SlideShare a Scribd company logo
1 of 97
Download to read offline
3-D RECONSTRUCTION OF A
VISION BASED ON ITS
STEREOSCOPIC MODEL
Tesista
Guillermo Enrique Medina Zegarra
Orientador
PhD. Edgar Lobaton, USA
Co-Orientador
PhD. Nestor Calvo, Argentina
Agradezco a
Arequipa, Per´u
May 07, 2012
1
Index
Index
1 Introduction
2 Image formation
3 Geometry from two views
4 Proposal
5 Results
6 Limitations and problems founded
7 Conclusions and future work
2
Index
1 Introduction
Motivation and context
Definition the problem
General objective
Specific objectives
2 Image formation
3 Geometry from two views
4 Proposal
5 Results
6 Limitations and problems founded
7 Conclusions and future work
3
Motivation and context
Limitations on pre-Renaissance to create 3D.
(a) Jesus into
Jerusalem
3
Motivation and context
The artists during the Renaissance and the depth.
The vanishing points and three dimensions.
(b) The School of Athens
3
Motivation and context
Limitations on pre-Renaissance to create 3D.
The artists during the Renaissance and the depth.
The vanishing points and three dimensions.
(a) Jesus into
Jerusalem
(b) The School of Athens
Figura: Painting pre-Renaissance and Renaissance [Ma et al., 2004].
4
Definition the problem
Physical architecture, location, distribution and lighting.
(a) One camara
[Cipolla et al., 2010]
(b) Artificial lighting
[VISGRAF., 2012]
5
Definition the problem (cont...)
Figura: How to get the parameters to map an object to the image plane
? [Faugeras, 1993].
6
Definition the problem (cont...)
Figura: How to find corresponding points ? [Szeliski, 2011].
7
Definition the problem (cont...)
Figura: How to find a 3D point of each pair of corresponding points ?
[Szeliski, 2011].
8
Definition the problem (cont...)
Figura: How to reconstruction and smooth a surface from a cloud of
points ? [Hartley and Zisserman, 2004].
9
General objective
Objetivo general
Propose a model for the reconstruction of a 3D image of an object
from two images captured by two cameras located adequately.
10
Specific objectives
Specific objectives
Position two digital cameras on a physical architecture for image
acquisition and calibration.
Rectification of the stereo image pair and calculate the disparity
map through the normalized cross-correlation.
Create the object’s surface from the Delaunay triangulation of the
disparity map.
11
Index
1 Introduction
2 Image formation
3 Geometry from two views
4 Proposal
5 Results
6 Limitations and problems founded
7 Conclusions and future work
12
Pinhole camera model
Help to understand the image formation from geometric point of
view.
Parts of the pinhole camera model: optical center (o), focal
distance (f ) and image plane (I).
x = ¯op ∩ I x ∈ R2
, p ∈ R3
Figura: Pinhole camera model [Ma et al., 2004].
13
Pinhole camera model (cont...)
Figura: Example of the projection of an object on image plane .
14
Index
1 Introduction
2 Image formation
3 Geometry from two views
4 Proposal
5 Results
6 Limitations and problems founded
7 Conclusions and future work
15
Epipolar geometry
Study the geometric relationship and mathematical analysis of a
3-D p point in their image planes.
Figura: Two projections x1, x2 ∈ R2
of a 3-D point p from two vantage
points [Ma et al., 2004].
16
Epipolar geometry (cont...)
Figura: Example of the projection of a cube image on two image planes.
17
Rectification
Figura: Rectification of the stereo image pair [Fusiello et al., 2000].
18
Disparity calculation
(a) (b) Disparity map
(a - b) Tsukuba image pair [Scharstein and Szeliski, 2002].
19
Index
1 Introduction
2 Image formation
3 Geometry from two views
4 Proposal
5 Results
6 Limitations and problems founded
7 Conclusions and future work
20
Pipeline of the proposal
21
Description of the proposed pipeline
Physical architecture
Canon SD1200 Sony DSC-S750
21
Description of the proposed pipeline
Physical architecture
Image acquisition
features Sony DSC-S750 Canon SD1200 IS
Sensor type CCD CCD
Image size 640 × 480 640 × 480
ISO 100 100
Flash off off
Technical characteristics of the two digital cameras
21
Description of the proposed pipeline
Physical architecture
Image acquisition
Calibration
Chessboard (7 × 10)
22
Description of the proposed pipeline
Rectification
Linear search
The correspondence of points is
in the same horizontal line
Original images Rectified images
23
Description of the proposed pipeline
Pre-processing
Manual segmentation
Gaussian filter
Rectified images Pre-processed images
24
Description of the proposed pipeline
Disparity map
Normalized Cross-Correlation
Median filter
Left image pre-processed Right image pre-processed Disparity map
25
Description of the proposed pipeline
3-D mesh
Delaunay triangulation
Intersection of lines
3-D mesh
Disparity map Point Cloud 3-D mesh
26
Description of the proposed pipeline
Reconstructed model
Smoothing the surface
Texturing of the right image
Creation of the surface Smoothing of the surface Texturing of the model
27
“Cubo m´agico”
Original images Rectified images Pre-processed images
28
“Cubo m´agico” (cont...)
Disparity map Point Cloud 3-D mesh
Creation of the surface Smoothing of the surface Texturing of the model
29
Multiple views of the “Magic Cube”
29
Multiple views of the “Magic Cube”
29
Multiple views of the “Magic Cube”
29
Multiple views of the “Magic Cube”
29
Multiple views of the “Magic Cube”
29
Multiple views of the “Magic Cube”
29
Multiple views of the “Magic Cube”
29
Multiple views of the “Magic Cube”
30
Index
1 Introduction
2 Image formation
3 Geometry from two views
4 Proposal
5 Results
Teddy bear
Human face
6 Limitations and problems founded
7 Conclusions and future work
31
Teddy bear
Original images Rectified imagenes Pre-processed imagenes
32
Teddy bear (cont...)
Disparity map Cloud of points 3-D mesh
Creation of the surface Smoothing of the surface Texturing of the model
33
Human face
Original images Rectified imagenes Pre-processed imagenes
34
Human face (cont...)
Cloud of points Model without smoothing Smoothing model “Transformed” model
3-D mesh Model without smoothing Smoothing model “Transformed” model
35
Index
1 Introduction
2 Image formation
3 Geometry from two views
4 Proposal
5 Results
6 Limitations and problems founded
7 Conclusions and future work
36
Limitations and problems founded
neighbourhood size Imperfections of the created model
37
Limitations and problems founded (cont...)
Imperfect original image Imperfect original image
Wrong disparity map “Amorphous” 3-D reconstruction
38
Index
1 Introduction
2 Image formation
3 Geometry from two views
4 Proposal
5 Results
6 Limitations and problems founded
7 Conclusions and future work
39
Conclusions
Physic architecture was designed simple and profit.
Lighting conditions must be adequate.
A pipeline was proposed with a sequence of steps needed to get a
3-D reconstruction of a stereo image pair.
The method for the disparity calculation is simple and no robust.
There is a strong dependency between each step of the
reconstruction.
40
Future work
Create an environment with
appropriate conditions for calibration,
lighting and image acquisition.
Physical architecture and artificial lighting [Bradley et al., 2008]
40
Future work
Create an environment with
appropriate conditions for calibration,
lighting and image acquisition.
Physical architecture and artificial lighting [Bradley et al., 2008]
Use multiple cameras.
Multiple views [Hartley and Zisserman, 2004]
41
Future work (cont...)
Use robust methods.
42
Publicated on
Symposium article
“3-D visual reconstruction : a system perspective.”
G. Medina-Zegarra y E. Lobaton
2nd International Symposium on Innovation and Techno-
logy (2011)
pag. 102-107, November 28-30, Lima, Peru
ISBN: 978-612-45917-1-6
Place: Technological University of Peru
Editor: International Institute of Innovation and Techno-
logy (IIITEC)
Chair: Mario Chauca Saavedra
43
Acknowledgements
PhD. Alfedro Miranda
Mag. Alfedro Paz
PhD. Carlos Leyton
PhD(c). Christian L´opez del Alamo
PhD. Edgar Lobaton
PhD. Eduardo Tejada
PhD. Jes´us Mena
PhD. Jos´e Corrales-Nieves
PhD(c). Juan Carlos Gutierrez
Lic. Lu´ıs Pareja
PhD. Nestor Calvo
PhD(c). Regina Ticona
Family Barrios Neyra
44
References
Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boubekeur, T. (2008).
Markerless garment capture.
ACM Transactions on Graphics (TOG), 27:99:1–99:9.
Cipolla, R., Battiato, S., and Farinella, G. M. (2010).
Computer Vision: Detection, Recognition and Reconstruction.
Springer.
Faugeras, O. (1993).
Three-dimensional Computer Vision: A Geometric Viewpoint.
The MIT Press. ISBN: 0262061589.
Fusiello, A., Trucco, E., and Verri, A. (2000).
A compact algorithm for rectification of stereo pairs.
Machine Vision and Applications, 12:16–22.
Hartley, R. and Zisserman, A. (2004).
Multiple View Geometry in Computer Vision. Second Edition.
Cambridge University Press. ISBN: 0521540518.
Ma, Y., Soatto, S., Koˇseck´a, J., and Sastry, S. S. (2004).
An Invitation to 3D Vision from Images to Geometric Models.
Springer. ISBN: 0387008934.
Scharstein, D. and Szeliski, R. (2002).
A taxonomy and evaluation of dense two-frame stereo correspondence algorithms.
International Journal of Computer Vision, 47:7–42.
Szeliski, R. (2011).
Computer Vision: Algorithms and Applications.
Springer. ISBN: 9781848829343.
3-D RECONSTRUCTION OF A
VISION BASED ON ITS
STEREOSCOPIC MODEL
Tesista
Guillermo Enrique Medina Zegarra
Orientador
PhD. Edgar Lobaton, USA
Co-Orientador
PhD. Nestor Calvo, Argentina
Agradezco a
Arequipa, Per´u
May 07, 2012
45
View points (perception)
(a) The glass is half full
or half empty ?
(b) is it a duck or a rabbit ?
46
Contenido extra
Contenido extra
1 Datos de procesamiento
2 Geometr´ıa de una vista
3 Geometr´ıa de dos vistas
4 Rectificaci´on e intersecci´on de rectas
5 Mapa de disparidad
6 Filtro de Gauss y filtro de la mediana
7 Propiedades de la triangulaci´on de Delaunay
47
Datos de procesamiento
Un procesador Intel (R) Core (TM) 2 CPU 1.66 GHz y una
memoria RAM 2GB.
El costo computacional del algoritmo en el peor caso es O(n3
) y en
el mejor caso es Θ(n2
).
El tiempo del procesamiento del algoritmo fue de 25 minutos.
48
Modelamiento geom´etrico (matriz de mapeamiento)
propuesta
slide
π : R4
→ R3
; p → x


