This document discusses data structures and algorithm efficiency. It defines data structures as representations of logical relationships between data elements. Data structures are classified as primitive (basic types like integers) and non-primitive (derived types like lists, stacks, queues, trees, graphs). The document explains various non-primitive data structures and their implementations. It also discusses measuring algorithm efficiency, including analyzing best, worst, and average cases. Asymptotic analysis using Big O notation is introduced as a machine-independent way to compare algorithm growth rates and determine asymptotic complexity classes.