1. A data lake is a storage repository that holds vast amounts of raw data in its native format until it is needed for analysis. It addresses challenges of big data by allowing data to be stored and analyzed together without upfront structuring.
2. Traditional data warehouses structure data upfront, limiting flexibility. A data lake avoids this by storing all data as-is and analyzing data when questions arise. This provides greater analytic power on emerging big data sources.
3. While data lakes provide benefits like reduced costs and more flexibility, challenges remain around metadata management, governance, preparation, and security when storing all raw data in one place. Effective solutions are needed for these challenges to realize the full potential of data lakes.