 dB and 8 dB, respectively. M. Z. A. A. Aziz et al. [8] developed a single stage low noise amplifier circuit design for the frequency band of 5 GHz to 6 GHz, with the gain of around 7.78 dB in the whole span, the S11 of below-10 dB from 5.5 GHz to 6 GHz. G. L. Ning et al. [9] presented a design of concurrent LNA for multi-band applications, in which, a 2 cascaded common-source staged LNA is matched by stepped-impedance transformers. By using this technique, the gain and input return loss over the whole designed frequency band of 2–6 GHz are around 21 dB and 10 dB, respectively.
  • 3.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 552 - 561 554 There are also some LNA designs at X-band and over, but none using FR-4: Girlando et al. [10] presented a LNA topology for X-band and the beginning of Ku-band based on the 46 GHz-fT pure bipolar technology, with the gains of 11.5 dB and 8 dB at 8 GHz and 12 GHz, respectively. C. Wang [11] introduced a wideband LNA using noise neutralizing technique, which is expected to apply to 3–10 GHz ultrawideband system. This topology had a gain of around 12 dB, with very good gain flatness from 2 GHz to 10 GHz. However, the gain values decreased rapidly at frequencies over 12 GHz, thus, this topology cannot cover the Ku-band. The scope of our work is to design and fabricate a microstrip LNA using FR-4 that can be integrated to Ku-band receiver front-ends, especially for small satellite (SmallSat) applications, where low cost and short lead time are two inseparable factors of the SmallSat development. For details, the FR-4 material can be experimentally used instead of traditional high frequency materials, thus offering major cost reduction. Moreover, the design procedure and technique are being simplified in order to easily produce in any radiocommunications laboratory, as well as apply to mass-production for small satellites’ testing and performance assurance at subsystem level [12]. This paper is organized as follows: section 2 is the introduction of technology used for the amplifier’s active device and impedance matching technique, as well as the design and simulation of the proposed LNA. The experimental results are demonstrated in section 3 and the conclusions are drawn in section 4. 2. DESIGN AND SIMULATION RESULTS OF THE LOW NOISE AMPLIFER The desired LNA has one stage only, the block diagram is shown in Figure 2. There are various technologies used in designing the active device for the LNA at Ku-band: Deng et al. [13], Afshar et al. [14], M. Yamagata and H. Hashemi [15], Liou et al. [16] developed the X/Ku-band LNA topologies based on the CMOS technology. The GaAs MESFET was demonstrated in the LNA designs of Bashir et al. [17], Islam et al. [18]. Furthermore, LNAs using high electron mobility transistor (HEMT) were reported in the journals of M. Fallahnejad and A. Kashaniniya [19] and Shoaib et al. [20]. A two-staged Ku-band LNA for satellite applications was presented by P. Bishoyi and S. S. Karthikeyan [21]. F. Guo and Z. Yao designed a GaN LNA in order to compare the power handling of their module with that of the traditional GaAs LNA [22]. The measured results of these works will be shown in the next section. In this design, we used hetero junction field effect transistor (HJFET), and the NE3515S02 model has been chosen. Though providing middle output power, the NE3515S02’s advantages are very low noise figure and high associated gain. This FET is a suitable choice for LNA or buffer amplifiers from X to Ku-band. In our case, for DC biasing, we chose the DC operation point (bias point) at VDS = 2V, ID = 40mA in order to keep the device in its active region. The corresponding gate to source voltage VGS is -0.2V and the corresponding power dissipation is less than 150 mW. Figure 2. The block diagram of the proposed LNA In general, the advantages of JFET technology is exhibiting very high input resistance and low output resistance, providing high thermal stability and high degree of isolation between the input and output of the transistor. It is a good choice for microstrip LNA, with respect to the impedance matching aspect. In order to deliver the maximum amount of power from the source to the load, the input and output impedances (Zin and Zout) of the transistor need to be matched with the source and load impedances (ZS and ZL). We do the impedance matching for the standard ZS and ZL of 50 Ohms. The figure below demonstrates the LNA with matching network.