fsx fsθ ox
0 fsy oy
0 0 1


K
=


sx sθ ox
0 sy oy
0 0 1


Ks


f 0 0
0 f 0
0 0 1


Kf
(1)


u
v
1


x
= K


1 0 0 0
0 1 0 0
0 0 1 0


Π0
R t
0 1
g
π




X
Y
Z
1




p
(2)
49
Ecuaciones de la Geometr´ıa Epipolar
slide
Restricci´on epipolar
xT
2 Fx1 = 0
49
Ecuaciones de la Geometr´ıa Epipolar
slide
Restricci´on epipolar
xT
2 Fx1 = 0
Matriz Fundamental
F = K−T
2 EK−1
1
49
Ecuaciones de la Geometr´ıa Epipolar
slide
Restricci´on epipolar
xT
2 Fx1 = 0
Matriz Fundamental
F = K−T
2 EK−1
1
Matriz esencial
E = [t]x R
49
Ecuaciones de la Geometr´ıa Epipolar
slide
Restricci´on epipolar
xT
2 Fx1 = 0
Matriz Fundamental
F = K−T
2 EK−1
1
Matriz esencial
E = [t]x R
Matriz antisim´etrica
[t]x =


0 −c b
c 0 −a
−b a 0

 (3)
50
Sistema lineal para la matriz F
ui , vi , 1 T


F11 F12 F13
F21 F22 F23
F31 F32 F33

 ui , vi , 1 = 0 , i ∈ R
+
(4)
uu F11 + uv F21 + uF31 + vu F12 + vv F22 + vF32 + u F13 + v F23 + F33 = 0 (5)












u1u1 u1v1 u1 v1u1 v1v1 v1 u1 v1 1
u2u2 u2v2 u2 v2u1 v2v2 v2 u2 v2 1
u3u3 u3v3 u3 v3u1 v3v3 v3 u3 v3 1
u4u4 u4v4 u4 v4u1 v4v4 v4 u4 v4 1
u5u5 u5v5 u5 v5u1 v5v5 v5 u5 v5 1
u6u6 u6v6 u6 v6u1 v6v6 v6 u6 v6 1
u7u7 u7v7 u7 v7u1 v7v7 v7 u7 v7 1
u8u8 u8v8 u8 v8u1 v8v8 v8 u8 v8 1












A













F11
F12
F13
F21
F22
F23
F31
F32
F33













F
= 0 (6)
51
Sistema lineal para la matriz F (cont...)
Minimizar:
A F
2
=
8
i=1
(u
T
i Fui )
2
(7)
Sujeto a:
F 2
= 1 (8)
Por lo tanto, se forma la siguiente funci´on de Lagrange:
L(F, λ) = A F 2
− λ( F 2
− 1) (9)
Por consiguiente, se aplica el m´etodo de los multiplicadores de Lagrange:
JL(F, λ){
2AT
AF − λ(2F)
F 2
− 1
, λ ∈ R
+
(10)
Ahora, se procede a resolver la ecuaci´on JL(f , λ) = 0. La cual, es equivalente a hallar los autovalores y
autovectores de la matriz sim´etrica AT
A:
AT
AF = λ.F
F 2
= 1
(11)
Al calcular los autovectores, se habra encontrado la matriz fundamental F.
52
Calculando los autovalores de una matriz (ejemplo)
A =


1 1 0
2 0 1
0 0 3

 A − λI =


1 − λ 1 0
2 −λ 1
0 0 3 − λ

 (12)
det( A - λ I ) = (1 - λ)(- λ )(3 - λ ) - 2( 3 - λ )
det( A - λ I ) = ( - λ + λ2 )(3 - λ )- 6 + 2 λ
det( A - λ I ) = - λ3 + 4 λ2 - λ - 6
det( A - λ I ) = λ3 - 4 λ2 + λ + 6
Resolviendo el polinomio se encuentran las raices (autovalores), los
cuales son: -1, 2 y 3
53
Calculando los autovectores de una matriz (ejemplo)
A =


1 1 0
2 0 1
0 0 3

 A − λI =


1 − λ 1 0
2 −λ 1
0 0 3 − λ

 (13)
I) Para λ = -1
(A - λ I)v =0
(A - (-1) I)v =0
(A + I)v =0


2 1 0
2 1 1
0 0 4


(A+I)


a
b
c

 =


0
0
0

 (14)
54
Calculando los autovectores de una matriz (ejemplo)
Haciendo el m´etodo de Gauss tenemos:


1 1
2 0
0 0 1
0 0 0

 (15)
c=0 (a, b, c) = (−b
2 , b, 0)
a + b
2 = 0 ⇒ a = −b
2 (a, b, c) = b(−1
2, 1, 0)
55
Calculando los autovectores de una matriz (ejemplo)
II) Para λ = 2


−1 1 0
2 −2 1
0 0 1


(A−2×I)


1 −1 0
0 0 1
0 0 0

 (16)
c=0 (a,b,c) = (b,b,0)
a-b=0 ⇒ a = b (a,b,c) = b(1,1,0)
56
Calculando los autovectores de una matriz (ejemplo)
III) Para λ = 3


−2 1 0
2 −3 1
0 0 0


(A−3×I)


1 −1
2 0
0 1 −1
2
0 0 0

 (17)
b − c
2 = 0 a − b
2 = 0 (a,b,c) = (c
4 , c
2 , c)
b = c
2 a = b
2 (a,b,c) = c(1
4, 1
2, 1)
a = c
4
Los autovalores son: {(−1
2, 1, 0), (1, 1, 0), (1
4, 1
2, 1)}
57
Planteamiento inicial de la rectificaci´on
propuesta
slide
La variable π representa a la matriz de mapeamiento
x ∼= π p (18)
Factorizaci´on QR de la matriz π
π = K[R | t] (19)
La matriz π se re-escribe como:
π =


qT
1 |q14
qT
2 |q24
qT
3 |q34

 = Q|q (20)
58
Planteamiento inicial de la rectificaci´on (cont...)
Las coordenadas del centro ´optico c est´a definido como:
c = −Q−1
q (21)
Se hace un despeje de la ecuaci´on 21 en funci´on de q.
π = [Q| − Qc] (22)
59
Desarrollo de la rectificaci´on
Matriz de transformaci´on
xr1 = λ Qr1Q−1
o1
Tl
xo1 λ ∈ R+
(23)
Para lo cual:
πo1 = [Qo1|qo1] πo1 MPP imagen izquierda inicial
πr1 = [Qr1 |qr1] πr1 MPP imagen izquierda rectificada
60
Pasos para hallar la matriz de transformaci´on
Se hace una factorizaci´on QR de las matrices iniciales
π1 = K[R | − R c1] π1 MPP de la imagen izquierda
π2 = K[R | − R c2] π2 MPP de la imagen derecha
(24)
Los centros ´opticos se hallan con la ecuaci´on 21
La matriz K es la matriz de par´ametros intr´ınsecos
La matriz de rotaci´on R es la misma para ambas matrices de
mapeamiento
61
Pasos para hallar la matriz de transformaci´on (cont...)
Hallando la matriz de rotaci´on R
R =


