SlideShare a Scribd company logo
SOEC – Status, Problems
   and Perspectives
                Mogens Mogensen

  Fuel Cells and Solid State Chemistry Department
  Risø National Laboratory for Sustainable Energy
        The Technical University of Denmark
             DK-4000 Roskilde, Denmark


        Presented at workshop on
High temperature electrolysis limiting factors
        Karlsruhe, June 9 -10, 2009


                                                    1
Acknowledgements

The colleagues at Risø – DTU provided most of the following for me.
Especially the following persons contributed:

Sune D. Ebbesen
Anne Hauch
Søren Højgaard Jensen
Torben Jacobsen




                                                                      2
Outline
•   Why high temperature electrolysis?
•   Principle and structure of SOEC
•   SOEC materials
•   Performance and durability
•   Poisoning
•   Leak current density through the YSZ
•   List of some problems
•   Risø’s visions on synthetic fuels
•   Economic estimates
•   When?




                                           3
Why electrolysis at
                  high temperature?
   Because:

• Electrolysis is a heat consuming process. The Joule heat contributes to
   the splitting of the water and CO2 molecules. Thus, the higher the
   temperature, the less electrical energy is need for the splitting.

• The rate of the electrochemical processes is much faster at high
   temperature. More m3 H2 per m2 cell per minute gives a better economy.

• The solid oxide electrolyzer cell (SOEC) consists of relatively
   inexpensive materials and may be produced using low cost processes.

• This was realized already 30 years by e.g. Dornier and Westinghouse,
   but the technology was not developed.

   Thus, SOEC has now attracted new interest due to energy crisis and
   climate problems.
                                                                            4
Thermodynamics
                                                  H2O → H2 + ½O2
                         300                                                                       1.55




                                                                                                          1/(2·n·F) · Energy demand (Volt)
                                                            Total energy demand (ΔHf )
                         250                                                                       1.30
Energy demand (KJ/mol)




                                                             Electrical
                         200                                              energy de                1.04
                                                                                      mand (ΔG
                                                                                              f)
                                   Liquid

                                            Gas

                         150                                                                       0.78

                         100                                                                       0.52

                                                                     a     nd (TΔS f )
                          50                                 Heat dem                              0.26

                           0                                                                       0.00
                               0       100 200 300 400 500 600 700 800 900 1000

                                                   Temperature (ºC)

                                   Energy (“volt”) = Energy (kJ/mol)/2F
                                                                                                                                             5
Thermodynamics

• H2O formation energies




                                                        6
                       Source: NIST chemistry webbook
Thermodynamics
                         300
                                            CO2 → CO + ½O2                                          1.55
                                                        Total energy demand (ΔHf )




                                                                                                           1/(2·n·F) · Energy demand (Volt)
                         250                                                                        1.30
Energy demand (KJ/mol)




                                                        Electri
                                                                  cal ene
                         200                                                rgy de                  1.04
                                                                                   mand
                                                                                        (Δ   Gf )

                         150                                                                        0.78

                                                                           ΔS f )
                         100                                         and (T                         0.52
                                                         He   at d em

                          50                                                                        0.26
                                                                                                                         .
                          0                                                                         0.00
                               0   100 200 300 400 500 600 700 800 900 1000

                                              Temperature (ºC)

                                                                                                                                              7
Thermodynamics

                         300
                                     Electrical energy demand (Δ Gf)                  1.55




                                                                                             1/(2·n·F) · Energy demand (Volt)
                         250         C O2 →                                           1.30
                                              CO + ½
Energy demand (KJ/mol)




                                                    O2
                                      H 2O → H
                                               2 + ½O
                         200                         2                                1.04

                         150                                                          0.78
                                                           750ºC – 900ºC

                         100                                                          0.52
                                                     ΔGH2O→H2 +½O2 = ΔGCO2 →CO +½O2

                         50                                                           0.26

                                                                                                               .
                          0                                                           0.00
                               0   100 200 300 400 500 600 700 800 900 1000

                                                  Temperature (ºC)

                                                                                                                                8
Principle of SOEC




0.7 V                                                              1.5 V




                      850 °C     EMF ca. 1.1 V


        Working principle of a reversible Solid Oxide Cell (SOC) The
        cell can be operated as a SOFC (A) and as a SOEC (B).
                                                                           9
Anode-supported SOFC

Cathode current collector,
LSM, ~40µm

Electrochemically active cathode
layer, LSM/YSZ, ~20µm

Electrolyte, YSZ, ~10µm

Electrochemically active anode
layer, Ni/YSZ, ~15µm


Anode current collector (support),
Ni/YSZ, ~250µm




                                     10
Ni - YSZ supported cell

LSM/YSZ electrode




YSZ electrolyte


Ni/YSZ electrode



Ni/YSZ support



                               11
Risø DTU SOCs




Active cell area 4x4 cm2 or 18x18 cm2
                                        12
Risø DTU SOFC
• SOFC R&D since 1989 in cooperation with Danish & European industry partners
• Up-scaling from laboratory scale production to pre-pilot scale production of SOFC
   (capacity: 1000 12x12cm2 cells per week) in cooperation with TOFC
• SOFCs produced at the pre-pilot shows:

   High performance & reproducibility
   - ASR = 0.18 ± 0.03 Ωcm2 @ 850°C
   Reliability
   - high mechanical strength of cells
   Inexpensive production methods
   - tape casting, spray, screen-printing

    TOFC started a 5 MW
    SOFC stack capacity
    pilot production line
    on April 28th, 2009.                                                              13
Technology status

• Europe: EIfER and Risø DTU + TOFC have built and tested small
  (< 1 kW) stacks

• USA: INL + Ceramatec have built and tested 15 kW system

• Others?