  • 4. TELKOMNIKA Telecommun Comput El Control  Design and fabrication of a Ku-band low noise amplifier using FR-4 substrate (Linh Ta Phuong) 555 In Figure 3, ГS, ГL, Гin and Гout are the reflection coefficients of the source, the load, the input and out put of the transistor, respectively. Z0 is the characteristic impedance of the transmission lines which are connected to the source and the load, in our case, its value is 50Ω. When goes through the input and output matching networks, the Z0 is transformed to the corresponding complex impedances of the transistor’s input and output. GS, G0 and GL are the gain factors of the input matching network, the transistor itself and the output matching network in turn. The overall transducer gain is GT=GS.G0.GL. Since G0 is unique at a certain frequency of a given transistor, the overall gain of the amplifier is only being controlled by varying the values of GS and GL of the impedance matching networks [24]. The impedance matching technique used for this LNA topology is stepped impedance matching. This is a method in which, the impedance values changed flexibly from the input to the output of the impedance matching network. It can be easily applied to the microstrip PCB by changing the width and length of the microstrip transmission lines. By using stepped impedance matching, the physical length of the transmission lines can be shortened, thus decrease the attenuation of the RF signal when travelling through these. This point is very important when fabricating the microwave circuits with high attenuation substrate like FR-4. Furthermore, the operation bandwidth of the LNA can be improved when applying this matching technique and the dimensions of the circuit can be considerably reduced. Figure 4 illustrates a typical stepped impedance transformer. In Figure 4, impedance of the ith stage that looks toward the termination can be calculated as follow [9]: 𝑍𝑖 ′ = 𝑍𝑖 𝑍𝑖+1 ′ +𝑗𝑍 𝑖tan⁡(𝛽𝑙 𝑖) 𝑍 𝑖+𝑗𝑍𝑖+1 ′ tan⁡(𝛽𝑙 𝑖) (2) where i = 1,2,….,n and β is the propagation constant. li is the physical length and Zi is the characteristic impedance of the ith stage. In general, the principle in designing our stepped impedance transformer is similar to that of [25], but for a much higher frequency range. Figure 3. The block diagram of the single stage LNA with matching network (redrawn from [23]) Figure 4. Principal diagram of the stepped impedance transformer [9] For impedance matching, the input and output reflection coefficients (S11 and S22) of NE3515S02 at the chosen frequencies in Ku-band was taken from the device’s datasheet, based on these values, the input and output impedances of the transistor can be calculated. Consequently, by using (2) recursively, the characteristic impedances Zi of each stepped impedance section can be determined. The electrical length of each section has been chosen equal to a quarter wavelength or a multiple of this value, thus the LNA can be operated in several frequency ranges in the Ku-band. The corresponding physical length and width of each section can then be calculated, as showed in Table 1. It is noticed in the above tables that the dimensions of the stepped impedance transformers varied nonlinearly over the four sections. This allowed us to versatilely modify the impedance values through each section, thus change the values of the corresponding quality factor (Q) of them. For details, when degrading
  • 5.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 552 - 561 556 the quality factor, the gain decreased but a wider bandwidth has been reached, and vice versa. Consequently, the bandwidth can be adjusted (narrower or wider) with respect to the design requirement of the LNA. The FR-4 material used for the LNA has the following characteristics: Relative dielectric constant: 4.34, loss tangent: 0.0023, dielectric height: 1.6 mm, conductor thickness: 0.035 mm, roughness: 0.0095. The simulated results (in Decibel) of the input reflection coefficient (S11) and insertion loss (S21) have been executed by the Advanced Design System (ADS) 2014, provided by Keysight. The schematic design is illustrated in Figure 5. Table 1. The design values of stepped impedance transformer for the input and output branch matching Section Input branch Output branch Width (mm) Length (mm) Zi (Ohms) Width (mm) Length (mm) Z(Ohms) 1 3.87 7.22 43.9 3.87 5.32 43.9 2 9.8 2.12 22.4 7.68 2.12 27.1 3 5.8 11.5 33.3 5.8 10.46 33.3 4 2.75 4.03 54 2.6 10.1 55.8 Figure 5. The simulation schematic of the Ku-band LNA using FR-4, with stepped impedance matching network Figure 6 shows the simulated results of the gain and return loss of the proposed LNA in 3 frequency ranges, centered at 12.2 GHz, 14.9 GHz and 17.6 GHz, respectively. It is clearly seen that in the above figures, the S21 and S11 is approximately 11.9 dB and-18 dB at 12.2 GHz, 12.5 dB and-24 dB at 14.9 GHz and around 9.5 dB and-9 dB at 17.6 GHz. It means that our LNA has the ability of operating in several frequency ranges from the beginning to the end of the Ku-band. Figure 7 shows the simulated results of the noise figure (in dB) in the 3 mentioned frequency ranges. As can be seen in the above figure, the noise figures of all the mentioned frequency ranges are below 1 dB. The simulated results met the design requirement, thus, the noise is predicted to have no detrimental effect to the designed LNA.