rT
1
rT
2
rT
3

 (25)
El nuevo eje X es paralelo a la l´ınea base: r1 = ( c1−c2
c1−c2
)
El nuevo eje Y es ortogonal a X, k : r2 = k ∧r1
El nuevo eje Z es ortogonal a XY r3 = r1 ∧ r2
62
Vector unitario k
Demostraci´on de la ortogonalidad del vector Y a trav´es del
vector unitario k.
Plano R3
Z × X =
i j k
0 0 1
1 0 0
Z × X = i(0) - j(-1) + k(0)
Z × X = 0i + 1j + 0k
Z × X
Y
= (0,1,0)
return
63
Intersecci´on de rectas (triangulaci´on)
slide
p = c1 + tQ−1
r1 x1 t ∈ R
p = c2 + sQ−1
r2 x2 s ∈ R
(26)
64
Intersecci´on de rectas (ejemplo)
return
L1 : (X, Y , Z)
p
= (1, 2, 1)
c1
+t (2, 0, 3)
Q−1
r1 x1
L2 : (X, Y , Z)
p
= (5, 4, 1)
c2
+s (−2, −2, 3)
Q−1
r2 x2
L1 : (X, Y , Z) = (1 + 2t, 2, 1 + 3t)
L2 : (X, Y , Z) = (5 − 2s, 4 − 2s, 1 + 3s)
t = 1 , s = 1
(X, Y , Z) = (3, 2, 4)
(27)
65
Representaci´on del punto medio
Calculando el punto medio
c1Q1 + λ = R1 tx1 +
Q2−Q1
2
= R1 tx1 +
(c2+sx2)−(c1+tx1)
2
= R1 tx1 +
(c2−c1)+(sx2−tx1)
2
= R1
c2Q2 − λ = R2 sx2 −
Q1−Q2
2
= R2 sx2 −
(c1+tx1)−(c2+sx2)
2
= R2 sx2 −
(c1−c2)+(tx1−sx2)
2
= R2
L1 = c1 + mR1 M = (
Q1+Q2
2
)
L2 = c2 + nR2 M = (
c1+tx1+c2+sx2
2
)
L1 ∩ L2 = M M = (
c1+c2
2
+
tx1+sx2
2
)
66
Factorizaci´on QR
La factorizaci´on de la matriz de mapeamiento π consta de la
siguientes dos matrices:
π = Q × R
donde:
La matriz Q se obtiene a trav´es del proceso de Gram-Schmidt
La matriz R se consigue a trav´es de la siguiente multiplicaci´on
R = QT × π
return
67
Proceso Gram-Schmidt
u1 = v1,
uk = vk - k−1
j=1
vk ,uj
uj
2 , ; j = 2,. . .,k
return
68
Proceso Gram-Schmidt (ejemplo)
A = {(1, 0, 1)
v1
, (0, 0, 1)
v2
, (1, 1, −1)
v3
}
u1 = v1 = (1, 0, 1)
u2 = (0, 0, 1) − 1
2(1, 0, 1)
u2 = (- 1
2 ,0, 1
2 )
u3 = (1,1,-1) - 0
2 (1,0,1) - (−1)
1
2
(- 1
2 ,0, 1
2 )
u3 = (1,1,-1) + 2(- 1
2 ,0, 1
2 )
u3 = (0,1,0)
La base ortogonal de A es {(1, 0, 1), (−1
2, 0, 1
2), (0, 1, 0)}
69
Pseudo-c´odigo del algoritmo de c´alculo de disparidad
dispComp(imDerecha,imIzquierda,maxDisp)
1 thNorm ← escalar ∗ (2 ∗ r + 1)
2 for i = 1 + r to col − r do
3 for j = 1 + r to fil − maxDisp − r do
5 pBase ← imDerecha(i − r : i + r, j − r : j + r)
6 pBase ← pBase − promedio(pBase)
7 nBase ← norma(pBase)
8 if nBase <= thNorm then
9 continue
10 end if
11 pBase ← pBase/nBase
12 for sh = 1 to maxDisp do
13 pShift ← imIzquierda(i − r : i + r, j + sh − r : j + sh + r)
14 pShift ← pShift − promedio(pShift)
15 nShift ← norma(pShift)
16 if nShift <= thNorm then
17 corr[sh] ← 0
18 continue
19 end if
20 corr[sh] ← sum((pShift/nShift). ∗ (pBase))
21 end for
22 [valor indice] ← max(corr)
23 if valor == 0 then
24 imDisp[i, j] ← 0
25 else
26 imDisp[i, j] ← indice
27 end if
28 end for
29 end for
30 return(imDisp)
70
Mapa de disparidad
propuesta
slide
Correlaci´on Normalizada Cruzada (CNC)
u,v (I1(u,v)−I1)(I2(u+d,v)−I2)
u,v (I1(u,v)−I1)2
u,v (I2(u+d,v)−I2)2
70
Mapa de disparidad
propuesta
slide
Correlaci´on Normalizada Cruzada (CNC)
u,v (I1(u,v)−I1)(I2(u+d,v)−I2)
u,v (I1(u,v)−I1)2
u,v (I2(u+d,v)−I2)2
d(x, y) = arg supr∈RC(x, y, r) (28)
71
Filtro Gaussiano
slide
Valores de la m´ascara
1 2 1
2 3 2
1 2 1
La cantidad de “suavizamiento” que
realiza el filtro gaussiano se puede
controlar variando la desviaci´on est´andar y
el tama˜no de la m´ascara Matriz deslizante de filtrado en el dominio espacial
72
Filtro de la mediana
slide
Valores de ejemplo
6 2 0
3 97 4
19 3 10
En orden ascendente los
n´umeros ser´ıan : 0, 2, 3,
3, 4, 6, 10, 15, 97
72
Filtro de la mediana
slide
Valores de ejemplo
6 2 0
3 97 4
19 3 10
En orden ascendente los
n´umeros ser´ıan : 0, 2, 3,
3, 4, 6, 10, 15, 97
Valor actualizado
* * *
* 4 *
* * *
El valor inicial fue 97 y
luego de utilizar el filtro
de la mediana fue
reemplazado por 4
73
Suavizaci´on del Laplaciano
slide
Calcula la posici´on de un
v´ertice q a partir del
promedio de los v´ertices
adyacentes.
Ejemplo:
3,6
5,4
9,2
14,3
16,10
7,6
———
54, 31
p(9,5) = 54
6 , 31
6
Representaci´on de la suavizaci´on del Laplaciano [Vollmer et al., 1999]
74
Propiedades de la Triangulaci´on de Delaunay
slide
Figura: Ilustraci´on de la primera propiedad de la Triangulaci´on de
Delaunay.
75
Propiedades de la Triangulaci´on de Delaunay (cont...)
Figura: Ilustraci´on de la segunda propiedad de la Triangulaci´on de
Delaunay.
76
Propiedades de la Triangulaci´on de Delaunay (cont...)
(a) Arista ilegal (b) Correcci´on de la
arista ilegal
77
Consideraciones del patr´on de calibraci´on
Detecci´on de las esquinas del patr´on Detecci´on de los puntos internos del patr´on
78
Algoritmo de reducci´on de pol´ıgonos
Reducci´on de pol´ıgonos

More Related Content

What's hot

Image segmentation
Image segmentationImage segmentation
Image segmentationMukul Jindal
 
A STUDY AND ANALYSIS OF DIFFERENT EDGE DETECTION TECHNIQUES
A STUDY AND ANALYSIS OF DIFFERENT EDGE DETECTION TECHNIQUESA STUDY AND ANALYSIS OF DIFFERENT EDGE DETECTION TECHNIQUES
A STUDY AND ANALYSIS OF DIFFERENT EDGE DETECTION TECHNIQUEScscpconf
 
Video Segmentation
Video SegmentationVideo Segmentation
Video SegmentationSmriti Jain
 
Localization of free 3 d surfaces by the mean of photometric
Localization of free 3 d surfaces by the mean of photometricLocalization of free 3 d surfaces by the mean of photometric
Localization of free 3 d surfaces by the mean of photometricIAEME Publication
 
A novel approach for efficient skull stripping using morphological reconstruc...
A novel approach for efficient skull stripping using morphological reconstruc...A novel approach for efficient skull stripping using morphological reconstruc...
A novel approach for efficient skull stripping using morphological reconstruc...eSAT Journals
 
A novel approach for efficient skull stripping using
A novel approach for efficient skull stripping usingA novel approach for efficient skull stripping using
A novel approach for efficient skull stripping usingeSAT Publishing House
 
Quality assessment for online iris
Quality assessment for online irisQuality assessment for online iris
Quality assessment for online iriscsandit
 
COMPARISON OF RENDERING PROCESSES ON 3D MODEL
COMPARISON OF RENDERING PROCESSES ON 3D MODELCOMPARISON OF RENDERING PROCESSES ON 3D MODEL
COMPARISON OF RENDERING PROCESSES ON 3D MODELijcsit
 
Performance of Efficient Closed-Form Solution to Comprehensive Frontier Exposure
Performance of Efficient Closed-Form Solution to Comprehensive Frontier ExposurePerformance of Efficient Closed-Form Solution to Comprehensive Frontier Exposure
Performance of Efficient Closed-Form Solution to Comprehensive Frontier Exposureiosrjce
 
HUMAN COMPUTER INTERACTION ALGORITHM BASED ON SCENE SITUATION AWARENESS
HUMAN COMPUTER INTERACTION ALGORITHM BASED ON SCENE SITUATION AWARENESSHUMAN COMPUTER INTERACTION ALGORITHM BASED ON SCENE SITUATION AWARENESS
HUMAN COMPUTER INTERACTION ALGORITHM BASED ON SCENE SITUATION AWARENESScsandit
 
Theories and Engineering Technics of 2D-to-3D Back-Projection Problem
Theories and Engineering Technics of 2D-to-3D Back-Projection ProblemTheories and Engineering Technics of 2D-to-3D Back-Projection Problem
Theories and Engineering Technics of 2D-to-3D Back-Projection ProblemSeongcheol Baek
 
