SlideShare a Scribd company logo
1 of 12
Download to read offline
108
17 Complexation Reaction and Titrations
17A The Formation of Complexes
Ligand: an ion or a molecule that forms a covalent bond with a cation or a neutral
metal atom by donating a pair of electrons that are then share by the two.
→ water, ammonia and halide ions are common inorganic ligand.
Coordination number: the no. of covalent bonds it tends to form with electron donor
species. → 2, 4 and 6
Chelate: a cyclic complex formed when a cation is bonded by two or more donor
groups contained in a single ligand.
Cu(NH3)4
2+
; Cu(NH2CH2COO)2; CuCl4
2-
Cu + 2 H-C-C-OH
OH N
2+
2
H
O C O
H C N
Cu
CO
CHN
H H
2
2 2
2
O
+ 2H
+
Dentate: means having toothlike
unidentate (a single donor group), bi, tri, tetra, penta, hexa-dentate
Tetradentate & hexadentate ligands are more satisfactory as titrants than
ligands with a lesser no. of donor groups for two reasons:
a. react more completely & sharper end points
b. tend to form 1:1 complexes
macrocycle: Metal ion-cyclic organic compound
17A-1 Complexations Equilibria
M + L ⇔ ML M: metal ion
ML + L ⇔ ML2 L: ligand
…
…
MLn-1 + L ⇔ MLn
109
M + L ⇔ ML
M + 2L ⇔ ML2
M + 3L ⇔ ML3
…
M + nL ⇔ MLn
11
[M][L]
]ML[
β K==
212
2
2
[M][L]
]ML[
KK==β
3213
3
3
[M][L]
]ML[
β KKK==
nn KKKK ⋅⋅⋅==β 321n
n
[M][L]
]ML[
n
n
3
3
2
21
M
[L]β[L]β[L]β[L]β1
1
α
+⋅⋅⋅++++
=
n
n
3
3
2
21
1
ML
[L]β[L]β[L]β[L]β1
[L]β
α
+⋅⋅⋅++++
=
n
n
3
3
2
21
2
2
2ML
[L]β[L]β[L]β[L]β1
[L]β
α
+⋅⋅⋅++++
=
n
n
3
3
2
21
n
n
ML
[L]β[L]β[L]β[L]β1
[L]β
α n
+⋅⋅⋅++++
=
17A-2 The Formation of Insoluble species
MxAy(s) ⇔ xMy+
(aq) + yAx-
(aq) Ksp = [My+
]x
[Ax-
]y
17A-3 Ligands That Can Protonate
Complexation with protonating ligands
For a diprotic acid: oxalic acid → Ox2-
, HOx-
, H2Ox
CT = [H2Ox] + [HOx-
] + [Ox2-
]
211
2
2
T
2
0
]H[]H[
]H[
C
]OxH[
aaa KKK ++
==α ++
+
211
2
1
T
-
1
]H[]H[
]H[
C
]HOx[
aaa
a
KKK
K
++
==α ++
+
211
2
21
T
-2
2
]H[]H[C
]Ox[
aaa
aa
KKK
KK
++
==α ++
; [Ox2-
] = CTα2
in very basic solution: α2 ≈ 1, → [Ox2-
] ≈ CT
110
Conditional formation constants
pH effect on conditional formation constants
Formation constant (K1) for the reaction of Fe3+
with oxalate:
T2
3-231
]Fe[
]FeOx)[(
]][Ox[Fe
]FeOx)[(
c
K
α
== +
+
+
+
Conditional, or effective, formation constants
pH-dependent, apply at a single pH only.
T
312
'
1
]Fe[
]FeOx)[(
c
KK +
+
=α=
17B Titrations with Inorganic Complexing Agents
Fig. 17-1 Titration curves for complexometric
titrations. Titration of 60.0 mL of a soln that
is 0.020 M in M with (curve A) a 0.020-M
soln of the tetradentate ligand D to give MD
as the product; (curve B) a 0.040-M soln of
the bidentate ligand B to give MB2; and
(curve C) a 0.080-M soln of the unidentate
ligand A to give MA. The overall formation
constant for each product is 1020
.
Table 17-1 Typical Inorganic Complex-Formation Titration
Titrant Analyte Remarks
Hg(NO3)2 Br-
, Cl-
, SCN-
, CN-
, thiourea Products are neutral Hg(II) complexes;
various indicators used
AgNO3 CN-
Product is Ag(CN)2
-
; indicator is I-
;
titrate to first turbidity of AgI
NiSO4 CN-
Product is Ni(CN)4
2-
; indicator is I-
;
titrate to first turbidity of AgI
KCN Cu2+
, Hg2+
, Ni2+
Products are Cu(CN)4
2-
, Hg(CN)2,
Ni(CN)4
2-
; various indicator used