  • 6. TELKOMNIKA Telecommun Comput El Control  Design and fabrication of a Ku-band low noise amplifier using FR-4 substrate (Linh Ta Phuong) 557 (a) (b) (c) Figure 6. The simulated results of S11 and S21 in the frequency range of (a) 11–14 GHz (b) 14–16 GHz (c) 16–19 GHz (a) (b) (c) Figure 7. The simulated result of the noise figure seen from the input in the frequency ranges which centered at (a) 12.2 GHz, (b) 14.9 GHz, (c) 17.6 GHz
  • 7.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 552 - 561 558 3. MEASURED RESULTS The LNA circuit was designed and fabricated in our laboratory based on the ADS package and the LPKF ProtoMat C40 machine. For testing and measuring, the Agilent E8257D Signal Generator has been used to provide an incoming signal to the input of the LNA module, the Agilent E4446A Spectrum Analyzer then received the output signal of the LNA and displayed it in the frequency domain, as shown in Figure 8. Figure 9 shows the measured results of the Ku-band LNA, which are corresponding to the above simulated results. The measured frequency ranged from 12 GHz to 18 GHz. The measure was done by collecting the amplitude values of the receiving signal over the measured frequency ranges with the frequency step of 10 MHz. (a) (b) Figure 8. (a) The experimental measurement, (b) The fabricated LNA (a) (b) (c) Figure 9. The measured results of S21 in the frequency range of (a) 11–4 GHz, (b) 14–16 GHz, (c) 16–19 GHz
  • 8. TELKOMNIKA Telecommun Comput El Control  Design and fabrication of a Ku-band low noise amplifier using FR-4 substrate (Linh Ta Phuong) 559 In Figure 9 (a), the frequency is about 12.2 GHz, which is well-matched with the above prediction. The -10 dB bandwidth is approximately 400 MHz, which is narrower than that of the simulated result. However, the peaked gain is considerably higher (15 dB compared with 11.9 dB). As can be seen in Figure 9 (b), in the frequency region of 14–16 GHz, the gain values have two maxima of around 11 dB and 10 dB at the frequencies of 14.37 GHz and 15.15 GHz, respectively. This result is different from the S21 curve in Figure 6 (b), it mainly caused by the attenuation effect of the FR-4 substrate in real environment. However, the highest gain values at these frequencies are acceptable. Like the two above experimental results, the trend of the S21 curve in Figure 9 (c) showed a more selective characteristic than the simulated result. The measured gain is approximately 10 dB at 17.8 GHz, which is almost similar to the simulation. The frequency bandwidth is being tightened as predicted in the previous section. The measured -10 dB bandwidth is around 200 MHz. The trade-off between gain and bandwidth is also being illustrated in Figure 9 (a) and Figure 9 (b). Table 2 shows the comparison between our purposed LNA and the LNA’s previous works. Table 2. Comparison of the design parameters of proposed LNA and other LNAs operate in Ku-band References Technology Frequencies (GHz) Gain (dB) Note This work HJFET 12.2 14.4 and 15.1 17.6 15 10 15 Demonstration for narrowband frequencies Bashir et. al. [17] GaAs MESFET 12 GHz 14.2 Simulation results only Islam et. al. [18] GaAs MESFET 12 GHz 8.9 M.Fallahnejad, A.Kashaniniya [19] HEMT 10 GHz 15 GHz 13 15 Simulation results only Shoaib et. al. [20] PHEMT 12.7 GHz 8.4 Deng et. al. [13] CMOS (0.18µm) 14 to 15 >10 B.Afshar, A.M. Niknejad [14] CMOS (0.18µm) 11 GHz 12 (2 stages) 8 (single stage) Liou et. al. [16] CMOS (0.18µm) 12 15 (midband) 18 10.1 9.7 8.2 M.Yamagata, H.Hashemi [15] CMOS (0.13µm) 10.1 13-14 In general, the average S21 of our work from 12 GHz to 18 GHz is not as good as that of the mentioned works. This is due to the fact that our fabricated substrate is FR-4, a high attenuation material at the frequencies of over 10 GHz, thus our topology can hardly be used as a wideband LNA at the Ku-band. However, when zooming in the narrow frequency spans with the center frequencies demonstrated above, the measured gains are well suited for the narrowband LNA’s applications. In this case, the gain flatness is not a major parameter as it does in the wideband LNA. Furthermore, the narrowband gains can be easily tuned to the desired center frequencies in the whole Ku-band by modifying the stepped impedance transmission lines. 