Distance Metric Learning tutorial at CVPR 2015
Distance Metric Learning tutorial at CVPR 2015Distance Metric Learning tutorial at CVPR 2015
Distance Metric Learning tutorial at CVPR 2015Ruiping Wang
 
Iris Localization - a Biometric Approach Referring Daugman's Algorithm
Iris Localization - a Biometric Approach Referring Daugman's AlgorithmIris Localization - a Biometric Approach Referring Daugman's Algorithm
Iris Localization - a Biometric Approach Referring Daugman's AlgorithmEditor IJCATR
 
Features image processing and Extaction
Features image processing and ExtactionFeatures image processing and Extaction
Features image processing and ExtactionAli A Jalil
 
Digital Image Processing: Image Segmentation
Digital Image Processing: Image SegmentationDigital Image Processing: Image Segmentation
Digital Image Processing: Image SegmentationMostafa G. M. Mostafa
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 

What's hot (19)

Image segmentation
Image segmentationImage segmentation
Image segmentation
 
A STUDY AND ANALYSIS OF DIFFERENT EDGE DETECTION TECHNIQUES
A STUDY AND ANALYSIS OF DIFFERENT EDGE DETECTION TECHNIQUESA STUDY AND ANALYSIS OF DIFFERENT EDGE DETECTION TECHNIQUES
A STUDY AND ANALYSIS OF DIFFERENT EDGE DETECTION TECHNIQUES
 
Video Segmentation
Video SegmentationVideo Segmentation
Video Segmentation
 
Localization of free 3 d surfaces by the mean of photometric
Localization of free 3 d surfaces by the mean of photometricLocalization of free 3 d surfaces by the mean of photometric
Localization of free 3 d surfaces by the mean of photometric
 
A novel approach for efficient skull stripping using morphological reconstruc...
A novel approach for efficient skull stripping using morphological reconstruc...A novel approach for efficient skull stripping using morphological reconstruc...
A novel approach for efficient skull stripping using morphological reconstruc...
 
A novel approach for efficient skull stripping using
A novel approach for efficient skull stripping usingA novel approach for efficient skull stripping using
A novel approach for efficient skull stripping using
 
Quality assessment for online iris
Quality assessment for online irisQuality assessment for online iris
Quality assessment for online iris
 
COMPARISON OF RENDERING PROCESSES ON 3D MODEL
COMPARISON OF RENDERING PROCESSES ON 3D MODELCOMPARISON OF RENDERING PROCESSES ON 3D MODEL
COMPARISON OF RENDERING PROCESSES ON 3D MODEL
 
Dip Image Segmentation
Dip Image SegmentationDip Image Segmentation
Dip Image Segmentation
 
Performance of Efficient Closed-Form Solution to Comprehensive Frontier Exposure
Performance of Efficient Closed-Form Solution to Comprehensive Frontier ExposurePerformance of Efficient Closed-Form Solution to Comprehensive Frontier Exposure
Performance of Efficient Closed-Form Solution to Comprehensive Frontier Exposure
 
Comparison of Rendering Processes on 3D Model
Comparison of Rendering Processes on 3D ModelComparison of Rendering Processes on 3D Model
Comparison of Rendering Processes on 3D Model
 
HUMAN COMPUTER INTERACTION ALGORITHM BASED ON SCENE SITUATION AWARENESS
HUMAN COMPUTER INTERACTION ALGORITHM BASED ON SCENE SITUATION AWARENESSHUMAN COMPUTER INTERACTION ALGORITHM BASED ON SCENE SITUATION AWARENESS
HUMAN COMPUTER INTERACTION ALGORITHM BASED ON SCENE SITUATION AWARENESS
 
Theories and Engineering Technics of 2D-to-3D Back-Projection Problem
Theories and Engineering Technics of 2D-to-3D Back-Projection ProblemTheories and Engineering Technics of 2D-to-3D Back-Projection Problem
Theories and Engineering Technics of 2D-to-3D Back-Projection Problem
 
Distance Metric Learning tutorial at CVPR 2015
Distance Metric Learning tutorial at CVPR 2015Distance Metric Learning tutorial at CVPR 2015
Distance Metric Learning tutorial at CVPR 2015
 
Iris Localization - a Biometric Approach Referring Daugman's Algorithm
Iris Localization - a Biometric Approach Referring Daugman's AlgorithmIris Localization - a Biometric Approach Referring Daugman's Algorithm
Iris Localization - a Biometric Approach Referring Daugman's Algorithm
 
Features image processing and Extaction
Features image processing and ExtactionFeatures image processing and Extaction
Features image processing and Extaction
 
N42018588
N42018588N42018588
N42018588
 
Digital Image Processing: Image Segmentation
Digital Image Processing: Image SegmentationDigital Image Processing: Image Segmentation
Digital Image Processing: Image Segmentation
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 

Similar to Defending thesis (english)

Automatic rectification of perspective distortion from a single image using p...
Automatic rectification of perspective distortion from a single image using p...Automatic rectification of perspective distortion from a single image using p...
Automatic rectification of perspective distortion from a single image using p...ijcsa
 
Single image haze removal
Single image haze removalSingle image haze removal
Single image haze removalMohsinGhazi2
 
Shortcomings and Flaws in the Mathematical Derivation of the Fundamental Matr...
Shortcomings and Flaws in the Mathematical Derivation of the Fundamental Matr...Shortcomings and Flaws in the Mathematical Derivation of the Fundamental Matr...
Shortcomings and Flaws in the Mathematical Derivation of the Fundamental Matr...AIRCC Publishing Corporation
 
SHORTCOMINGS AND FLAWS IN THE MATHEMATICAL DERIVATION OF THE FUNDAMENTAL MATR...
SHORTCOMINGS AND FLAWS IN THE MATHEMATICAL DERIVATION OF THE FUNDAMENTAL MATR...SHORTCOMINGS AND FLAWS IN THE MATHEMATICAL DERIVATION OF THE FUNDAMENTAL MATR...
SHORTCOMINGS AND FLAWS IN THE MATHEMATICAL DERIVATION OF THE FUNDAMENTAL MATR...ijcsit
 
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...grssieee
 
Face Detection for identification of people in Images of Internet
Face Detection for identification of people in Images of InternetFace Detection for identification of people in Images of Internet
Face Detection for identification of people in Images of Internetijceronline
 
EXTENDED WAVELET TRANSFORM BASED IMAGE INPAINTING ALGORITHM FOR NATURAL SCENE...
EXTENDED WAVELET TRANSFORM BASED IMAGE INPAINTING ALGORITHM FOR NATURAL SCENE...EXTENDED WAVELET TRANSFORM BASED IMAGE INPAINTING ALGORITHM FOR NATURAL SCENE...
EXTENDED WAVELET TRANSFORM BASED IMAGE INPAINTING ALGORITHM FOR NATURAL SCENE...cscpconf
 
Point Cloud Segmentation for 3D Reconstruction
Point Cloud Segmentation for 3D ReconstructionPoint Cloud Segmentation for 3D Reconstruction
Point Cloud Segmentation for 3D ReconstructionPirouz Nourian
 
Evaluation of Texture in CBIR
Evaluation of Texture in CBIREvaluation of Texture in CBIR
Evaluation of Texture in CBIRZahra Mansoori
 
Meshing for computer graphics
Meshing for computer graphicsMeshing for computer graphics
Meshing for computer graphicsBruno Levy
 
A Quantitative Comparative Study of Analytical and Iterative Reconstruction T...
A Quantitative Comparative Study of Analytical and Iterative Reconstruction T...A Quantitative Comparative Study of Analytical and Iterative Reconstruction T...
A Quantitative Comparative Study of Analytical and Iterative Reconstruction T...CSCJournals
 
Kunyang_Li_AAS2016
Kunyang_Li_AAS2016Kunyang_Li_AAS2016
Kunyang_Li_AAS2016KunYang Li
 
Stereo Vision Distance Estimation Employing Canny Edge Detector with Interpol...
Stereo Vision Distance Estimation Employing Canny Edge Detector with Interpol...Stereo Vision Distance Estimation Employing Canny Edge Detector with Interpol...
Stereo Vision Distance Estimation Employing Canny Edge Detector with Interpol...ZaidHussein6
 

Similar to Defending thesis (english) (20)

Automatic rectification of perspective distortion from a single image using p...
Automatic rectification of perspective distortion from a single image using p...Automatic rectification of perspective distortion from a single image using p...
Automatic rectification of perspective distortion from a single image using p...
 
Our 1st Seminar
Our 1st SeminarOur 1st Seminar
Our 1st Seminar
 
Single image haze removal
Single image haze removalSingle image haze removal
Single image haze removal
 
Shortcomings and Flaws in the Mathematical Derivation of the Fundamental Matr...
Shortcomings and Flaws in the Mathematical Derivation of the Fundamental Matr...Shortcomings and Flaws in the Mathematical Derivation of the Fundamental Matr...
Shortcomings and Flaws in the Mathematical Derivation of the Fundamental Matr...
 
SHORTCOMINGS AND FLAWS IN THE MATHEMATICAL DERIVATION OF THE FUNDAMENTAL MATR...
SHORTCOMINGS AND FLAWS IN THE MATHEMATICAL DERIVATION OF THE FUNDAMENTAL MATR...SHORTCOMINGS AND FLAWS IN THE MATHEMATICAL DERIVATION OF THE FUNDAMENTAL MATR...
SHORTCOMINGS AND FLAWS IN THE MATHEMATICAL DERIVATION OF THE FUNDAMENTAL MATR...
 
