The document discusses various techniques for data pre-processing. It begins by explaining why pre-processing is important for obtaining clean and consistent data needed for quality data mining results. It then covers topics such as data cleaning, integration, transformation, reduction, and discretization. Data cleaning involves techniques for handling missing values, outliers, and inconsistencies. Data integration combines data from multiple sources. Transformation techniques include normalization, aggregation, and generalization. Data reduction aims to reduce data volume while maintaining analytical quality. Discretization includes binning of continuous variables.