4. CONCLUSION This paper introduced about a Ku-band low noise amplifier using the common FR-4 substrate. By using this type of material, we can primarily solve out the problem of balancing between cost and performance of the high frequency LNA. Furthermore, by applying the stepped impedance matching technique, the circuit’s length is significantly reduced and it leads to the ability of integrating this with small receiver’s modules, such as the receiver front-ends of the small satellites. The simulated and measured results are being presented, and the gain values over the experimental frequency ranges are approximated to the maximum gain value of the NE3515S02 HJFET’s datasheet in Ku-band. Though there were some differences of the peaked gain at lower frequency ranges between simulation and measurement, it still proved that the proposed LNA module can be operated as a narrowband amplifier in the entire Ku-band with high selective frequency, and the bandwidth can be flexibly adjusted with respect to the design requirement by varying the transmission lines’ dimensions of the impedance matching network. REFERENCES [1] A. R. Djordjevic, R. M. Biljie, V. D. Likar-Smiljanic and T. K. Sarkar, "Wideband frequency-domain characterization of FR-4 and time-domain causality," IEEE Transactions on Electromagnetic Compatibility, vol. 43, no. 4, pp. 662-667, Nov 2001.
  • 9.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 1, February 2020: 552 - 561 560 [2] J. Coonrod, et. al., “Selecting PCB Materials for High-Frequency Applications,” Microwave Engineering Europe, pp. 18-21, 2012. [3] Rick Hartley, “RF/Microwave PC Board Design and Layout Base Materials for High Speed, High Frequency PC Boards,” [Online], Available: http://www.eas.uccs.edu/~mwickert/ece5250/notes/RFMicrowave-PCB-Design-and- Layout.pdf [4] E. L. Holzman, "Wideband measurement of the dielectric constant of an FR4 substrate using a parallel-coupled microstrip resonator," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 7, pp. 3127-3130, July 2006. [5] J. Rajendran, R. Peter, “Design and simulation of low noise amplifier for RF front end at L band,” First International Conference on Computational Systems and Communications (ICCSC), Trivandrum, pp. 86-89, 2014. [6] M. Arsalan and F. Wu, "An S band tracking receiver LNA for satellite communications," 2018 International Workshop on Antenna Technology (iWAT), Nanjing, pp. 1-4, 2018. [7] Juncai Lv, Yongfang Bao, Jiurong Huang, "Wideband low noise amplifier using a novel equalization," 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, pp. 609-614, 2016. [8] M. Z. A. A. Aziz, J. Din, M. K. A. Rahim, “Low noise amplifier circuit design for 5 GHz to 6 GHz,” RF and Microwave Conference, Selangor, Malaysia, pp. 5-8, 2004. [9] G. L. Ning, Z. Y. Lei, L. J. Zhang, R. Zou, L. Shao., “Design of concurrent low-noise amplifier for multi-band applications,” Progress In Electromagnetics Research C, Marrakesh, Morocco, vol. 22, pp. 165-178, 2011. [10] G. Girlando, G. Ferla, E. Ragonese and G. Palmisano, “Silicon bipolar LNAs in the X and Ku bands,” 9th International Conference on Electronics, Circuits and Systems, Dubrovnik, Croatia, vol. 1, pp. 113-116, 2002. [11] C. Wang and C. Wang, "A 90nm CMOS Low Noise Amplifier Using Noise Neutralizing for 3.1-10.6 GHz UWB System," 2006 Proceedings of the 32nd European Solid-State Circuits Conference, Montreux, pp. 251-254, 2006. [12] M. N. Sweeting, "Modern Small Satellites-Changing the Economics of Space," Proceedings of the IEEE, vol. 106, no. 3, pp. 343-361, March 2018. [13] K. Deng, et al., “A Ku-band CMOS low-noise amplifier,” 2005 IEEE International Workshop on Radio-Frequency Integration Technology: Integrated Circuits for Wideband Comm & Wireless Sensor Networks, Singapore, pp. 183-186, 2005. [14] B. Afshar and A. M. Niknejad, "X/Ku Band CMOS LNA Design Techniques," IEEE Custom Integrated Circuits