  The cell performance (and thus the stack performance) call for
  further improvement before a comprehensive stack and system
  development activity should start




                                                                   14
Other SOC
            materials and design
• Other O2- conducting electrolytes instead of doped zirconia: Higher
  ionic conductivity (e.g. LSGM - Ishihara)

• Proton conductor: Pure H2 (in later presentations)

• Ceramic cathodes (H2 – electrodes) : Better stability than Ni (e.g.
  Doped SrTiO3 - Irvine)

• Many kinds of anodes (O2 – electrodes) proposed and tested, e.g.
  LSM, LSCF and LSC. Contradicting reports about performance and
  durability.

• Cathode supported, electrolyte supported, and anode supported
  cells tested. Advantages/disadvantages complicated.

                                                                        15
Performance of
                    reversible SOC
World record in electrolysis




                                     16
Durability of Risø SOECs
                     1.2

                      1
Cell Voltage (V)




                     0.8

                     0.6

                     0.4

                     0.2

                      0
                           0    200   400     600    800    1000    1200   1400


                                                Time (h)

                   −0.5 A/cm2, 850°C, p(H2O) = 0.5 atm and p(H2) = 0.5 atm, steam
                   utilization 28%.                                                 17
- 0.5 A/cm2 , 850 °C, pH2O = 0.7 atm
                   1.25                                                                              1.25

                                                3t33 - pretreated glass sealing
                                     Normal3t30 minus offset
                                            glass seal                                                1.2
                                                                                                                      Au voltage3t36 (Au foil)
                                                                                                                            seal
                    1.2                                                                                                cell




                                                                                  Cell voltage (V)
Cell voltage (V)




                   1.15                                                                              1.15


                    1.1                                                                               1.1


                   1.05       Pre-treated glass seal                                                 1.05


                     1                                                                                 1
                          0   200   400   600    800    1000     1200    1400                               0   100          200        300      400   500   600
                                            Time (h)                                                                                 Time (h)




                                                                                                                                                             18
Durability of Risø SOECs
            Test   Temp.      i      p(H2O)   Ustart   Uend       ΔU
  No
          time (h) (oC)    (A/cm2)    (atm)    (V)     (V)     (mV/100 h)

3test19    766     850      -0.25     0.70    1.004    1.017       2

3test27     68     950      -2.0      0.90    1.528    2.219     1016

3test30    1316    850      -0.5      0.50    1.143    1.175       2

3test32    475     950      -1.0      0.90    1.059    1.185      27


Acceptable ΔU < 0.2 mV/100 h !




                                                                            19
Electron microscopy
                  for long-term tested SOEC
            Impedance spectroscopy ⇒ passivation due to the H2 electrode

                SEM/TEM/EDS for long-term (1510 h) tested SOEC:
H2 electr. – Ref. cell                                    TEM image
                                   No delamination
                                   between layers
                                   Intact electrolyte
                                   Satisfying electrode
                                   microstrucure          0.5 μm
4 μm
                                   Si-containing
                                   impurities in the H2
H2 electr. - Tested cell                                   Ni Zr Al Si
                                   electrode


                                ←SEM of ref. and tested
                                SOEC - 1316 h of EL
                                TEM & EDS map - from
4 μm                            same 1316 h EL test →

                                                                           20
Cells without glass seals
Cell A
                    1025      P a s s iv a t io n                  A c t iv a t io n                       D e gra da t io n      0.6

                                                                                                                                                                   Cell voltage (black) and




                                                                                                                                         In-plane voltage (mV)
                    1000
Cell voltage (mV)




                                                     Cell voltage
                    975
                                                                                                                                  0.3
                                                                                                                                                                   corresponding in-plane voltage
                    950                              In-plane voltage
                                                                                                                                  0.0
                                                                                                                                                                   (gray) at the Ni/YSZ electrode
                    925                                                                                                                                            measured during co-electrolysis of
                    900
                           0                  200          400           600            800        1000     1200
                                                                                                                                  -0.3
                                                                                                                               1400
                                                                                                                                                                   steam and carbon dioxide 850 ºC
                                                                   Electrolysis time (h)                                                                           and -0.25 A/cm2. The gas
Cell B
                    975                                                                                                           0.4                              composition to the negative Ni/YSZ
                                                                                                                                                                   electrode was 45 % H2O – 45 %




                                                                                                                                          In-plane voltage (mV)
                                                           In-plane voltage                                                       0.3
Cell voltage (mV)




                    950
                                                                                                                                                                   CO2 – 10 % H2, while pure oxygen
                                                                                                                                  0.2

                    925                                    Cell voltage
                                                                                                                                                                   was supplied to the LSM/YSZ
                                                                                                                                  0.1
                                                                                                                                                                   electrode
                    900                                                                                                           0.0
                          0                    100           200                  300          400         500                 600
                                                                   Electrolysis time (h)
Cell C
                    925                                                                                                           0.1
                                                                                                                                           In-plane voltage (mV)
Cell voltage (mV)