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
VERIFICATION_&_VALIDATION_OF_A_SEMANTIC_IMAGE_TAGGING_FRAMEWORK_VIA_GENERATIO...
 
427lects
427lects427lects
427lects
 
Face Detection for identification of people in Images of Internet
Face Detection for identification of people in Images of InternetFace Detection for identification of people in Images of Internet
Face Detection for identification of people in Images of Internet
 
EXTENDED WAVELET TRANSFORM BASED IMAGE INPAINTING ALGORITHM FOR NATURAL SCENE...
EXTENDED WAVELET TRANSFORM BASED IMAGE INPAINTING ALGORITHM FOR NATURAL SCENE...EXTENDED WAVELET TRANSFORM BASED IMAGE INPAINTING ALGORITHM FOR NATURAL SCENE...
EXTENDED WAVELET TRANSFORM BASED IMAGE INPAINTING ALGORITHM FOR NATURAL SCENE...
 
Point Cloud Segmentation for 3D Reconstruction
Point Cloud Segmentation for 3D ReconstructionPoint Cloud Segmentation for 3D Reconstruction
Point Cloud Segmentation for 3D Reconstruction
 
Evaluation of Texture in CBIR
Evaluation of Texture in CBIREvaluation of Texture in CBIR
Evaluation of Texture in CBIR
 
F43053237
F43053237F43053237
F43053237
 
Meshing for computer graphics
Meshing for computer graphicsMeshing for computer graphics
Meshing for computer graphics
 
0000556
00005560000556
0000556
 
44 paper
44 paper44 paper
44 paper
 
A Quantitative Comparative Study of Analytical and Iterative Reconstruction T...
A Quantitative Comparative Study of Analytical and Iterative Reconstruction T...A Quantitative Comparative Study of Analytical and Iterative Reconstruction T...
A Quantitative Comparative Study of Analytical and Iterative Reconstruction T...
 
Kunyang_Li_AAS2016
Kunyang_Li_AAS2016Kunyang_Li_AAS2016
Kunyang_Li_AAS2016
 
Computed Tomography Image Reconstruction in 3D VoxelSpace
Computed Tomography Image Reconstruction in 3D VoxelSpaceComputed Tomography Image Reconstruction in 3D VoxelSpace
Computed Tomography Image Reconstruction in 3D VoxelSpace
 
JBSC_online
JBSC_onlineJBSC_online
JBSC_online
 
Stereo Vision Distance Estimation Employing Canny Edge Detector with Interpol...
Stereo Vision Distance Estimation Employing Canny Edge Detector with Interpol...Stereo Vision Distance Estimation Employing Canny Edge Detector with Interpol...
Stereo Vision Distance Estimation Employing Canny Edge Detector with Interpol...
 

Recently uploaded

Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...
Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...
Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...hotbabesbook
 
𓀤Call On 6297143586 𓀤 Sonagachi Call Girls In All Kolkata 24/7 Provide Call W...
𓀤Call On 6297143586 𓀤 Sonagachi Call Girls In All Kolkata 24/7 Provide Call W...𓀤Call On 6297143586 𓀤 Sonagachi Call Girls In All Kolkata 24/7 Provide Call W...
𓀤Call On 6297143586 𓀤 Sonagachi Call Girls In All Kolkata 24/7 Provide Call W...rahim quresi
 
Verified Trusted Call Girls Ambattur Chennai ✔✔7427069034 Independent Chenna...
Verified Trusted Call Girls Ambattur Chennai ✔✔7427069034  Independent Chenna...Verified Trusted Call Girls Ambattur Chennai ✔✔7427069034  Independent Chenna...
Verified Trusted Call Girls Ambattur Chennai ✔✔7427069034 Independent Chenna... Shivani Pandey
 
Hotel And Home Service Available Kolkata Call Girls Sonagachi ✔ 6297143586 ✔C...
Hotel And Home Service Available Kolkata Call Girls Sonagachi ✔ 6297143586 ✔C...Hotel And Home Service Available Kolkata Call Girls Sonagachi ✔ 6297143586 ✔C...
Hotel And Home Service Available Kolkata Call Girls Sonagachi ✔ 6297143586 ✔C...ritikasharma
 
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...ritikasharma
 
Kanpur call girls 📞 8617697112 At Low Cost Cash Payment Booking
Kanpur call girls 📞 8617697112 At Low Cost Cash Payment BookingKanpur call girls 📞 8617697112 At Low Cost Cash Payment Booking
Kanpur call girls 📞 8617697112 At Low Cost Cash Payment BookingNitya salvi
 
(TOP CLASS) Call Girls In Chengalpattu Phone 7427069034 Call Girls Model With...
(TOP CLASS) Call Girls In Chengalpattu Phone 7427069034 Call Girls Model With...(TOP CLASS) Call Girls In Chengalpattu Phone 7427069034 Call Girls Model With...
(TOP CLASS) Call Girls In Chengalpattu Phone 7427069034 Call Girls Model With... Shivani Pandey
 
Hotel And Home Service Available Kolkata Call Girls Lake Town ✔ 6297143586 ✔C...
Hotel And Home Service Available Kolkata Call Girls Lake Town ✔ 6297143586 ✔C...Hotel And Home Service Available Kolkata Call Girls Lake Town ✔ 6297143586 ✔C...
Hotel And Home Service Available Kolkata Call Girls Lake Town ✔ 6297143586 ✔C...ritikasharma
 
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...ritikasharma
 
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)amitlee9823
 
Verified Trusted Call Girls Tambaram Chennai ✔✔7427069034 Independent Chenna...
Verified Trusted Call Girls Tambaram Chennai ✔✔7427069034  Independent Chenna...Verified Trusted Call Girls Tambaram Chennai ✔✔7427069034  Independent Chenna...
Verified Trusted Call Girls Tambaram Chennai ✔✔7427069034 Independent Chenna... Shivani Pandey
 
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRLBhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRLNitya salvi
 
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...rajveermohali2022
 
Model Call Girls In Ariyalur WhatsApp Booking 7427069034 call girl service 24...
Model Call Girls In Ariyalur WhatsApp Booking 7427069034 call girl service 24...Model Call Girls In Ariyalur WhatsApp Booking 7427069034 call girl service 24...
Model Call Girls In Ariyalur WhatsApp Booking 7427069034 call girl service 24... Shivani Pandey
 
VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...
VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...
VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...SUHANI PANDEY
 
📞 Contact Number 8617697112 VIP East Sikkim Call Girls
📞 Contact Number 8617697112 VIP East Sikkim Call Girls📞 Contact Number 8617697112 VIP East Sikkim Call Girls
📞 Contact Number 8617697112 VIP East Sikkim Call GirlsNitya salvi
 
Top Rated Kolkata Call Girls Khardah ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...
Top Rated Kolkata Call Girls Khardah ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...Top Rated Kolkata Call Girls Khardah ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...
Top Rated Kolkata Call Girls Khardah ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...ritikasharma
 
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...mriyagarg453
 
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...ritikasharma
 

Recently uploaded (20)

Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...
Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...
Thane West \ Escort Service in Mumbai - 450+ Call Girl Cash Payment 983332523...
 
𓀤Call On 6297143586 𓀤 Sonagachi Call Girls In All Kolkata 24/7 Provide Call W...
𓀤Call On 6297143586 𓀤 Sonagachi Call Girls In All Kolkata 24/7 Provide Call W...𓀤Call On 6297143586 𓀤 Sonagachi Call Girls In All Kolkata 24/7 Provide Call W...
𓀤Call On 6297143586 𓀤 Sonagachi Call Girls In All Kolkata 24/7 Provide Call W...
 
Verified Trusted Call Girls Ambattur Chennai ✔✔7427069034 Independent Chenna...
Verified Trusted Call Girls Ambattur Chennai ✔✔7427069034  Independent Chenna...Verified Trusted Call Girls Ambattur Chennai ✔✔7427069034  Independent Chenna...
Verified Trusted Call Girls Ambattur Chennai ✔✔7427069034 Independent Chenna...
 
Hotel And Home Service Available Kolkata Call Girls Sonagachi ✔ 6297143586 ✔C...
Hotel And Home Service Available Kolkata Call Girls Sonagachi ✔ 6297143586 ✔C...Hotel And Home Service Available Kolkata Call Girls Sonagachi ✔ 6297143586 ✔C...
Hotel And Home Service Available Kolkata Call Girls Sonagachi ✔ 6297143586 ✔C...
 
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...
Jodhpur Park ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi ...
 
Kanpur call girls 📞 8617697112 At Low Cost Cash Payment Booking
Kanpur call girls 📞 8617697112 At Low Cost Cash Payment BookingKanpur call girls 📞 8617697112 At Low Cost Cash Payment Booking
Kanpur call girls 📞 8617697112 At Low Cost Cash Payment Booking
 
(TOP CLASS) Call Girls In Chengalpattu Phone 7427069034 Call Girls Model With...
(TOP CLASS) Call Girls In Chengalpattu Phone 7427069034 Call Girls Model With...(TOP CLASS) Call Girls In Chengalpattu Phone 7427069034 Call Girls Model With...
(TOP CLASS) Call Girls In Chengalpattu Phone 7427069034 Call Girls Model With...
 