17C Organic Complexing Agents
nHX(org) + Mn+
(aq) ⇔ MXn(org) + nH+
(aq)
111
Table 17-2 Organic reagents for extracting metals
Reagent Metal Ions extracting Metals Solvents
8-Hydroxyquinoline Zn2+
, Cu2+
, Ni2+
, Al3+
, many
others
Watetr → Chloroform
(CHCl3)
Diphenylthiocarbazone
(dithizone)
Cd2+
, Co2+
, Cu2+
, Pb2+
, many
others
Watetr → CHCl3 or CCl4
Acetylacetone Fe3+
, Cu2+
, Zn2+
, U(VI), many
others
Watetr → CHCl3 or CCl4
C6H6
Ammonium pyrrolidine
dithiocarbamate
Transition metals Watetr → Methyl
isobutyl ketone
Tenoyltrifluoroacetone Ca2+
, Sr2+
, La3+
, Pr3+
, other rare
earths
Watetr → Benzene
Dibenzo-18-crown-6 Alkali metals, some alkaline
earths
Watetr → Benzene
17D Aminocarboxylic Acid Titration
in 1945, Schwarzenbach
17D-1 Ethylenediaminetetraacetic acid (EDTA)
(ethylenedinitrilo)tetraacetic acid → hexadentate ligand
HOOC-CH
HOOC-CH
:N-CH -CH -N:
CH -COOH
CH -COOH
2
2 2
2
2 2
(H4Y)
EDTA is a tetrabasic acid
H4Y
↓ K1 = 1.02 × 10-2
H3Y-
↓ K2 = 2.14 × 10-3
H2Y2-
↓ K3 = 6.92 × 10-7
HY3-
↓ K4 = 5.50 × 10-11
Y4-
Fig. 17-2 Composition of EDTA solution as a function
of pH.
112
Reagents for EDTA titrations
EDTA, H4Y and Na2H2Y · 2H2O
Nitrilotriacetic acid (NTA)
HOOC-CH CH -COOH
CH -COOH
2
2
2
N
17D-2 Complexes of EDTA and metal ions
Complexes of EDTA and Metal Ions (1:1)
Ag+
+ Y4-
⇔ AgY3-
Al3+
+ Y4-
⇔ AlY-
Mn+
+ Y4-
⇔ MY(n-4)+
]Y][M[
]MY[
K -4n
4)-(n
MY +
+
=
Fig. 17-3 Structure of a
metal/EDTA complex.
(Hexadentate ligand)
Table 17-3 Formation constants for EDTA complexes
Cation KMY LogKMY Cation KMY logKMY
Ag+
2.1 × 107
7.32 Cu2+
6.3 × 1018
18.80
Mg2+
4.9 × 108
8.69 Zn2+
3.2 × 1016
16.50
Ca2+
5.0 × 1010
10.70 Cd2+
2.9 × 1016
16.46
Sr2+
4.3 × 108
8.63 Hg2+
6.3 × 1021
21.80
Ba2+
5.8 × 107
7.76 Pb2+
1.1 × 1018
18.04
Mn2+
6.2 × 1013
13.79 Al3+
1.3 × 1016
16.13
Fe2+
2.1 × 1014
14.33 Fe3+
1.3 × 1025
25.1
Co2+
2.0 × 1016
16.21 V3+
7.9 × 1025
25.9
Ni2+
4.2 × 1018
18.62 Th4+
1.6 × 1023
23.2
17D-3 Equilibrium calculations involving EDTA
T
-4
4
]Y[
c
=α
CT: [uncomplexed EDTA]
CT = [Y4-
] + [HY3-
] + [H2Y2-
] + [H3Y-
] + [H4Y]
Conditional Formation Constants
Mn+
+ Y4-
⇔ MY(n-4)+
T4
n
4)-(n
MY
]M[
]MY[
K
cα
= +
+
T
n
4)-(n
MY4
'
MY
]M[
]MY[
K
c
K +
+
=α= only at the pH for which α4 is
applicable
Computing α4 Values for EDTA Solutions
4321321
2
21
3
1
4
4321
4
KKKK]H[KKK]H[KK]H[K]H[
KKKK
++++
=α ++++
113
4321321
2
21
3
1
4
4321
4
KKKK]H[KKK]H[KK]H[K]H[D
D
KKKK
++++=
=α
++++
Table: Values of α4 for EDTA in Solutions of Various pH
pH α4 pH α4 pH α4 pH α4
2.0 3.71 × 10-14
5.0 3.54 × 10-7
8.0 5.39 × 10-3
11.0 0.85
3.0 2.51 × 10-11
6.0 2.25 × 10-5
9.0 5.21 × 10-2
12.0 0.98
4.0 3.61 × 10-9
7.0 4.8 × 10-4
10.0 0.35 13.0 1.00
Ex. 17-1 Calculate the molar Y4-
conc. in a 0.0200 M EDTA solution that has
been buffered to a pH of 10.00.
At pH 10.00, α4 is 0.35
[Y4-
] = α4CT = (0.35)(0.0200) = 7.0 × 10-3
M
Calculation of the cation concentration in EDTA solutions
Ex. 17-2 Calculate the equilibrium conc. of Ni2+
in a solution with an analytical
NiY2-
conc. of 0.0150 M at pH (a) 3.0 and (b) 8.0.
Ni2+
+ Y4-
⇔ NiY2- 18
-42
-2
NiY 102.4
]][YNi[
]NiY[
×== +
K
[NiY2-
] = 0.0150 - [Ni2+
]
If we assume [Ni2+
] << 0.0150, [NiY2-
] ≈ 0.0150
[Ni2+
] = [Y4-
] + [HY3-
] + [H2Y2-
] + [H3Y-
] +[H4Y] = CT