                                                                                Cell voltage
                                                                                                                                  0.0



                                                                                                                                  -0.1

                                                                                In-plane voltage

                    900                                                                                                           -0.2
                          0                          100                          200                300                       400
                                                                   Electrolysis time (h)                                                                                                                21
CO2 electrolysis - impurities
                                                                 850 °C, 0.25 A/cm2

                    1250       * The increase in cell voltage after 295 and 363 hours of electrolysis w as caused by a sensor break in the oven
                               temperature controle causing a low ering of the cell temperature to 795ºC and 835ºC respectively
                    1200
Cell voltage (mV)




                    1150
                                                                                                                      CO2 - CO as provided
                    1100

                    1050
                                                                                        *                          Clean CO2 - CO
                    1000
                                                                                                    *
                                                                                                        Degradation from 25 - 600 h: 1 m V / 1000 h
                    950
                           0                  100                 200                300                  400              500                600
                                                                           Electrolysis time (h)




                                                                                                                                                  22
Calculated electronic
leakage through YSZ
                    The leak current
                    density, ieh, as a
                    function of
                    electrolyte
                    thickness at
                    four
                    temperatures at
                    a cell voltage of
                    1.3 V.




                                         23
Calculated electronic
leakage through YSZ

                    Electronic leak
                    current density,
                    ieh, as a function
                    of cell voltage
                    for a 20 μm thick
                    YSZ electrolyte




                                         24
List of some problems
• Durability of the H2O- and the CO2-electrode at high current
  density (2 - 4 A/cm2) must be improved

• Develop cheap gas cleaning

• Redox tolerance of the Ni-YSZ-electrode should be improved or
  even better, an all ceramic cathode (H2O, CO2) should be
  developed.

• Pressurized operation to be developed

• Costs should be further decreased

• A most efficient way of cost reduction is further reduction of
  area specific resistance of the SOEC
                                                                   25
Visions for synfuels from
electrolysis of steam and carbon dioxide
1. Big wind turbine parks off-shore in the North sea, couple to a
   large SOEC system producing methane, which is fed into the
   existing natural gas net-work in Denmark

2. Large SOEC systems producing DME, synthetic gasoline and
   diesel in Island, Canada, Greenland … driven by geothermal
   energy and hydropower. Danish companies might build and
   own these factories.

3. The target market should be replacement of natural gas and
   liquid fuels for transportation

4. All the infrastructure exists!!


                                                                    26
Gasoline production using
                   SOEC

          e-
                         Fischer-Tropsch-catalyst

850 °C            H2 +                         Gasoline       25°C
      + 2O2- -    CO
                  H2O +        Heat exchange          H2O +
    O2            CO2                                 CO2     25°C
                               Heat exchange
                  O2                                O2        25°C



                                                                27
Economy assumptions for H2
     production using SOEC
Electricity                     1.3US¢/kWh
Heat                            0.3US¢/kWh
Investment                      4000 $/m2 cell area
Demineralised Water             2.3 $/m3
Cell temperature                850 ° C
Heat reservoir temperature      110 °C
Pressure                        1 atm
Cell voltage*                   1.29 V (thermo neutral potential)
Life time                       10 years.
Operating activity              50%
Interest rate                   5%
Energy loss in heat exchanger   5%
H2O inlet concentration         95% (5% H2)
H2O outlet concentration        5% (95% H2)
                                                                    28
H2 production –
economy estimation




                     29
Commercial SOEC systems
           - when ?
•   The SOEC R&D effort at Risø will approach 20 man-year in
    2009


•   Strongly increasing international interest in SOEC R&D


•   In spite of this the estimated time before commercial
    production: > 10 y, unless the energy situation becomes much
    worse. It may take a few years before we have solved the life
    time problems at high current density. Afterwards
    demonstration over several years is necessary before
    commercialization is possible. Energy supply problems in the
    transport sector may increase the R&D effort.

                                                                    30
Thank you for your attention!




                                31

More Related Content

What's hot

High Entropy alloys
High Entropy alloysHigh Entropy alloys
High Entropy alloys
Hitesh Basitti
 
Structure of Solid Materials
Structure of Solid MaterialsStructure of Solid Materials
Structure of Solid Materials
MUHAMMAD MUSTAFEEZ ALAM
 
Group 18 elements
Group 18 elementsGroup 18 elements
Group 18 elements
MASelvam IITian
 
Supramolecular Chemistry (by- Rijwan Ahmad)
Supramolecular Chemistry (by- Rijwan Ahmad)Supramolecular Chemistry (by- Rijwan Ahmad)
Supramolecular Chemistry (by- Rijwan Ahmad)
Rijwan Ahmad Shaikh
 
SOLID OXIDE FUEL CELLS
SOLID OXIDE FUEL CELLSSOLID OXIDE FUEL CELLS
SOLID OXIDE FUEL CELLS
Vidhyaprakash Venkatesan
 
Lindemann theory
Lindemann theoryLindemann theory
Lindemann theory
suriyagp
 
BULK METALLIC GLASS
BULK METALLIC GLASSBULK METALLIC GLASS
BULK METALLIC GLASS
Manjinder Singh
 
Semiconductor Nanomaterials
Semiconductor NanomaterialsSemiconductor Nanomaterials
Semiconductor Nanomaterials
Santanu Paria
 