Hotel And Home Service Available Kolkata Call Girls Lake Town ✔ 6297143586 ✔C...
Hotel And Home Service Available Kolkata Call Girls Lake Town ✔ 6297143586 ✔C...Hotel And Home Service Available Kolkata Call Girls Lake Town ✔ 6297143586 ✔C...
Hotel And Home Service Available Kolkata Call Girls Lake Town ✔ 6297143586 ✔C...
 
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
Hotel And Home Service Available Kolkata Call Girls Howrah ✔ 6297143586 ✔Call...
 
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Call Girls Bellandur ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
Verified Trusted Call Girls Tambaram Chennai ✔✔7427069034 Independent Chenna...
Verified Trusted Call Girls Tambaram Chennai ✔✔7427069034  Independent Chenna...Verified Trusted Call Girls Tambaram Chennai ✔✔7427069034  Independent Chenna...
Verified Trusted Call Girls Tambaram Chennai ✔✔7427069034 Independent Chenna...
 
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRLBhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
Bhimtal ❤CALL GIRL 8617697112 ❤CALL GIRLS IN Bhimtal ESCORT SERVICE❤CALL GIRL
 
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
Zirakpur Call Girls👧 Book Now📱8146719683 📞👉Mohali Call Girl Service No Advanc...
 
Model Call Girls In Ariyalur WhatsApp Booking 7427069034 call girl service 24...
Model Call Girls In Ariyalur WhatsApp Booking 7427069034 call girl service 24...Model Call Girls In Ariyalur WhatsApp Booking 7427069034 call girl service 24...
Model Call Girls In Ariyalur WhatsApp Booking 7427069034 call girl service 24...
 
VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...
VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...
VIP Model Call Girls Vijayawada ( Pune ) Call ON 8005736733 Starting From 5K ...
 
📞 Contact Number 8617697112 VIP East Sikkim Call Girls
📞 Contact Number 8617697112 VIP East Sikkim Call Girls📞 Contact Number 8617697112 VIP East Sikkim Call Girls
📞 Contact Number 8617697112 VIP East Sikkim Call Girls
 
Top Rated Kolkata Call Girls Khardah ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...
Top Rated Kolkata Call Girls Khardah ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...Top Rated Kolkata Call Girls Khardah ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...
Top Rated Kolkata Call Girls Khardah ⟟ 6297143586 ⟟ Call Me For Genuine Sex S...
 
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
Navsari Escorts Service ☎️ 6378878445 ( Sakshi Sinha ) High Profile Call Girl...
 
CHEAP Call Girls in Malviya Nagar, (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in  Malviya Nagar, (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in  Malviya Nagar, (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Malviya Nagar, (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
Behala ( Call Girls ) Kolkata ✔ 6297143586 ✔ Hot Model With Sexy Bhabi Ready ...
 

Defending thesis (english)