NiY422
-2
T
2
-2
'
NiY
]Ni[
]NiY[
]cNi[
]NiY[
KK α=== ++
(a) pH 3.0 → α4 = 2.5 × 10-11
, 81811
22
1005.1102.4105.2
]Ni[
0150.0
×=×××= −
+
M102.1101.43]Ni[ 510-2 −+
×=×=
(b) pH 8.0 → α4 = 5.4 × 10-3
, 16183'
NiY 1027.2102.4104.5 ×=×××= −
K
M101.8)10270.0150/(2.]Ni[ 10162 −+
×=×=
Ex. 17-3 Calculate the conc. of Ni2+
in a solution prepared by mixing 50.0 mL of
0.0300 M Ni2+
with 50.0 mL of 0.0500 M EDTA. The mixture is
buffered to a pH of 3.00.
114
CNiY
2-
= 50.0 × 0.0300/100 = 0.0150 M
M0100.0
mL100.0
l0.0300)mmo(50.0-mmol)0500.00.50(
EDTA =
××
=c
assume [Ni2+
] << [NiY2-
] → [NiY2-
] = 0.0150 - [Ni2+
] ≈ 0.0150
CT = 0.0100 M NiY42
'
NiY
0100.0]Ni[
0150.0
KK α== +
M104.1
1005.10100.0
0150.0
]Ni[ 8
8
2 −+
×=
××
=
17D-4 EDTA Titration Curves
Ex. 17-4 Derive a curve (pCa as a function of EDTA volume) for the titration of
50.0 mL of 0.00500 M Ca2+
with 0.0100 M EDTA in a solution buffered
to pH 10.0.
Ca2+
+ Y4-
⇔ CaY2-
KCaY = 5.0 × 1010
1. Calculating the conditional constant
1010
CaY4
T
2
-2
'
CaY 1075.1100.535.0
]Ca[
][CaY
×=××=α== +
K
c
K
2. Preequivalence-point values for pCa (added 5.0 mL EDTA)
M1064.3
)00.550(
0.01005.00-0.0050050.0
][Ca 3
T
2 −+
×≅+
+
××
= c
pCa = -log 3.64 × 10-3
= 2.44
3. The equivalence-point pCa (added 25.0 mL EDTA)
M1033.3
mL)0.2550(
mmol0.0050050.0
c 3
CaY -2
−
×=
+
×
=
[Ca2+
] = CT , [CaY2-
] = 0.00333 - [Ca2+
] ≈ 0.00333 M
22
CaY
T
2
-2
'
CaY
][Ca]Ca[
][CaY -2
++
≈=
c
c
K ; M1036.4
1075.1
00333.0
]Ca[ 7
10'
CaY2 -2 −+
×=
×
==
CaYK
c
pCa = -log 4.36 × 10-7
= 6.36
4. Postequivalence-point pCa (add 26.0 mL EDTA)
M1029.3
mL)0.2650(
mmol0.0050050.0
c 3
CaY -2
−
×=
+
×
=
M1032.1
)0.2650(
0.0050050.0-0.010026.0
c 4
EDTA
−
×=
+
××
=
115
[CaY2-
] = 3.29 × 10-3
- [Ca2+
] ≈ 3.29 × 10-3
M
cT = cEDTA + [Ca2+
] ≈ cEDTA = 1.32 × 10-4
M
EDTA
2
CaY
T
2
-2
'
CaY
c][Ca]Ca[
][CaY -2
×
≈= ++
c
c
K
9
410
3
EDTA
'
CaY
CaY2
1142.1
1032.11075.1
1029.3
c
][Ca
-2 −
−
−
+
×=
×××
×
=
×
=
K
c
pCa = -log 1.42 × 10-9
= 8.85
Fig. 17-5 Spreadsheet for the titration of 50.00 mL of 0.00500 M Ca2+
with 0.0100 M
EDTA in a solution buffered at pH 10.0.
Fig. 17-6 EDTA titration curves for 50.00 mL of
0.00500 M Ca2+
(K’
CaY=1.75×1010
) and Mg2+
(K’
MgY=1.72×108
) at pH 10.0.
Fig. 17-7 Influence of pH on the
titration of 0.0100 M Ca2+
with
0.0100 M EDTA.
116
Fig. 17-8 Titration curves for 50.0 mL of
0.0100 M of various cations at pH 6.0.
Fig. 17-9 Min. pH needed for satisfactory
titration of various cations with EDTA.
17D-5 The effect of other complexing agents on EDTA titration curves
Auxiliary complexing agents must be used in EDTA titrations to prevent
precipitation of the analyte as a hydrous oxide. Such reagents cause end points to
be less sharp.
ex: Zn ion in NH3 solution (buffer soln)
in basic : Zn2+
+ 2OH-
⇔ Zn(OH)2(s)
Zn(NH3)3
2+
+ HY3-
⇔ ZnY2-
+ 3NH3 + NH4
+
Zn(NH3)3
2+
, Zn(NH3)2
2+
, and Zn(NH3)2+
Fig. 17-10 Influence of ammonia conc. on the
end point for the titration of 50.0 mL of
0.00500 M Zn2+
. Solutions are buffered to
pH 9.00.
17D-6 Indicator for EDTA titration
Reilley & Barnard: nearly 200 organic compounds
*Eriochrome Black T (EBT)
NSO3
-
O2N
N
OH OH
*Calmagite
SO3
-
OH
N N
CH3
HO
117
H2O + H2In-
⇔ HIn2-
+ H3O+
K1 = 5 × 10-7
red blue
H2O + HIn2-
⇔ In3-