The thexi state
The thexi stateThe thexi state
The thexi state
HarshJaswal6
 
Steel making
Steel makingSteel making
Steel making
Saniyak3
 
Thermoelectrics
ThermoelectricsThermoelectrics
Thermoelectrics
Viji Vijitha
 
(8) Anti-ferromagnetism, ferrimagnetism.pptx
(8) Anti-ferromagnetism, ferrimagnetism.pptx(8) Anti-ferromagnetism, ferrimagnetism.pptx
(8) Anti-ferromagnetism, ferrimagnetism.pptx
AbdulBasitMemon12
 
3.Magnetochemistry M.Sc. I Part- III.pptx
3.Magnetochemistry M.Sc. I Part- III.pptx3.Magnetochemistry M.Sc. I Part- III.pptx
3.Magnetochemistry M.Sc. I Part- III.pptx
Dept of chemistry,Shri Shivaji Science College,Amravati
 
Ls coupling
Ls couplingLs coupling
Ls coupling
usman mustafa
 
Thermoelectric Materials
Thermoelectric MaterialsThermoelectric Materials
Thermoelectric Materials
Viji Vijitha
 
Forms of corrosion
Forms of corrosionForms of corrosion
Forms of corrosion
Prof. T. K. G. Namboodhiri
 
Mn alcu2 heusler compound
Mn alcu2 heusler compoundMn alcu2 heusler compound
Mn alcu2 heusler compound
ogunmoyekehinde
 
Phonons lecture
Phonons lecturePhonons lecture
Phonons lecture
Olbira Dufera
 
Tecniques determine Rate of Reaction pdf.pdf
Tecniques  determine Rate of Reaction pdf.pdfTecniques  determine Rate of Reaction pdf.pdf
Tecniques determine Rate of Reaction pdf.pdf
VikasThakur896480
 
introduction to MOT
introduction to MOTintroduction to MOT
introduction to MOT
Nitya Sharma
 

What's hot (20)

High Entropy alloys
High Entropy alloysHigh Entropy alloys
High Entropy alloys
 
Structure of Solid Materials
Structure of Solid MaterialsStructure of Solid Materials
Structure of Solid Materials
 
Group 18 elements
Group 18 elementsGroup 18 elements
Group 18 elements
 
Supramolecular Chemistry (by- Rijwan Ahmad)
Supramolecular Chemistry (by- Rijwan Ahmad)Supramolecular Chemistry (by- Rijwan Ahmad)
Supramolecular Chemistry (by- Rijwan Ahmad)
 
SOLID OXIDE FUEL CELLS
SOLID OXIDE FUEL CELLSSOLID OXIDE FUEL CELLS
SOLID OXIDE FUEL CELLS
 
Lindemann theory
Lindemann theoryLindemann theory
Lindemann theory
 
BULK METALLIC GLASS
BULK METALLIC GLASSBULK METALLIC GLASS
BULK METALLIC GLASS
 
Semiconductor Nanomaterials
Semiconductor NanomaterialsSemiconductor Nanomaterials
Semiconductor Nanomaterials
 
The thexi state
The thexi stateThe thexi state
The thexi state
 
Steel making
Steel makingSteel making
Steel making
 
Thermoelectrics
ThermoelectricsThermoelectrics
Thermoelectrics
 
(8) Anti-ferromagnetism, ferrimagnetism.pptx
(8) Anti-ferromagnetism, ferrimagnetism.pptx(8) Anti-ferromagnetism, ferrimagnetism.pptx
(8) Anti-ferromagnetism, ferrimagnetism.pptx
 
3.Magnetochemistry M.Sc. I Part- III.pptx
3.Magnetochemistry M.Sc. I Part- III.pptx3.Magnetochemistry M.Sc. I Part- III.pptx
3.Magnetochemistry M.Sc. I Part- III.pptx
 
Ls coupling
Ls couplingLs coupling
Ls coupling
 
Thermoelectric Materials
Thermoelectric MaterialsThermoelectric Materials
Thermoelectric Materials
 
Forms of corrosion
Forms of corrosionForms of corrosion
Forms of corrosion
 
Mn alcu2 heusler compound
Mn alcu2 heusler compoundMn alcu2 heusler compound
Mn alcu2 heusler compound
 
Phonons lecture
Phonons lecturePhonons lecture
Phonons lecture
 
Tecniques determine Rate of Reaction pdf.pdf
Tecniques  determine Rate of Reaction pdf.pdfTecniques  determine Rate of Reaction pdf.pdf
Tecniques determine Rate of Reaction pdf.pdf
 
introduction to MOT
introduction to MOTintroduction to MOT
introduction to MOT
 

Similar to D09.06.01.presentation

Taconic Tac-LED-10
Taconic Tac-LED-10Taconic Tac-LED-10
Taconic Tac-LED-10
Manfred Huschka
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
Nityanand Gopalika
 
Equivalence of GHG emissions under the 2oC limit - Steve smith et al
Equivalence of GHG emissions under the 2oC limit - Steve smith et alEquivalence of GHG emissions under the 2oC limit - Steve smith et al
Equivalence of GHG emissions under the 2oC limit - Steve smith et al
Environmental Protection Agency, Ireland
 