  • 1. 3-D RECONSTRUCTION OF A VISION BASED ON ITS STEREOSCOPIC MODEL Tesista Guillermo Enrique Medina Zegarra Orientador PhD. Edgar Lobaton, USA Co-Orientador PhD. Nestor Calvo, Argentina Agradezco a Arequipa, Per´u May 07, 2012
  • 2. 1 Index Index 1 Introduction 2 Image formation 3 Geometry from two views 4 Proposal 5 Results 6 Limitations and problems founded 7 Conclusions and future work
  • 3. 2 Index 1 Introduction Motivation and context Definition the problem General objective Specific objectives 2 Image formation 3 Geometry from two views 4 Proposal 5 Results 6 Limitations and problems founded 7 Conclusions and future work
  • 4. 3 Motivation and context Limitations on pre-Renaissance to create 3D. (a) Jesus into Jerusalem
  • 5. 3 Motivation and context The artists during the Renaissance and the depth. The vanishing points and three dimensions. (b) The School of Athens
  • 6. 3 Motivation and context Limitations on pre-Renaissance to create 3D. The artists during the Renaissance and the depth. The vanishing points and three dimensions. (a) Jesus into Jerusalem (b) The School of Athens Figura: Painting pre-Renaissance and Renaissance [Ma et al., 2004].
  • 7. 4 Definition the problem Physical architecture, location, distribution and lighting. (a) One camara [Cipolla et al., 2010] (b) Artificial lighting [VISGRAF., 2012]
  • 8. 5 Definition the problem (cont...) Figura: How to get the parameters to map an object to the image plane ? [Faugeras, 1993].
  • 9. 6 Definition the problem (cont...) Figura: How to find corresponding points ? [Szeliski, 2011].
  • 10. 7 Definition the problem (cont...) Figura: How to find a 3D point of each pair of corresponding points ? [Szeliski, 2011].
  • 11. 8 Definition the problem (cont...) Figura: How to reconstruction and smooth a surface from a cloud of points ? [Hartley and Zisserman, 2004].
  • 12. 9 General objective Objetivo general Propose a model for the reconstruction of a 3D image of an object from two images captured by two cameras located adequately.
  • 13. 10 Specific objectives Specific objectives Position two digital cameras on a physical architecture for image acquisition and calibration. Rectification of the stereo image pair and calculate the disparity map through the normalized cross-correlation. Create the object’s surface from the Delaunay triangulation of the disparity map.
  • 14. 11 Index 1 Introduction 2 Image formation 3 Geometry from two views 4 Proposal 5 Results 6 Limitations and problems founded 7 Conclusions and future work
  • 15. 12 Pinhole camera model Help to understand the image formation from geometric point of view. Parts of the pinhole camera model: optical center (o), focal distance (f ) and image plane (I). x = ¯op ∩ I x ∈ R2 , p ∈ R3 Figura: Pinhole camera model [Ma et al., 2004].
  • 16. 13 Pinhole camera model (cont...) Figura: Example of the projection of an object on image plane .
  • 17. 14 Index 1 Introduction 2 Image formation 3 Geometry from two views 4 Proposal 5 Results 6 Limitations and problems founded 7 Conclusions and future work
  • 18. 15 Epipolar geometry Study the geometric relationship and mathematical analysis of a 3-D p point in their image planes. Figura: Two projections x1, x2 ∈ R2 of a 3-D point p from two vantage points [Ma et al., 2004].
  • 19. 16 Epipolar geometry (cont...) Figura: Example of the projection of a cube image on two image planes.
  • 20. 17 Rectification Figura: Rectification of the stereo image pair [Fusiello et al., 2000].
  • 21. 18 Disparity calculation (a) (b) Disparity map (a - b) Tsukuba image pair [Scharstein and Szeliski, 2002].
  • 22. 19 Index 1 Introduction 2 Image formation 3 Geometry from two views 4 Proposal 5 Results 6 Limitations and problems founded 7 Conclusions and future work
  • 23. 20 Pipeline of the proposal
  • 24. 21 Description of the proposed pipeline Physical architecture Canon SD1200 Sony DSC-S750
  • 25. 21 Description of the proposed pipeline Physical architecture Image acquisition features Sony DSC-S750 Canon SD1200 IS Sensor type CCD CCD Image size 640 × 480 640 × 480 ISO 100 100 Flash off off Technical characteristics of the two digital cameras
  • 26. 21 Description of the proposed pipeline Physical architecture Image acquisition Calibration Chessboard (7 × 10)
  • 27. 22 Description of the proposed pipeline Rectification Linear search The correspondence of points is in the same horizontal line Original images Rectified images
  • 28. 23 Description of the proposed pipeline Pre-processing Manual segmentation Gaussian filter Rectified images Pre-processed images
  • 29. 24 Description of the proposed pipeline Disparity map Normalized Cross-Correlation Median filter Left image pre-processed Right image pre-processed Disparity map
  • 30. 25 Description of the proposed pipeline 3-D mesh Delaunay triangulation Intersection of lines 3-D mesh Disparity map Point Cloud 3-D mesh
  • 31. 26 Description of the proposed pipeline Reconstructed model Smoothing the surface Texturing of the right image Creation of the surface Smoothing of the surface Texturing of the model
  • 32. 27 “Cubo m´agico” Original images Rectified images Pre-processed images
  • 33. 28 “Cubo m´agico” (cont...) Disparity map Point Cloud 3-D mesh Creation of the surface Smoothing of the surface Texturing of the model
  • 34. 29 Multiple views of the “Magic Cube”
  • 35. 29 Multiple views of the “Magic Cube”
  • 36. 29 Multiple views of the “Magic Cube”
  • 37. 29 Multiple views of the “Magic Cube”
  • 38. 29 Multiple views of the “Magic Cube”
  • 39. 29 Multiple views of the “Magic Cube”
  • 40. 29 Multiple views of the “Magic Cube”
  • 41. 29 Multiple views of the “Magic Cube”
  • 42. 30 Index 1 Introduction 2 Image formation 3 Geometry from two views 4 Proposal 5 Results Teddy bear Human face 6 Limitations and problems founded 7 Conclusions and future work
  • 43. 31 Teddy bear Original images Rectified imagenes Pre-processed imagenes
  • 44. 32 Teddy bear (cont...) Disparity map Cloud of points 3-D mesh Creation of the surface Smoothing of the surface Texturing of the model
  • 45. 33 Human face Original images Rectified imagenes Pre-processed imagenes
  • 46. 34 Human face (cont...) Cloud of points Model without smoothing Smoothing model “Transformed” model 3-D mesh Model without smoothing Smoothing model “Transformed” model
  • 47. 35 Index 1 Introduction 2 Image formation 3 Geometry from two views 4 Proposal 5 Results 6 Limitations and problems founded 7 Conclusions and future work
  • 48. 36 Limitations and problems founded neighbourhood size Imperfections of the created model
  • 49. 37 Limitations and problems founded (cont...) Imperfect original image Imperfect original image Wrong disparity map “Amorphous” 3-D reconstruction
  • 50. 38 Index 1 Introduction 2 Image formation 3 Geometry from two views 4 Proposal 5 Results 6 Limitations and problems founded 7 Conclusions and future work
  • 51. 39 Conclusions Physic architecture was designed simple and profit. Lighting conditions must be adequate. A pipeline was proposed with a sequence of steps needed to get a 3-D reconstruction of a stereo image pair. The method for the disparity calculation is simple and no robust. There is a strong dependency between each step of the reconstruction.
  • 52. 40 Future work Create an environment with appropriate conditions for calibration, lighting and image acquisition. Physical architecture and artificial lighting [Bradley et al., 2008]
  • 53. 40 Future work Create an environment with appropriate conditions for calibration, lighting and image acquisition. Physical architecture and artificial lighting [Bradley et al., 2008] Use multiple cameras. Multiple views [Hartley and Zisserman, 2004]
  • 54. 41 Future work (cont...) Use robust methods.
  • 55. 42 Publicated on Symposium article “3-D visual reconstruction : a system perspective.” G. Medina-Zegarra y E. Lobaton 2nd International Symposium on Innovation and Techno- logy (2011) pag. 102-107, November 28-30, Lima, Peru ISBN: 978-612-45917-1-6 Place: Technological University of Peru Editor: International Institute of Innovation and Techno- logy (IIITEC) Chair: Mario Chauca Saavedra
  • 56. 43 Acknowledgements PhD. Alfedro Miranda Mag. Alfedro Paz PhD. Carlos Leyton PhD(c). Christian L´opez del Alamo PhD. Edgar Lobaton PhD. Eduardo Tejada PhD. Jes´us Mena PhD. Jos´e Corrales-Nieves PhD(c). Juan Carlos Gutierrez Lic. Lu´ıs Pareja PhD. Nestor Calvo PhD(c). Regina Ticona Family Barrios Neyra
  • 57. 44 References Bradley, D., Popa, T., Sheffer, A., Heidrich, W., and Boubekeur, T. (2008). Markerless garment capture. ACM Transactions on Graphics (TOG), 27:99:1–99:9. Cipolla, R., Battiato, S., and Farinella, G. M. (2010). Computer Vision: Detection, Recognition and Reconstruction. Springer. Faugeras, O. (1993). Three-dimensional Computer Vision: A Geometric Viewpoint. The MIT Press. ISBN: 0262061589. Fusiello, A., Trucco, E., and Verri, A. (2000). A compact algorithm for rectification of stereo pairs. Machine Vision and Applications, 12:16–22. Hartley, R. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Second Edition. Cambridge University Press. ISBN: 0521540518. Ma, Y., Soatto, S., Koˇseck´a, J., and Sastry, S. S. (2004). An Invitation to 3D Vision from Images to Geometric Models. Springer. ISBN: 0387008934. Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47:7–42. Szeliski, R. (2011). Computer Vision: Algorithms and Applications. Springer. ISBN: 9781848829343.
  • 58. 3-D RECONSTRUCTION OF A VISION BASED ON ITS STEREOSCOPIC MODEL Tesista Guillermo Enrique Medina Zegarra Orientador PhD. Edgar Lobaton, USA Co-Orientador PhD. Nestor Calvo, Argentina Agradezco a Arequipa, Per´u May 07, 2012
