NARAYANA E- TECHNO SCHOOL,
MADANANDAPURAM
Narayana E – Techno School, Madanandapuram
Coordinate Geomentry
S. Yuvan Pramesh
VIII Wordsworth
SESSION OBJECTIVES
1.Introduction
2.Cartesian Coordinate system and
Quadrants
3.Distance formula
4.Section formula
5.Collinearity of three points
HORIZONTAL NUMBER LINE
VERTICAL NUMBER LINE
COORDINATE AXES
COORDINATE SYSTEM
COORDINATES
XX’
Y
Y’
O
1 2 3 4-1-2-3-4
-1
-2
-3
1
2
3
(2,1)
(-3,-2)
Ordinate
Abcissa
QUADRANTS
Q : (1,0) lies in which Quadrant?.
XX’ O
Y
Y’
III
III IV
(+,+)(-,+)
(-,-) (+,-)
Ist? IInd?
A: None. Points which lie on the axes do not lie in any quadrant.
Distance Formula
x1
XX’
Y’
O
Y
x2
y1
y2
N
y2-y1
(x2-x1)
PQN is a right angled
 PQ2 = PN2 + QN2
 PQ2 = (x2-x1)2+(y2-y1)2
   2 2
2 1 2 1PQ x x y y    
Distance From Origin
Distance of P(x, y) from the origin is
      
2 2
OP x 0 y 0
 2 2
OP x y
SECTION FORMULA
L N M
H
K
XX’
Y’
O
Y Clearly AHP ~ PKB
  
AP AH PH
BP PK BK
 
  
 
1 1
2 2
x x y ym
n x x y y
2 1 2 1mx nx my ny
P ,
m n m n
  
     
MIDPOINT FORMULA
If P(x,y) is a Midpoint of A(x1, y1) and B(x2,y2)
AP=PB
m:n  1:1
  
   
 
1 2 1 2x x y y
P ,
2 2
A
B
C
COLLINEARITY - EXAMPLE
Coordinate Geometry

Coordinate Geometry