21st Century Coal Power Plants
21st Century Coal Power Plants21st Century Coal Power Plants
21st Century Coal Power Plants
Jeffrey Phillips
 
D09.06.06.presentation
D09.06.06.presentationD09.06.06.presentation
D09.06.06.presentation
Relhy project
 
2-Electrochemistry.pptx
2-Electrochemistry.pptx2-Electrochemistry.pptx
2-Electrochemistry.pptx
Divya Boosagulla
 
Fuelcell
FuelcellFuelcell
Energy loss and energy straggling a presentation by Younes Sina
Energy loss and energy straggling a presentation by Younes SinaEnergy loss and energy straggling a presentation by Younes Sina
Energy loss and energy straggling a presentation by Younes Sina
Younes Sina
 
Harmonic vsd-lamps
Harmonic vsd-lampsHarmonic vsd-lamps
Harmonic vsd-lamps
Leonardo ENERGY
 
the-birth-of-new-technology (1).pdf
the-birth-of-new-technology (1).pdfthe-birth-of-new-technology (1).pdf
the-birth-of-new-technology (1).pdf
Daniel Donatelli
 
Deep subsea OTEC
Deep subsea OTECDeep subsea OTEC
Deep subsea OTEC
Vicente Fachina
 
8. véronique dias ecerc - emissions reduction in combustion
8. véronique dias   ecerc - emissions reduction in combustion8. véronique dias   ecerc - emissions reduction in combustion
8. véronique dias ecerc - emissions reduction in combustion
Implementing_Agreements
 
Fuel cell
Fuel cellFuel cell
Fuel cell
Faisal Rafique
 
Esd
EsdEsd
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
Star Gold
 
the-birth-of-new-technology.pdf
the-birth-of-new-technology.pdfthe-birth-of-new-technology.pdf
the-birth-of-new-technology.pdf
Daniel Donatelli
 
Piezoaeroelastic Energy Harvesting
Piezoaeroelastic Energy HarvestingPiezoaeroelastic Energy Harvesting
Piezoaeroelastic Energy Harvesting
vagnercsousa
 
Doe dollar per watt overview
Doe dollar per watt overviewDoe dollar per watt overview
Doe dollar per watt overview
chandyGhosh
 
April 2012 - Michigan Energy Forum - Donald H. Williams
April 2012 - Michigan Energy Forum - Donald H. WilliamsApril 2012 - Michigan Energy Forum - Donald H. Williams
April 2012 - Michigan Energy Forum - Donald H. Williams
AnnArborSPARK
 
8. véronique dias ecerc - emissions reduction in combustion
8. véronique dias   ecerc - emissions reduction in combustion8. véronique dias   ecerc - emissions reduction in combustion
8. véronique dias ecerc - emissions reduction in combustion
Implementing_Agreements
 

Similar to D09.06.01.presentation (20)

Taconic Tac-LED-10
Taconic Tac-LED-10Taconic Tac-LED-10
Taconic Tac-LED-10
 
Nityanand gopalika spectrum validation - nde 2003
Nityanand gopalika   spectrum validation - nde 2003Nityanand gopalika   spectrum validation - nde 2003
Nityanand gopalika spectrum validation - nde 2003
 
Equivalence of GHG emissions under the 2oC limit - Steve smith et al
Equivalence of GHG emissions under the 2oC limit - Steve smith et alEquivalence of GHG emissions under the 2oC limit - Steve smith et al
Equivalence of GHG emissions under the 2oC limit - Steve smith et al
 
21st Century Coal Power Plants
21st Century Coal Power Plants21st Century Coal Power Plants
21st Century Coal Power Plants
 
D09.06.06.presentation
D09.06.06.presentationD09.06.06.presentation
D09.06.06.presentation
 
2-Electrochemistry.pptx
2-Electrochemistry.pptx2-Electrochemistry.pptx
2-Electrochemistry.pptx
 
Fuelcell
FuelcellFuelcell
Fuelcell
 
Energy loss and energy straggling a presentation by Younes Sina
Energy loss and energy straggling a presentation by Younes SinaEnergy loss and energy straggling a presentation by Younes Sina
Energy loss and energy straggling a presentation by Younes Sina
 
Harmonic vsd-lamps
Harmonic vsd-lampsHarmonic vsd-lamps
Harmonic vsd-lamps
 
the-birth-of-new-technology (1).pdf
the-birth-of-new-technology (1).pdfthe-birth-of-new-technology (1).pdf
the-birth-of-new-technology (1).pdf
 
Deep subsea OTEC
Deep subsea OTECDeep subsea OTEC
Deep subsea OTEC
 
8. véronique dias ecerc - emissions reduction in combustion
8. véronique dias   ecerc - emissions reduction in combustion8. véronique dias   ecerc - emissions reduction in combustion
8. véronique dias ecerc - emissions reduction in combustion
 
Fuel cell
Fuel cellFuel cell
Fuel cell
 
Esd
EsdEsd
Esd
 
Energy and nanotechnology
Energy and nanotechnologyEnergy and nanotechnology
Energy and nanotechnology
 
the-birth-of-new-technology.pdf
the-birth-of-new-technology.pdfthe-birth-of-new-technology.pdf
the-birth-of-new-technology.pdf
 