+ H3O+
K2 = 2.8 × 10-12
blue orange
MIn-
+ HY3-
⇔ HIn2-
+ MY2-
red blue
pH color predominant form
1 - 6.9 purple-red H2EBT-
6.9 - 11.5 blue HEBT2-
11.5 - 14 orange EBT3-
Ex. 17-5 Determine the transition range for Eriochrome Black T in titrations of
Mg2+
and Ca2+
at pH 10.0 given that (a) the K2 for the indicator is
HIn2-
+ H2O ⇔ In3-
+ H3O+ 12
-2
-3
3
2 108.2
][HIn
]][InO[H
K −
+
×==
(b) Kf for MgIn-
: Mg2+
+ In3-
⇔ MgIn- 7
-32
-
f 100.1
]][In[Mg
][MgIn
K ×== +
(c) Kf for CaIn-
: Ca2+
+ In3-
⇔ CaIn-
Kf = 2.5 × 105
5712
2-2
3
-
108.2100.1108.2
]][Mg[HIn
]O][H[MgIn −−
+
+
×=×××=
5
10
-2
-
5
3
-2
-
2
108.2
100.1
][HIn
][MgIn
108.2
]O[H
][HIn
][MgIn
][Mg −
−
−
+
+
×
×
×=
×
×=
For a color change; [MgIn-
]/[HIn2-
] = from 10/1 to 1/10 (10~0.1)
[Mg2+
] = 3.6 × 10-5
M ~ 3.6 × 10-7
M ⇒ pMg = 5.4 ± 1.0
512
10
-2
-
2
105.2108.2
100.1
][HIn
][CaIn
][C
×××
×
×= −
−
+
a
[Ca2+
] = 1.4 × 10-3
M ~ 1.4 × 10-5
M ⇒ pCa = 3.8 ± 1.0
17D-7 Titration Methods Employing EDTA
1. Direct-titration methods: 40 cations
Based on indicators for the analyte: for Mg2+
: indicator → EBT or calmagite
Based on indicators for an added metal ion
for Ca2+
: indicator → EBT + small amount of MgCl2 or Mg-EDTA
Potentiometric Methods
Spectrophotometric Methods
118
2. Back-titration methods:
used when no suitable indicator is available, when the reaction between analyte
and EDTA is slow, or when the analyte forms ppts at the pH required for its
titration.
Titrant : EDTA and standard Mg2+
or Zn2+
soln
MgEDTA or ZnEDTA complexes must less stable than analyte-EDTA complex.
3. Displacement method :
used when no indicator for an analyte is available
sample + excess Mg2+
- or Zn2+
-EDTA complex
MgY2-
+ M2+
(analyte cation) ⇔ MY2-
+ Mg2+
↑
standard EDTA solution
* Masking agent: a complexing agent that reacts selectively with a component from
interfering in an analysis.
ex: CN-
for Mg2+
and Ca2+
analysis, in the presence of ions- Cd, Co, Cu, Ni, Zn
and Pd ions.
17D-8 The Scope of EDTA Titration
Metal cation exception of the alkali metal ions
17D-9 The Determining of Water Hardness
Water "hardness": the capacity of cations (Ca, Mg and heavy-metal ions) in the
water to replace the Na or K ions in soaps and form sparingly soluble
products.
Hardness expressed in terms of the conc. of CaCO3 equivalent to the total conc. of
all multivalent cations in the sample.
Titrant: EDTA, pH: 10 → NH3 buffer
Indicator: Calmagite or EBT + Mg-EDTA, End-point color : pink-red → blue
*Calculation of Titration Results
Conc. of EDTA titrant expressed in
(a). Molarity (M)
L
EDTAofmole
mL
EDTAofmmole
(M)EDTA ==
(b). Titer or EDTA for a certain ion or compound
EDTAL
speciesofg
EDTAmL
speciesofmg
EDTA titer ==
119
Ex. Exactly 0.1001 g of pure CaCO3 (100.1 g/mol) is dissolved in 100.0 mL of water.
A 10.0-mL aliquot is titrated with 9.00 mL of EDTA. Calculate the molarity of
the EDTA and its titer for CaCO3.
M0111.0
mL00.9
mg1.100
mmol1
100
10
mg100.1
EDTAofM =
××
=
mg/mL112.1
mL00.9
100
10
mg100.1
EDTA titer =
×
=
Ex. A 50.00-mL water sample requires 12.00 mL of 0.0100 M EDTA. Calculate the
hardness of this sample as ppm CaCO3 (100.1 g/mol).
mg CaCO3 = (12.00 mL)(0.0100 M)(100.1 mg /mmole) = 12.01 mg
ppm CaCO3 = 12.01 mg/0.0500 L = 240.2 ppm

