Curvature Jasmine He Victoria de Metz Rashi Ojha
What is curvature? Refers to how much a geometric object deviates from being “flat” or “straight” The measure of the amount of curving The degree by which a non-linear or surface curves
Curvature in Calculus The rate of change of direction of the tangent vector How fast a curve is changing direction Curves that bend to the right, are negative Curves that bend to the left, are positive We will focus on plane curves
Curvature equation K-Curvature S-Arc Length -Angle measured counterclockwise T-
Proof R(θ )=rcosθ  I  + rsinθ  j R(s)=rcos(s/r) I  + rsin (s/r)  j R’(s)=-sin(s/r) I  + cos (s/r)  J T(s) = r’(s)/||r’(s)||=-sin(s/r) i +cos(s/r) J K= ||T’(s)||
Gravity or Curvature? In Euclidian space, gravity in a force that attracts two bodies together In reality, this effect is caused by the curvature of space and time The object is traveling in a strait line Gravity does not redirect the object it redefines what the straightest path is
Relationship between Acceleration, Speed, and Curvature a(t) = d2s  T  +  K (ds/dt)^2  N dt2 K- Curvature ds/dt- Speed
How is curvature applied in real life? Applied in mostly in physics and engineering Is used in frictional force Used in calculating space time – orbitals Force = mass x acceleration
Example textbook problem Page 876, Section: 12.5, #39 r(t) = 4t i  + 3 cos t j  + 3 sin t k --- r'(t) = 4 i  – 3 sin t j  + 3 cos t k T(t) = [r'(t)] / [ II r'(t) II ] = (1/5)[ 4 i  – 3 sin t  j  + 3 cos t  k  ]  T'(t) = (1/5)[ -3 cos t j  – 3 sin t k  ] K = [ II T'(t) II ] / [ II r'(t) II ] K = (3/5) / 5 K = 3/25
Sybase’s Logo
The Sybase logo is represented by the Archimedean spiral This is represented by the parametric equations: y = t cos t x = t sin t Insert picture of archimedes.
Curvature of the Sybase Logo Archimedes’ Spiral Parametric Equation: x = t cos t y = t sin t K = ( Iy''I )/ [1 + (y')²]³∕² y' = [( t cos t) + sin t] / [ cos t – t sin t]  y'' = (d/dt [ (sin t + t cos t) / ( cos t – t sin t)]) · (1 / dx/dt ) y'' = [ (cos t + cos t – t sin t)(cos t – t sin t) – ( sin t + t cos t)(-sin t – sin t – t cos t) ] / (cos t – t sin t)³ y'' = [ ( 2 cos t – t sin t)(cos t – t sin t)  + ( sin t + t cos t)(2 sin t + t cos t)] / (cos t – t sin t)³ y'' = [ (2 cos²t – 2t sin t cos t – t sin t cos t + t² sin²t) + (2 sin²t + 2t sin t cos t + t sin t cos t + t² cos²t) ] / (cos t – t sin t)³ y'' = (2 + t²) / ( cos t – t sin t)³
Curvature of the Sybase Logo cont. Finding the curvature: K = I y'' I / [ 1 + (y')²]³∕² K = I (2 + t²) / ( cos t – t sin t)³ I / ([ 1 + ([( t cos t) + sin t] / [ cos t – t sin t])²]³∕² K = (2 + t²) / [ 1 + (t cos t + sin t)²]³∕²  Graph the curvature:
Sources http://www.cs.iastate.edu/~cs577/handouts/curvature.pdf http:// tutorial.math.lamar.edu/classes/calcII/Curvature.aspx http:// www.newworldencyclopedia.org /entry/Curvature http://xahlee.org/SpecialPlaneCurves_dir/ArchimedeanSpiral_dir/archimedeanSpiral.html

Curvature final

  • 1.
    Curvature Jasmine HeVictoria de Metz Rashi Ojha
  • 2.
    What is curvature?Refers to how much a geometric object deviates from being “flat” or “straight” The measure of the amount of curving The degree by which a non-linear or surface curves
  • 3.
    Curvature in CalculusThe rate of change of direction of the tangent vector How fast a curve is changing direction Curves that bend to the right, are negative Curves that bend to the left, are positive We will focus on plane curves
  • 4.
    Curvature equation K-CurvatureS-Arc Length -Angle measured counterclockwise T-
  • 5.
    Proof R(θ )=rcosθ I + rsinθ j R(s)=rcos(s/r) I + rsin (s/r) j R’(s)=-sin(s/r) I + cos (s/r) J T(s) = r’(s)/||r’(s)||=-sin(s/r) i +cos(s/r) J K= ||T’(s)||
  • 6.
    Gravity or Curvature?In Euclidian space, gravity in a force that attracts two bodies together In reality, this effect is caused by the curvature of space and time The object is traveling in a strait line Gravity does not redirect the object it redefines what the straightest path is
  • 7.
    Relationship between Acceleration,Speed, and Curvature a(t) = d2s T + K (ds/dt)^2 N dt2 K- Curvature ds/dt- Speed
  • 8.
    How is curvatureapplied in real life? Applied in mostly in physics and engineering Is used in frictional force Used in calculating space time – orbitals Force = mass x acceleration
  • 9.
    Example textbook problemPage 876, Section: 12.5, #39 r(t) = 4t i + 3 cos t j + 3 sin t k --- r'(t) = 4 i – 3 sin t j + 3 cos t k T(t) = [r'(t)] / [ II r'(t) II ] = (1/5)[ 4 i – 3 sin t j + 3 cos t k ] T'(t) = (1/5)[ -3 cos t j – 3 sin t k ] K = [ II T'(t) II ] / [ II r'(t) II ] K = (3/5) / 5 K = 3/25
  • 10.
  • 11.
    The Sybase logois represented by the Archimedean spiral This is represented by the parametric equations: y = t cos t x = t sin t Insert picture of archimedes.
  • 12.
    Curvature of theSybase Logo Archimedes’ Spiral Parametric Equation: x = t cos t y = t sin t K = ( Iy''I )/ [1 + (y')²]³∕² y' = [( t cos t) + sin t] / [ cos t – t sin t] y'' = (d/dt [ (sin t + t cos t) / ( cos t – t sin t)]) · (1 / dx/dt ) y'' = [ (cos t + cos t – t sin t)(cos t – t sin t) – ( sin t + t cos t)(-sin t – sin t – t cos t) ] / (cos t – t sin t)³ y'' = [ ( 2 cos t – t sin t)(cos t – t sin t) + ( sin t + t cos t)(2 sin t + t cos t)] / (cos t – t sin t)³ y'' = [ (2 cos²t – 2t sin t cos t – t sin t cos t + t² sin²t) + (2 sin²t + 2t sin t cos t + t sin t cos t + t² cos²t) ] / (cos t – t sin t)³ y'' = (2 + t²) / ( cos t – t sin t)³
  • 13.
    Curvature of theSybase Logo cont. Finding the curvature: K = I y'' I / [ 1 + (y')²]³∕² K = I (2 + t²) / ( cos t – t sin t)³ I / ([ 1 + ([( t cos t) + sin t] / [ cos t – t sin t])²]³∕² K = (2 + t²) / [ 1 + (t cos t + sin t)²]³∕² Graph the curvature:
  • 14.
    Sources http://www.cs.iastate.edu/~cs577/handouts/curvature.pdf http://tutorial.math.lamar.edu/classes/calcII/Curvature.aspx http:// www.newworldencyclopedia.org /entry/Curvature http://xahlee.org/SpecialPlaneCurves_dir/ArchimedeanSpiral_dir/archimedeanSpiral.html