Piezoaeroelastic Energy Harvesting
Piezoaeroelastic Energy HarvestingPiezoaeroelastic Energy Harvesting
Piezoaeroelastic Energy Harvesting
 
Doe dollar per watt overview
Doe dollar per watt overviewDoe dollar per watt overview
Doe dollar per watt overview
 
April 2012 - Michigan Energy Forum - Donald H. Williams
April 2012 - Michigan Energy Forum - Donald H. WilliamsApril 2012 - Michigan Energy Forum - Donald H. Williams
April 2012 - Michigan Energy Forum - Donald H. Williams
 
8. véronique dias ecerc - emissions reduction in combustion
8. véronique dias   ecerc - emissions reduction in combustion8. véronique dias   ecerc - emissions reduction in combustion
8. véronique dias ecerc - emissions reduction in combustion
 

More from Relhy project

The Nimes call
The Nimes callThe Nimes call
The Nimes call
Relhy project
 
L'appel de-nimes
L'appel de-nimesL'appel de-nimes
L'appel de-nimes
Relhy project
 
Departementales 2015 maurepas
Departementales 2015 maurepasDepartementales 2015 maurepas
Departementales 2015 maurepas
Relhy project
 
D09.06.07.abstract
D09.06.07.abstractD09.06.07.abstract
D09.06.07.abstract
Relhy project
 
D09.06.05.presentation
D09.06.05.presentationD09.06.05.presentation
D09.06.05.presentation
Relhy project
 
D09.06.05.abstract
D09.06.05.abstractD09.06.05.abstract
D09.06.05.abstract
Relhy project
 
D09.06.04.presentation
D09.06.04.presentationD09.06.04.presentation
D09.06.04.presentation
Relhy project
 
D09.06.04.abstract
D09.06.04.abstractD09.06.04.abstract
D09.06.04.abstract
Relhy project
 
D09.06.03.presentation
D09.06.03.presentationD09.06.03.presentation
D09.06.03.presentation
Relhy project
 
D09.06.03.abstract
D09.06.03.abstractD09.06.03.abstract
D09.06.03.abstract
Relhy project
 
D09.06.02.presentation
D09.06.02.presentationD09.06.02.presentation
D09.06.02.presentation
Relhy project
 
D09.06.02.abstract
D09.06.02.abstractD09.06.02.abstract
D09.06.02.abstract
Relhy project
 
D09.06.01.abstract
D09.06.01.abstractD09.06.01.abstract
D09.06.01.abstract
Relhy project
 

More from Relhy project (13)

The Nimes call
The Nimes callThe Nimes call
The Nimes call
 
L'appel de-nimes
L'appel de-nimesL'appel de-nimes
L'appel de-nimes
 
Departementales 2015 maurepas
Departementales 2015 maurepasDepartementales 2015 maurepas
Departementales 2015 maurepas
 
D09.06.07.abstract
D09.06.07.abstractD09.06.07.abstract
D09.06.07.abstract
 
D09.06.05.presentation
D09.06.05.presentationD09.06.05.presentation
D09.06.05.presentation
 
D09.06.05.abstract
D09.06.05.abstractD09.06.05.abstract
D09.06.05.abstract
 
D09.06.04.presentation
D09.06.04.presentationD09.06.04.presentation
D09.06.04.presentation
 
D09.06.04.abstract
D09.06.04.abstractD09.06.04.abstract
D09.06.04.abstract
 
D09.06.03.presentation
D09.06.03.presentationD09.06.03.presentation
D09.06.03.presentation
 
D09.06.03.abstract
D09.06.03.abstractD09.06.03.abstract
D09.06.03.abstract
 
D09.06.02.presentation
D09.06.02.presentationD09.06.02.presentation
D09.06.02.presentation
 