More Related Content

What's hot

Applications of Edta Titration - Kshetra K L
Applications of Edta Titration - Kshetra K LApplications of Edta Titration - Kshetra K L
Applications of Edta Titration - Kshetra K LBebeto G
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titrationAzhar_Ansari
 
Complexometric TITRATION FOR PG IST SEM
Complexometric TITRATION FOR PG IST SEM Complexometric TITRATION FOR PG IST SEM
Complexometric TITRATION FOR PG IST SEM prakash64742
 
Estimation of Zinc by EDTA
Estimation of Zinc by EDTAEstimation of Zinc by EDTA
Estimation of Zinc by EDTAMithil Fal Desai
 
Writing More Complex Redox Equations
Writing More Complex Redox EquationsWriting More Complex Redox Equations
Writing More Complex Redox Equationsscuffruff
 
Chemistry Lecture Slide Week 2
Chemistry Lecture Slide Week 2Chemistry Lecture Slide Week 2
Chemistry Lecture Slide Week 2Jasmine Jesse
 
Complexometric Titration - Lidia Maria
Complexometric Titration - Lidia Maria Complexometric Titration - Lidia Maria
Complexometric Titration - Lidia Maria Bebeto G
 
7.complexometric titrations
7.complexometric titrations7.complexometric titrations
7.complexometric titrationsNikithaGopalpet
 
End point detection in complexometric titration
End point detection in complexometric titrationEnd point detection in complexometric titration
End point detection in complexometric titrationRenjithaJR1
 
Precipitation Titration, Complexometric Titration, Gravimetry and Diazotizati...
Precipitation Titration, Complexometric Titration, Gravimetry and Diazotizati...Precipitation Titration, Complexometric Titration, Gravimetry and Diazotizati...
Precipitation Titration, Complexometric Titration, Gravimetry and Diazotizati...DRx Rajveer Prajapati
 
Types of complexometric titration
Types of complexometric titrationTypes of complexometric titration
Types of complexometric titrationRenjithaJR1
 

What's hot (19)

Applications of Edta Titration - Kshetra K L
Applications of Edta Titration - Kshetra K LApplications of Edta Titration - Kshetra K L
Applications of Edta Titration - Kshetra K L
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titration
 
Complexometry
ComplexometryComplexometry
Complexometry
 
Complexometric titrations
Complexometric titrationsComplexometric titrations
Complexometric titrations
 
Complexometric TITRATION FOR PG IST SEM
Complexometric TITRATION FOR PG IST SEM Complexometric TITRATION FOR PG IST SEM
Complexometric TITRATION FOR PG IST SEM
 
10redox jntu pharmacy
10redox jntu pharmacy10redox jntu pharmacy
10redox jntu pharmacy
 
Estimation of Zinc by EDTA
Estimation of Zinc by EDTAEstimation of Zinc by EDTA
Estimation of Zinc by EDTA
 
Writing More Complex Redox Equations
Writing More Complex Redox EquationsWriting More Complex Redox Equations
Writing More Complex Redox Equations
 
6 chandra sekhar mishra=ijhres
6 chandra sekhar mishra=ijhres6 chandra sekhar mishra=ijhres
6 chandra sekhar mishra=ijhres
 
Chemistry Lecture Slide Week 2
Chemistry Lecture Slide Week 2Chemistry Lecture Slide Week 2
Chemistry Lecture Slide Week 2
 
Complexometric Titration - Lidia Maria
Complexometric Titration - Lidia Maria Complexometric Titration - Lidia Maria
Complexometric Titration - Lidia Maria
 
7.complexometric titrations
7.complexometric titrations7.complexometric titrations
7.complexometric titrations
 
End point detection in complexometric titration
End point detection in complexometric titrationEnd point detection in complexometric titration
End point detection in complexometric titration
 
Complexometric Titration
Complexometric TitrationComplexometric Titration
Complexometric Titration
 
Presentation1 edta mg
Presentation1 edta mg Presentation1 edta mg
Presentation1 edta mg
 
Precipitation Titration, Complexometric Titration, Gravimetry and Diazotizati...
Precipitation Titration, Complexometric Titration, Gravimetry and Diazotizati...Precipitation Titration, Complexometric Titration, Gravimetry and Diazotizati...
Precipitation Titration, Complexometric Titration, Gravimetry and Diazotizati...
 
Redox titration
Redox titration Redox titration
Redox titration
 
Redox titration
Redox titrationRedox titration
Redox titration
 
Types of complexometric titration
Types of complexometric titrationTypes of complexometric titration
Types of complexometric titration
 

Similar to Complexation reaction and titrations

Complexometric-Titrations part 2.ppt
Complexometric-Titrations part 2.pptComplexometric-Titrations part 2.ppt
Complexometric-Titrations part 2.pptAhmadHashlamon
 
Complexometry titration
Complexometry titration Complexometry titration
Complexometry titration AmeeshaAli
 
Lecture 313 complexometric reactions and titrations
Lecture 313 complexometric reactions and titrationsLecture 313 complexometric reactions and titrations
Lecture 313 complexometric reactions and titrationsCleophas Rwemera
 
Edta 140623121042-phpapp01
Edta 140623121042-phpapp01Edta 140623121042-phpapp01
Edta 140623121042-phpapp01Cleophas Rwemera
 
Tang 05 ionization + kb 2
Tang 05   ionization + kb 2Tang 05   ionization + kb 2
Tang 05 ionization + kb 2mrtangextrahelp
 