  • 59. 45 View points (perception) (a) The glass is half full or half empty ? (b) is it a duck or a rabbit ?
  • 60. 46 Contenido extra Contenido extra 1 Datos de procesamiento 2 Geometr´ıa de una vista 3 Geometr´ıa de dos vistas 4 Rectificaci´on e intersecci´on de rectas 5 Mapa de disparidad 6 Filtro de Gauss y filtro de la mediana 7 Propiedades de la triangulaci´on de Delaunay
  • 61. 47 Datos de procesamiento Un procesador Intel (R) Core (TM) 2 CPU 1.66 GHz y una memoria RAM 2GB. El costo computacional del algoritmo en el peor caso es O(n3 ) y en el mejor caso es Θ(n2 ). El tiempo del procesamiento del algoritmo fue de 25 minutos.
  • 62. 48 Modelamiento geom´etrico (matriz de mapeamiento) propuesta slide π : R4 → R3 ; p → x   fsx fsθ ox 0 fsy oy 0 0 1   K =   sx sθ ox 0 sy oy 0 0 1   Ks   f 0 0 0 f 0 0 0 1   Kf (1)   u v 1   x = K   1 0 0 0 0 1 0 0 0 0 1 0   Π0 R t 0 1 g π     X Y Z 1     p (2)
  • 63. 49 Ecuaciones de la Geometr´ıa Epipolar slide Restricci´on epipolar xT 2 Fx1 = 0
  • 64. 49 Ecuaciones de la Geometr´ıa Epipolar slide Restricci´on epipolar xT 2 Fx1 = 0 Matriz Fundamental F = K−T 2 EK−1 1
  • 65. 49 Ecuaciones de la Geometr´ıa Epipolar slide Restricci´on epipolar xT 2 Fx1 = 0 Matriz Fundamental F = K−T 2 EK−1 1 Matriz esencial E = [t]x R
  • 66. 49 Ecuaciones de la Geometr´ıa Epipolar slide Restricci´on epipolar xT 2 Fx1 = 0 Matriz Fundamental F = K−T 2 EK−1 1 Matriz esencial E = [t]x R Matriz antisim´etrica [t]x =   0 −c b c 0 −a −b a 0   (3)
  • 67. 50 Sistema lineal para la matriz F ui , vi , 1 T   F11 F12 F13 F21 F22 F23 F31 F32 F33   ui , vi , 1 = 0 , i ∈ R + (4) uu F11 + uv F21 + uF31 + vu F12 + vv F22 + vF32 + u F13 + v F23 + F33 = 0 (5)             u1u1 u1v1 u1 v1u1 v1v1 v1 u1 v1 1 u2u2 u2v2 u2 v2u1 v2v2 v2 u2 v2 1 u3u3 u3v3 u3 v3u1 v3v3 v3 u3 v3 1 u4u4 u4v4 u4 v4u1 v4v4 v4 u4 v4 1 u5u5 u5v5 u5 v5u1 v5v5 v5 u5 v5 1 u6u6 u6v6 u6 v6u1 v6v6 v6 u6 v6 1 u7u7 u7v7 u7 v7u1 v7v7 v7 u7 v7 1 u8u8 u8v8 u8 v8u1 v8v8 v8 u8 v8 1             A              F11 F12 F13 F21 F22 F23 F31 F32 F33              F = 0 (6)
  • 68. 51 Sistema lineal para la matriz F (cont...) Minimizar: A F 2 = 8 i=1 (u T i Fui ) 2 (7) Sujeto a: F 2 = 1 (8) Por lo tanto, se forma la siguiente funci´on de Lagrange: L(F, λ) = A F 2 − λ( F 2 − 1) (9) Por consiguiente, se aplica el m´etodo de los multiplicadores de Lagrange: JL(F, λ){ 2AT AF − λ(2F) F 2 − 1 , λ ∈ R + (10) Ahora, se procede a resolver la ecuaci´on JL(f , λ) = 0. La cual, es equivalente a hallar los autovalores y autovectores de la matriz sim´etrica AT A: AT AF = λ.F F 2 = 1 (11) Al calcular los autovectores, se habra encontrado la matriz fundamental F.
  • 69. 52 Calculando los autovalores de una matriz (ejemplo) A =   1 1 0 2 0 1 0 0 3   A − λI =   1 − λ 1 0 2 −λ 1 0 0 3 − λ   (12) det( A - λ I ) = (1 - λ)(- λ )(3 - λ ) - 2( 3 - λ ) det( A - λ I ) = ( - λ + λ2 )(3 - λ )- 6 + 2 λ det( A - λ I ) = - λ3 + 4 λ2 - λ - 6 det( A - λ I ) = λ3 - 4 λ2 + λ + 6 Resolviendo el polinomio se encuentran las raices (autovalores), los cuales son: -1, 2 y 3
  • 70. 53 Calculando los autovectores de una matriz (ejemplo) A =   1 1 0 2 0 1 0 0 3   A − λI =   1 − λ 1 0 2 −λ 1 0 0 3 − λ   (13) I) Para λ = -1 (A - λ I)v =0 (A - (-1) I)v =0 (A + I)v =0   2 1 0 2 1 1 0 0 4   (A+I)   a b c   =   0 0 0   (14)
  • 71. 54 Calculando los autovectores de una matriz (ejemplo) Haciendo el m´etodo de Gauss tenemos:   1 1 2 0 0 0 1 0 0 0   (15) c=0 (a, b, c) = (−b 2 , b, 0) a + b 2 = 0 ⇒ a = −b 2 (a, b, c) = b(−1 2, 1, 0)
  • 72. 55 Calculando los autovectores de una matriz (ejemplo) II) Para λ = 2   −1 1 0 2 −2 1 0 0 1   (A−2×I)   1 −1 0 0 0 1 0 0 0   (16) c=0 (a,b,c) = (b,b,0) a-b=0 ⇒ a = b (a,b,c) = b(1,1,0)
  • 73. 56 Calculando los autovectores de una matriz (ejemplo) III) Para λ = 3   −2 1 0 2 −3 1 0 0 0   (A−3×I)   1 −1 2 0 0 1 −1 2 0 0 0   (17) b − c 2 = 0 a − b 2 = 0 (a,b,c) = (c 4 , c 2 , c) b = c 2 a = b 2 (a,b,c) = c(1 4, 1 2, 1) a = c 4 Los autovalores son: {(−1 2, 1, 0), (1, 1, 0), (1 4, 1 2, 1)}
  • 74. 57 Planteamiento inicial de la rectificaci´on propuesta slide La variable π representa a la matriz de mapeamiento x ∼= π p (18) Factorizaci´on QR de la matriz π π = K[R | t] (19) La matriz π se re-escribe como: π =   qT 1 |q14 qT 2 |q24 qT 3 |q34   = Q|q (20)
  • 75. 58 Planteamiento inicial de la rectificaci´on (cont...) Las coordenadas del centro ´optico c est´a definido como: c = −Q−1 q (21) Se hace un despeje de la ecuaci´on 21 en funci´on de q. π = [Q| − Qc] (22)
  • 76. 59 Desarrollo de la rectificaci´on Matriz de transformaci´on xr1 = λ Qr1Q−1 o1 Tl xo1 λ ∈ R+ (23) Para lo cual: πo1 = [Qo1|qo1] πo1 MPP imagen izquierda inicial πr1 = [Qr1 |qr1] πr1 MPP imagen izquierda rectificada
  • 77. 60 Pasos para hallar la matriz de transformaci´on Se hace una factorizaci´on QR de las matrices iniciales π1 = K[R | − R c1] π1 MPP de la imagen izquierda π2 = K[R | − R c2] π2 MPP de la imagen derecha (24) Los centros ´opticos se hallan con la ecuaci´on 21 La matriz K es la matriz de par´ametros intr´ınsecos La matriz de rotaci´on R es la misma para ambas matrices de mapeamiento
  • 78. 61 Pasos para hallar la matriz de transformaci´on (cont...) Hallando la matriz de rotaci´on R R =   rT 1 rT 2 rT 3   (25) El nuevo eje X es paralelo a la l´ınea base: r1 = ( c1−c2 c1−c2 ) El nuevo eje Y es ortogonal a X, k : r2 = k ∧r1 El nuevo eje Z es ortogonal a XY r3 = r1 ∧ r2
  • 79. 62 Vector unitario k Demostraci´on de la ortogonalidad del vector Y a trav´es del vector unitario k. Plano R3 Z × X = i j k 0 0 1 1 0 0 Z × X = i(0) - j(-1) + k(0) Z × X = 0i + 1j + 0k Z × X Y = (0,1,0) return
  • 80. 63 Intersecci´on de rectas (triangulaci´on) slide p = c1 + tQ−1 r1 x1 t ∈ R p = c2 + sQ−1 r2 x2 s ∈ R (26)
  • 81. 64 Intersecci´on de rectas (ejemplo) return L1 : (X, Y , Z) p = (1, 2, 1) c1 +t (2, 0, 3) Q−1 r1 x1 L2 : (X, Y , Z) p = (5, 4, 1) c2 +s (−2, −2, 3) Q−1 r2 x2 L1 : (X, Y , Z) = (1 + 2t, 2, 1 + 3t) L2 : (X, Y , Z) = (5 − 2s, 4 − 2s, 1 + 3s) t = 1 , s = 1 (X, Y , Z) = (3, 2, 4) (27)
  • 82. 65 Representaci´on del punto medio Calculando el punto medio c1Q1 + λ = R1 tx1 + Q2−Q1 2 = R1 tx1 + (c2+sx2)−(c1+tx1) 2 = R1 tx1 + (c2−c1)+(sx2−tx1) 2 = R1 c2Q2 − λ = R2 sx2 − Q1−Q2 2 = R2 sx2 − (c1+tx1)−(c2+sx2) 2 = R2 sx2 − (c1−c2)+(tx1−sx2) 2 = R2 L1 = c1 + mR1 M = ( Q1+Q2 2 ) L2 = c2 + nR2 M = ( c1+tx1+c2+sx2 2 ) L1 ∩ L2 = M M = ( c1+c2 2 + tx1+sx2 2 )
  • 83. 66 Factorizaci´on QR La factorizaci´on de la matriz de mapeamiento π consta de la siguientes dos matrices: π = Q × R donde: La matriz Q se obtiene a trav´es del proceso de Gram-Schmidt La matriz R se consigue a trav´es de la siguiente multiplicaci´on R = QT × π return
  • 84. 67 Proceso Gram-Schmidt u1 = v1, uk = vk - k−1 j=1 vk ,uj uj 2 , ; j = 2,. . .,k return
  • 85. 68 Proceso Gram-Schmidt (ejemplo) A = {(1, 0, 1) v1 , (0, 0, 1) v2 , (1, 1, −1) v3 } u1 = v1 = (1, 0, 1) u2 = (0, 0, 1) − 1 2(1, 0, 1) u2 = (- 1 2 ,0, 1 2 ) u3 = (1,1,-1) - 0 2 (1,0,1) - (−1) 1 2 (- 1 2 ,0, 1 2 ) u3 = (1,1,-1) + 2(- 1 2 ,0, 1 2 ) u3 = (0,1,0) La base ortogonal de A es {(1, 0, 1), (−1 2, 0, 1 2), (0, 1, 0)}
  • 86. 69 Pseudo-c´odigo del algoritmo de c´alculo de disparidad dispComp(imDerecha,imIzquierda,maxDisp) 1 thNorm ← escalar ∗ (2 ∗ r + 1) 2 for i = 1 + r to col − r do 3 for j = 1 + r to fil − maxDisp − r do 5 pBase ← imDerecha(i − r : i + r, j − r : j + r) 6 pBase ← pBase − promedio(pBase) 7 nBase ← norma(pBase) 8 if nBase <= thNorm then 9 continue 10 end if 11 pBase ← pBase/nBase 12 for sh = 1 to maxDisp do 13 pShift ← imIzquierda(i − r : i + r, j + sh − r : j + sh + r) 14 pShift ← pShift − promedio(pShift) 15 nShift ← norma(pShift) 16 if nShift <= thNorm then 17 corr[sh] ← 0 18 continue 19 end if 20 corr[sh] ← sum((pShift/nShift). ∗ (pBase)) 21 end for 22 [valor indice] ← max(corr) 23 if valor == 0 then 24 imDisp[i, j] ← 0 25 else 26 imDisp[i, j] ← indice 27 end if 28 end for 29 end for 30 return(imDisp)
  • 87. 70 Mapa de disparidad propuesta slide Correlaci´on Normalizada Cruzada (CNC) u,v (I1(u,v)−I1)(I2(u+d,v)−I2) u,v (I1(u,v)−I1)2 u,v (I2(u+d,v)−I2)2
  • 88. 70 Mapa de disparidad propuesta slide Correlaci´on Normalizada Cruzada (CNC) u,v (I1(u,v)−I1)(I2(u+d,v)−I2) u,v (I1(u,v)−I1)2 u,v (I2(u+d,v)−I2)2 d(x, y) = arg supr∈RC(x, y, r) (28)
  • 89. 71 Filtro Gaussiano slide Valores de la m´ascara 1 2 1 2 3 2 1 2 1 La cantidad de “suavizamiento” que realiza el filtro gaussiano se puede controlar variando la desviaci´on est´andar y el tama˜no de la m´ascara Matriz deslizante de filtrado en el dominio espacial
  • 90. 72 Filtro de la mediana slide Valores de ejemplo 6 2 0 3 97 4 19 3 10 En orden ascendente los n´umeros ser´ıan : 0, 2, 3, 3, 4, 6, 10, 15, 97
  • 91. 72 Filtro de la mediana slide Valores de ejemplo 6 2 0 3 97 4 19 3 10 En orden ascendente los n´umeros ser´ıan : 0, 2, 3, 3, 4, 6, 10, 15, 97 Valor actualizado * * * * 4 * * * * El valor inicial fue 97 y luego de utilizar el filtro de la mediana fue reemplazado por 4
  • 92. 73 Suavizaci´on del Laplaciano slide Calcula la posici´on de un v´ertice q a partir del promedio de los v´ertices adyacentes. Ejemplo: 3,6 5,4 9,2 14,3 16,10 7,6 ——— 54, 31 p(9,5) = 54 6 , 31 6 Representaci´on de la suavizaci´on del Laplaciano [Vollmer et al., 1999]
  • 93. 74 Propiedades de la Triangulaci´on de Delaunay slide Figura: Ilustraci´on de la primera propiedad de la Triangulaci´on de Delaunay.
  • 94. 75 Propiedades de la Triangulaci´on de Delaunay (cont...) Figura: Ilustraci´on de la segunda propiedad de la Triangulaci´on de Delaunay.
  • 95. 76 Propiedades de la Triangulaci´on de Delaunay (cont...) (a) Arista ilegal (b) Correcci´on de la arista ilegal
  • 96. 77 Consideraciones del patr´on de calibraci´on Detecci´on de las esquinas del patr´on Detecci´on de los puntos internos del patr´on
  • 97. 78 Algoritmo de reducci´on de pol´ıgonos Reducci´on de pol´ıgonos