Conference 2006, San Jose, CA, pp. 389-392, 2006. [15] M. Yamagata and H. Hashemi, "A Differential X/Ku-Band Low Noise Amplifier in 0.13-$mu$m CMOS Technology," IEEE Microwave and Wireless Components Letters, vol. 17, no. 12, pp. 888-890, Dec 2007. [16] Wan-Rone Liou, Siddarth Rai Mahendra and Tsung-Hsing Chen, "A wideband LNA design for Ku-Band applications," 2010 International Conference on Communications, Circuits and Systems (ICCCAS), Chengdu, pp. 680-684, 2010. [17] M. A. Bashir, M. M. Ahmed, U. Rafique and Q. D. Memon, "Design of a Ku-band high gain low noise amplifier," 2013 IEEE International RF and Microwave Conference (RFM), Penang, pp. 168-171, 2013. [18] M. R. Islam et al., “Design of a low noise amplifier with GaAs MESFET at Ku_Band,” International Conference on Computer and Communication Engineering (ICCCE'10), Kuala Lumpur, pp. 1-5, 2010. [19] M. Fallahnejad and A. Kashaniniya, “Design of Low Noise Amplifiers at 10 GHZ and 15 GHZ for Wireless Communication Systems,” IOSR Journal of Electrical and Electronics Engineering, vol. 9, no. 5, pp. 47-53, Jan 2014. [20] N. Shoaib, M. Ahmad and I. Mahmood, "Design, fabrication & testing of Low Noise Amplifier at Ku-Band," 2008 2nd International Conference on Advances in Space Technologies, Islamabad, pp. 18-23, 2008. [21] P. Bishoyi and S. Karthikeyan, "Design of a two stage Ku band low noise amplifier for satellite applications," 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, pp. 0270-0273, 2015. [22] F. Guo and Z. Yao, "Design of a Ku-band AlGaN/GaN low noise amplifier," Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, pp. 1406-1408, 2014. [23] D. M. Pozar, “Microwave Engineering,” Third Edition, New York: John Willey and Son, pp. 610, 2005. [24] G. Gonzalez, “Microwave Transistor Amplifiers: Analysis and Design,” Second Edition, New Jersey: Prentice Hall. pp. 228-229, 1997. [25] K. Inderkumar, et. al., "Compact wideband quarter-wave transformer using stepped impedance microstrip lines," 2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA), Mumbai, pp. 184-188, 2017.
  • 10. TELKOMNIKA Telecommun Comput El Control  Design and fabrication of a Ku-band low noise amplifier using FR-4 substrate (Linh Ta Phuong) 561 BIOGRAPHIES OF AUTHORS Linh Ta Phuong received the M.Sc. Degree in Electronics and Telecommunications Technology from University of Engineering and Technology, Vietnam National University in 2014 and M.Sc. Degree in Aerospace Engineering from Tohoku University in 2017. From 2015 up to now, he is a researcher in Vietnam National Space Center, Vietnam Academy of Science and Technology. His researches mainly focus on microwave engineering, communications in satellites, ground station and radio systems. Email: tplinh@vnsc.org.vn Bernard Journet was born in Lyon, France in 1956. From 1983 to 1984, he was a teacher of the 1st year BTS Electronics class and 1st year Mechanics and Automatism class of Gustave Eiffel Highschool. From 1984 to 1989, he was a teacher of the BTS class of Optics and Precision and TF10 in the Fresnel High School. He has been an Associate Professor at the department of Electronics, Electrotechniques and Automatic (EEA) of the ENS Paris-Saclay, France from Oct.1, 1989 up to now. His field of research focuses on Optoelectronic Oscillator and Applications for Optical and Microwave systems. Email: bernard.journet@ens-cachan.fr Duong Bach Gia was born in Ha Dong Dist., Hanoi, Vietnam in 1950. He received the B.S degree in radio physics in 1972 and the Ph.D. degree in wireless physics from University of Hanoi in 1988. From 1988 to 1990, he was a researcher assistant in Leningrad University, Russia. From 1991 to 2005, he was a researcher in academy of air force. He has been a lecturer and head of electronics and telecommunications center, University of Engineering and Technology, Vietnam National University since 2006. He was promoted to Associate Professor in 2009 and to Professor in 2016. His research focuses on RF analog signal processing, RF chip design, radar engineering and technology, automatic control. Email: duongbg@vnu.edu.vn