Reactive Transport in Columns (OXIRED 2)
Reactive Transport in Columns (OXIRED 2)Reactive Transport in Columns (OXIRED 2)
Reactive Transport in Columns (OXIRED 2)GeoHydChem
 
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...mhosn627
 
Oxidation and reduction, Balancing the redox rections
Oxidation and reduction, Balancing the redox rectionsOxidation and reduction, Balancing the redox rections
Oxidation and reduction, Balancing the redox rectionsSheikhMahatabuddinPh
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistrysmitamalik
 
Lect w9 buffers_exercises
Lect w9 buffers_exercisesLect w9 buffers_exercises
Lect w9 buffers_exerciseschelss
 
Estimation of ca and mg in given water sample
Estimation of ca and mg in given water sampleEstimation of ca and mg in given water sample
Estimation of ca and mg in given water sampleMithil Fal Desai
 
Chemistry Equilibrium
Chemistry EquilibriumChemistry Equilibrium
Chemistry EquilibriumColin Quinton
 
Reduction - Oxidation Titrations Theory and Application.ppt
Reduction - Oxidation Titrations Theory and Application.pptReduction - Oxidation Titrations Theory and Application.ppt
Reduction - Oxidation Titrations Theory and Application.pptAbdelrhman abooda
 
Inhibition of Copper Corrosion by Arylazotriazoles in Nitric Acid Solution
Inhibition of Copper Corrosion by Arylazotriazoles in Nitric Acid Solution Inhibition of Copper Corrosion by Arylazotriazoles in Nitric Acid Solution
Inhibition of Copper Corrosion by Arylazotriazoles in Nitric Acid Solution Al Baha University
 

Similar to Complexation reaction and titrations (20)

Complexometric-Titrations part 2.ppt
Complexometric-Titrations part 2.pptComplexometric-Titrations part 2.ppt
Complexometric-Titrations part 2.ppt
 
8 complexo jntu pharmacy
8 complexo jntu pharmacy8 complexo jntu pharmacy
8 complexo jntu pharmacy
 
Complexometry titration
Complexometry titration Complexometry titration
Complexometry titration
 
Lecture 313 complexometric reactions and titrations
Lecture 313 complexometric reactions and titrationsLecture 313 complexometric reactions and titrations
Lecture 313 complexometric reactions and titrations
 
Edta 140623121042-phpapp01
Edta 140623121042-phpapp01Edta 140623121042-phpapp01
Edta 140623121042-phpapp01
 
Tang 05 ionization + kb 2
Tang 05   ionization + kb 2Tang 05   ionization + kb 2
Tang 05 ionization + kb 2
 
Reactive Transport in Columns (OXIRED 2)
Reactive Transport in Columns (OXIRED 2)Reactive Transport in Columns (OXIRED 2)
Reactive Transport in Columns (OXIRED 2)
 
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
pdfslide.net_redox-reactions-and-electrochemistry-redox-reactions-galvanic-ce...
 
Oxidation and reduction, Balancing the redox rections
Oxidation and reduction, Balancing the redox rectionsOxidation and reduction, Balancing the redox rections
Oxidation and reduction, Balancing the redox rections
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
The Shapes Of Molecules
The Shapes Of MoleculesThe Shapes Of Molecules
The Shapes Of Molecules
 
Lect w9 buffers_exercises
Lect w9 buffers_exercisesLect w9 buffers_exercises
Lect w9 buffers_exercises
 
Estimation of ca and mg in given water sample
Estimation of ca and mg in given water sampleEstimation of ca and mg in given water sample
Estimation of ca and mg in given water sample
 
Chemistry Equilibrium
Chemistry EquilibriumChemistry Equilibrium
Chemistry Equilibrium
 
Reduction - Oxidation Titrations Theory and Application.ppt
Reduction - Oxidation Titrations Theory and Application.pptReduction - Oxidation Titrations Theory and Application.ppt
Reduction - Oxidation Titrations Theory and Application.ppt
 
Inhibition of Copper Corrosion by Arylazotriazoles in Nitric Acid Solution
Inhibition of Copper Corrosion by Arylazotriazoles in Nitric Acid Solution Inhibition of Copper Corrosion by Arylazotriazoles in Nitric Acid Solution
Inhibition of Copper Corrosion by Arylazotriazoles in Nitric Acid Solution
 
1995 complete
1995 complete1995 complete
1995 complete
 
1995 Complete
1995 Complete1995 Complete
1995 Complete
 
1995 complete
1995 complete1995 complete
1995 complete
 
1995 Complete
1995 Complete1995 Complete
1995 Complete
 

More from Cleophas Rwemera

Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891Cleophas Rwemera
 
Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892Cleophas Rwemera
 
Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892Cleophas Rwemera
 
Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01Cleophas Rwemera
 
Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02Cleophas Rwemera
 
Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02Cleophas Rwemera
 
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02Cleophas Rwemera
 
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02Cleophas Rwemera
 
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01Cleophas Rwemera
 
Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02Cleophas Rwemera
 
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...Cleophas Rwemera
 
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02Cleophas Rwemera
 
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...Cleophas Rwemera
 
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...Cleophas Rwemera
 
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01Cleophas Rwemera
 
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01Cleophas Rwemera
 
Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01Cleophas Rwemera
 
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02Cleophas Rwemera
 
Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02Cleophas Rwemera
 
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01Cleophas Rwemera
 

More from Cleophas Rwemera (20)

Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891
 
Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892
 
Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892
 
Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01
 
Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02
 
Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02
 
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
 
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
 
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
 
Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02
 
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
 
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
 
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
 
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
 
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
 
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
 
Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01
 
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
 
Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02
 
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 

Recently uploaded (20)

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 

Complexation reaction and titrations

  • 1. 108 17 Complexation Reaction and Titrations 17A The Formation of Complexes Ligand: an ion or a molecule that forms a covalent bond with a cation or a neutral metal atom by donating a pair of electrons that are then share by the two. → water, ammonia and halide ions are common inorganic ligand. Coordination number: the no. of covalent bonds it tends to form with electron donor species. → 2, 4 and 6 Chelate: a cyclic complex formed when a cation is bonded by two or more donor groups contained in a single ligand. Cu(NH3)4 2+ ; Cu(NH2CH2COO)2; CuCl4 2- Cu + 2 H-C-C-OH OH N 2+ 2 H O C O H C N Cu CO CHN H H 2 2 2 2 O + 2H + Dentate: means having toothlike unidentate (a single donor group), bi, tri, tetra, penta, hexa-dentate Tetradentate & hexadentate ligands are more satisfactory as titrants than ligands with a lesser no. of donor groups for two reasons: a. react more completely & sharper end points b. tend to form 1:1 complexes macrocycle: Metal ion-cyclic organic compound 17A-1 Complexations Equilibria M + L ⇔ ML M: metal ion ML + L ⇔ ML2 L: ligand … … MLn-1 + L ⇔ MLn
  • 2. 109 M + L ⇔ ML M + 2L ⇔ ML2 M + 3L ⇔ ML3 … M + nL ⇔ MLn 11 [M][L] ]ML[ β K== 212 2 2 [M][L] ]ML[ KK==β 3213 3 3 [M][L] ]ML[ β KKK== nn KKKK ⋅⋅⋅==β 321n n [M][L] ]ML[ n n 3 3 2 21 M [L]β[L]β[L]β[L]β1 1 α +⋅⋅⋅++++ = n n 3 3 2 21 1 ML [L]β[L]β[L]β[L]β1 [L]β α +⋅⋅⋅++++ = n n 3 3 2 21 2 2 2ML [L]β[L]β[L]β[L]β1 [L]β α +⋅⋅⋅++++ = n n 3 3 2 21 n n ML [L]β[L]β[L]β[L]β1 [L]β α n +⋅⋅⋅++++ = 17A-2 The Formation of Insoluble species MxAy(s) ⇔ xMy+ (aq) + yAx- (aq) Ksp = [My+ ]x [Ax- ]y 17A-3 Ligands That Can Protonate Complexation with protonating ligands For a diprotic acid: oxalic acid → Ox2- , HOx- , H2Ox CT = [H2Ox] + [HOx- ] + [Ox2- ] 211 2 2 T 2 0 ]H[]H[ ]H[ C ]OxH[ aaa KKK ++ ==α ++ + 211 2 1 T - 1 ]H[]H[ ]H[ C ]HOx[ aaa a KKK K ++ ==α ++ + 211 2 21 T -2 2 ]H[]H[C ]Ox[ aaa aa KKK KK ++ ==α ++ ; [Ox2- ] = CTα2 in very basic solution: α2 ≈ 1, → [Ox2- ] ≈ CT
  • 3. 110 Conditional formation constants pH effect on conditional formation constants Formation constant (K1) for the reaction of Fe3+ with oxalate: T2 3-231 ]Fe[ ]FeOx)[( ]][Ox[Fe ]FeOx)[( c K α == + + + + Conditional, or effective, formation constants pH-dependent, apply at a single pH only. T 312 ' 1 ]Fe[ ]FeOx)[( c KK + + =α= 17B Titrations with Inorganic Complexing Agents Fig. 17-1 Titration curves for complexometric titrations. Titration of 60.0 mL of a soln that is 0.020 M in M with (curve A) a 0.020-M soln of the tetradentate ligand D to give MD as the product; (curve B) a 0.040-M soln of the bidentate ligand B to give