D09.06.02.abstract
D09.06.02.abstractD09.06.02.abstract
D09.06.02.abstract
 
D09.06.01.abstract
D09.06.01.abstractD09.06.01.abstract
D09.06.01.abstract
 

D09.06.01.presentation

  • 1. SOEC – Status, Problems and Perspectives Mogens Mogensen Fuel Cells and Solid State Chemistry Department Risø National Laboratory for Sustainable Energy The Technical University of Denmark DK-4000 Roskilde, Denmark Presented at workshop on High temperature electrolysis limiting factors Karlsruhe, June 9 -10, 2009 1
  • 2. Acknowledgements The colleagues at Risø – DTU provided most of the following for me. Especially the following persons contributed: Sune D. Ebbesen Anne Hauch Søren Højgaard Jensen Torben Jacobsen 2
  • 3. Outline • Why high temperature electrolysis? • Principle and structure of SOEC • SOEC materials • Performance and durability • Poisoning • Leak current density through the YSZ • List of some problems • Risø’s visions on synthetic fuels • Economic estimates • When? 3
  • 4. Why electrolysis at high temperature? Because: • Electrolysis is a heat consuming process. The Joule heat contributes to the splitting of the water and CO2 molecules. Thus, the higher the temperature, the less electrical energy is need for the splitting. • The rate of the electrochemical processes is much faster at high temperature. More m3 H2 per m2 cell per minute gives a better economy. • The solid oxide electrolyzer cell (SOEC) consists of relatively inexpensive materials and may be produced using low cost processes. • This was realized already 30 years by e.g. Dornier and Westinghouse, but the technology was not developed. Thus, SOEC has now attracted new interest due to energy crisis and climate problems. 4
  • 5. Thermodynamics H2O → H2 + ½O2 300 1.55 1/(2·n·F) · Energy demand (Volt) Total energy demand (ΔHf ) 250 1.30 Energy demand (KJ/mol) Electrical 200 energy de 1.04 mand (ΔG f) Liquid Gas 150 0.78 100 0.52 a nd (TΔS f ) 50 Heat dem 0.26 0 0.00 0 100 200 300 400 500 600 700 800 900 1000 Temperature (ºC) Energy (“volt”) = Energy (kJ/mol)/2F 5
  • 6. Thermodynamics • H2O formation energies 6 Source: NIST chemistry webbook
  • 7. Thermodynamics 300 CO2 → CO + ½O2 1.55 Total energy demand (ΔHf ) 1/(2·n·F) · Energy demand (Volt) 250 1.30 Energy demand (KJ/mol) Electri cal ene 200 rgy de 1.04 mand (Δ Gf ) 150 0.78 ΔS f ) 100 and (T 0.52 He at d em 50 0.26 . 0 0.00 0 100 200 300 400 500 600 700 800 900 1000 Temperature (ºC) 7
  • 8. Thermodynamics 300 Electrical energy demand (Δ Gf) 1.55 1/(2·n·F) · Energy demand (Volt) 250 C O2 → 1.30 CO + ½ Energy demand (KJ/mol) O2 H 2O → H 2 + ½O 200 2 1.04 150 0.78 750ºC – 900ºC 100 0.52 ΔGH2O→H2 +½O2 = ΔGCO2 →CO +½O2 50 0.26 . 0 0.00 0 100 200 300 400 500 600 700 800 900 1000 Temperature (ºC) 8
  • 9. Principle of SOEC 0.7 V 1.5 V 850 °C EMF ca. 1.1 V Working principle of a reversible Solid Oxide Cell (SOC) The cell can be operated as a SOFC (A) and as a SOEC (B). 9
  • 10. Anode-supported SOFC Cathode current collector, LSM, ~40µm Electrochemically active cathode layer, LSM/YSZ, ~20µm Electrolyte, YSZ, ~10µm Electrochemically active anode layer, Ni/YSZ, ~15µm Anode current collector (support), Ni/YSZ, ~250µm 10
  • 11. Ni - YSZ supported cell LSM/YSZ electrode YSZ electrolyte Ni/YSZ electrode Ni/YSZ support 11
  • 12. Risø DTU SOCs Active cell area 4x4 cm2 or 18x18 cm2 12
  • 13. Risø DTU SOFC • SOFC R&D since 1989 in cooperation with Danish & European industry partners • Up-scaling from laboratory scale production to pre-pilot scale production of SOFC (capacity: 1000 12x12cm2 cells per week) in cooperation with TOFC • SOFCs produced at the pre-pilot shows: High performance & reproducibility - ASR = 0.18 ± 0.03 Ωcm2 @ 850°C Reliability - high mechanical strength of cells Inexpensive production methods - tape casting, spray, screen-printing TOFC started a 5 MW SOFC stack capacity pilot production line on April 28th, 2009. 13
  • 14. Technology status • Europe: EIfER and Risø DTU + TOFC have built and tested small (< 1 kW) stacks • USA: INL + Ceramatec have built and tested 15 kW system • Others? The cell performance (and thus the stack performance) call for further improvement before a comprehensive stack and system development activity should start 14
  • 15. Other SOC materials and design • Other O2- conducting electrolytes instead of doped zirconia: Higher ionic conductivity (e.g. LSGM - Ishihara) • Proton conductor: Pure H2 (in later presentations) • Ceramic cathodes (H2 – electrodes) : Better stability than Ni (e.g. Doped SrTiO3 - Irvine) • Many kinds of anodes (O2 – electrodes) proposed and tested, e.g. LSM, LSCF and LSC. Contradicting reports about performance and durability. • Cathode supported, electrolyte supported, and anode supported cells tested. Advantages/disadvantages complicated. 15
  • 16. Performance of reversible SOC World record in electrolysis 16
  • 17. Durability of Risø SOECs 1.2 1 Cell Voltage (V) 0.8 0.6 0.4 0.2 0 0 200 400 600 800 1000 1200 1400 Time (h) −0.5 A/cm2, 850°C, p(H2O) = 0.5 atm and p(H2) = 0.5 atm, steam utilization 28%. 17
