Guillermo Sanchez presented on the pros and cons of using Python models in dbt. While Python models allow for more advanced analytics and leveraging the Python ecosystem, they also introduce more complexity in setup and divergent APIs across platforms. Additionally, dbt may not be well-suited for certain use cases like ingesting external data or building full MLOps pipelines. In general, Python models are best for the right analytical use cases, but caution is needed, especially for production environments.