  • 18. - 0.5 A/cm2 , 850 °C, pH2O = 0.7 atm 1.25 1.25 3t33 - pretreated glass sealing Normal3t30 minus offset glass seal 1.2 Au voltage3t36 (Au foil) seal 1.2 cell Cell voltage (V) Cell voltage (V) 1.15 1.15 1.1 1.1 1.05 Pre-treated glass seal 1.05 1 1 0 200 400 600 800 1000 1200 1400 0 100 200 300 400 500 600 Time (h) Time (h) 18
  • 19. Durability of Risø SOECs Test Temp. i p(H2O) Ustart Uend ΔU No time (h) (oC) (A/cm2) (atm) (V) (V) (mV/100 h) 3test19 766 850 -0.25 0.70 1.004 1.017 2 3test27 68 950 -2.0 0.90 1.528 2.219 1016 3test30 1316 850 -0.5 0.50 1.143 1.175 2 3test32 475 950 -1.0 0.90 1.059 1.185 27 Acceptable ΔU < 0.2 mV/100 h ! 19
  • 20. Electron microscopy for long-term tested SOEC Impedance spectroscopy ⇒ passivation due to the H2 electrode SEM/TEM/EDS for long-term (1510 h) tested SOEC: H2 electr. – Ref. cell TEM image No delamination between layers Intact electrolyte Satisfying electrode microstrucure 0.5 μm 4 μm Si-containing impurities in the H2 H2 electr. - Tested cell Ni Zr Al Si electrode ←SEM of ref. and tested SOEC - 1316 h of EL TEM & EDS map - from 4 μm same 1316 h EL test → 20
  • 21. Cells without glass seals Cell A 1025 P a s s iv a t io n A c t iv a t io n D e gra da t io n 0.6 Cell voltage (black) and In-plane voltage (mV) 1000 Cell voltage (mV) Cell voltage 975 0.3 corresponding in-plane voltage 950 In-plane voltage 0.0 (gray) at the Ni/YSZ electrode 925 measured during co-electrolysis of 900 0 200 400 600 800 1000 1200 -0.3 1400 steam and carbon dioxide 850 ºC Electrolysis time (h) and -0.25 A/cm2. The gas Cell B 975 0.4 composition to the negative Ni/YSZ electrode was 45 % H2O – 45 % In-plane voltage (mV) In-plane voltage 0.3 Cell voltage (mV) 950 CO2 – 10 % H2, while pure oxygen 0.2 925 Cell voltage was supplied to the LSM/YSZ 0.1 electrode 900 0.0 0 100 200 300 400 500 600 Electrolysis time (h) Cell C 925 0.1 In-plane voltage (mV) Cell voltage (mV) Cell voltage 0.0 -0.1 In-plane voltage 900 -0.2 0 100 200 300 400 Electrolysis time (h) 21
  • 22. CO2 electrolysis - impurities 850 °C, 0.25 A/cm2 1250 * The increase in cell voltage after 295 and 363 hours of electrolysis w as caused by a sensor break in the oven temperature controle causing a low ering of the cell temperature to 795ºC and 835ºC respectively 1200 Cell voltage (mV) 1150 CO2 - CO as provided 1100 1050 * Clean CO2 - CO 1000 * Degradation from 25 - 600 h: 1 m V / 1000 h 950 0 100 200 300 400 500 600 Electrolysis time (h) 22
  • 23. Calculated electronic leakage through YSZ The leak current density, ieh, as a function of electrolyte thickness at four temperatures at a cell voltage of 1.3 V. 23
  • 24. Calculated electronic leakage through YSZ Electronic leak current density, ieh, as a function of cell voltage for a 20 μm thick YSZ electrolyte 24
  • 25. List of some problems • Durability of the H2O- and the CO2-electrode at high current density (2 - 4 A/cm2) must be improved • Develop cheap gas cleaning • Redox tolerance of the Ni-YSZ-electrode should be improved or even better, an all ceramic cathode (H2O, CO2) should be developed. • Pressurized operation to be developed • Costs should be further decreased • A most efficient way of cost reduction is further reduction of area specific resistance of the SOEC 25
  • 26. Visions for synfuels from electrolysis of steam and carbon dioxide 1. Big wind turbine parks off-shore in the North sea, couple to a large SOEC system producing methane, which is fed into the existing natural gas net-work in Denmark 2. Large SOEC systems producing DME, synthetic gasoline and diesel in Island, Canada, Greenland … driven by geothermal energy and hydropower. Danish companies might build and own these factories. 3. The target market should be replacement of natural gas and liquid fuels for transportation 4. All the infrastructure exists!! 26
  • 27. Gasoline production using SOEC e- Fischer-Tropsch-catalyst 850 °C H2 + Gasoline 25°C + 2O2- - CO H2O + Heat exchange H2O + O2 CO2 CO2 25°C Heat exchange O2 O2 25°C 27
  • 28. Economy assumptions for H2 production using SOEC Electricity 1.3US¢/kWh Heat 0.3US¢/kWh Investment 4000 $/m2 cell area Demineralised Water 2.3 $/m3 Cell temperature 850 ° C Heat reservoir temperature 110 °C Pressure 1 atm Cell voltage* 1.29 V (thermo neutral potential) Life time 10 years. Operating activity 50% Interest rate 5% Energy loss in heat exchanger 5% H2O inlet concentration 95% (5% H2) H2O outlet concentration 5% (95% H2) 28
  • 29. H2 production – economy estimation 29
  • 30. Commercial SOEC systems - when ? • The SOEC R&D effort at Risø will approach 20 man-year in 2009 • Strongly increasing international interest in SOEC R&D • In spite of this the estimated time before commercial production: > 10 y, unless the energy situation becomes much worse. It may take a few years before we have solved the life time problems at high current density. Afterwards demonstration over several years is necessary before commercialization is possible. Energy supply problems in the transport sector may increase the R&D effort. 30
  • 31. Thank you for your attention! 31