MB2; and (curve C) a 0.080-M soln of the unidentate ligand A to give MA. The overall formation constant for each product is 1020 . Table 17-1 Typical Inorganic Complex-Formation Titration Titrant Analyte Remarks Hg(NO3)2 Br- , Cl- , SCN- , CN- , thiourea Products are neutral Hg(II) complexes; various indicators used AgNO3 CN- Product is Ag(CN)2 - ; indicator is I- ; titrate to first turbidity of AgI NiSO4 CN- Product is Ni(CN)4 2- ; indicator is I- ; titrate to first turbidity of AgI KCN Cu2+ , Hg2+ , Ni2+ Products are Cu(CN)4 2- , Hg(CN)2, Ni(CN)4 2- ; various indicator used 17C Organic Complexing Agents nHX(org) + Mn+ (aq) ⇔ MXn(org) + nH+ (aq)
  • 4. 111 Table 17-2 Organic reagents for extracting metals Reagent Metal Ions extracting Metals Solvents 8-Hydroxyquinoline Zn2+ , Cu2+ , Ni2+ , Al3+ , many others Watetr → Chloroform (CHCl3) Diphenylthiocarbazone (dithizone) Cd2+ , Co2+ , Cu2+ , Pb2+ , many others Watetr → CHCl3 or CCl4 Acetylacetone Fe3+ , Cu2+ , Zn2+ , U(VI), many others Watetr → CHCl3 or CCl4 C6H6 Ammonium pyrrolidine dithiocarbamate Transition metals Watetr → Methyl isobutyl ketone Tenoyltrifluoroacetone Ca2+ , Sr2+ , La3+ , Pr3+ , other rare earths Watetr → Benzene Dibenzo-18-crown-6 Alkali metals, some alkaline earths Watetr → Benzene 17D Aminocarboxylic Acid Titration in 1945, Schwarzenbach 17D-1 Ethylenediaminetetraacetic acid (EDTA) (ethylenedinitrilo)tetraacetic acid → hexadentate ligand HOOC-CH HOOC-CH :N-CH -CH -N: CH -COOH CH -COOH 2 2 2 2 2 2 (H4Y) EDTA is a tetrabasic acid H4Y ↓ K1 = 1.02 × 10-2 H3Y- ↓ K2 = 2.14 × 10-3 H2Y2- ↓ K3 = 6.92 × 10-7 HY3- ↓ K4 = 5.50 × 10-11 Y4- Fig. 17-2 Composition of EDTA solution as a function of pH.
  • 5. 112 Reagents for EDTA titrations EDTA, H4Y and Na2H2Y · 2H2O Nitrilotriacetic acid (NTA) HOOC-CH CH -COOH CH -COOH 2 2 2 N 17D-2 Complexes of EDTA and metal ions Complexes of EDTA and Metal Ions (1:1) Ag+ + Y4- ⇔ AgY3- Al3+ + Y4- ⇔ AlY- Mn+ + Y4- ⇔ MY(n-4)+ ]Y][M[ ]MY[ K -4n 4)-(n MY + + = Fig. 17-3 Structure of a metal/EDTA complex. (Hexadentate ligand) Table 17-3 Formation constants for EDTA complexes Cation KMY LogKMY Cation KMY logKMY Ag+ 2.1 × 107 7.32 Cu2+ 6.3 × 1018 18.80 Mg2+ 4.9 × 108 8.69 Zn2+ 3.2 × 1016 16.50 Ca2+ 5.0 × 1010 10.70 Cd2+ 2.9 × 1016 16.46 Sr2+ 4.3 × 108 8.63 Hg2+ 6.3 × 1021 21.80 Ba2+ 5.8 × 107 7.76 Pb2+ 1.1 × 1018 18.04 Mn2+ 6.2 × 1013 13.79 Al3+ 1.3 × 1016 16.13 Fe2+ 2.1 × 1014 14.33 Fe3+ 1.3 × 1025 25.1 Co2+ 2.0 × 1016 16.21 V3+ 7.9 × 1025 25.9 Ni2+ 4.2 × 1018 18.62 Th4+ 1.6 × 1023 23.2 17D-3 Equilibrium calculations involving EDTA T -4 4 ]Y[ c =α CT: [uncomplexed EDTA] CT = [Y4- ] + [HY3- ] + [H2Y2- ] + [H3Y- ] + [H4Y] Conditional Formation Constants Mn+ + Y4- ⇔ MY(n-4)+ T4 n 4)-(n MY ]M[ ]MY[ K cα = + + T n 4)-(n MY4 ' MY ]M[ ]MY[ K c K + + =α= only at the pH for which α4 is applicable Computing α4 Values for EDTA Solutions 4321321 2 21 3 1 4 4321 4 KKKK]H[KKK]H[KK]H[K]H[ KKKK ++++ =α ++++
  • 6. 113 4321321 2 21 3 1 4 4321 4 KKKK]H[KKK]H[KK]H[K]H[D D KKKK ++++= =α ++++ Table: Values of α4 for EDTA in Solutions of Various pH pH α4 pH α4 pH α4 pH α4 2.0 3.71 × 10-14 5.0 3.54 × 10-7 8.0 5.39 × 10-3 11.0 0.85 3.0 2.51 × 10-11 6.0 2.25 × 10-5 9.0 5.21 × 10-2 12.0 0.98 4.0 3.61 × 10-9 7.0 4.8 × 10-4 10.0 0.35 13.0 1.00 Ex. 17-1 Calculate the molar Y4- conc. in a 0.0200 M EDTA solution that has been buffered to a pH of 10.00. At pH 10.00, α4 is 0.35 [Y4- ] = α4CT = (0.35)(0.0200) = 7.0 × 10-3 M Calculation of the cation concentration in EDTA solutions Ex. 17-2 Calculate the equilibrium conc. of Ni2+ in a solution with an analytical NiY2- conc. of 0.0150 M at pH (a) 3.0 and (b) 8.0. Ni2+ + Y4- ⇔ NiY2- 18 -42 -2 NiY 102.4 ]][YNi[ ]NiY[ ×== + K [NiY2- ] = 0.0150 - [Ni2+ ] If we assume [Ni2+ ] << 0.0150, [NiY2- ] ≈ 0.0150 [Ni2+ ] = [Y4- ] + [HY3- ] + [H2Y2- ] + [H3Y- ] +[H4Y] = CT NiY422 -2 T 2 -2 ' NiY ]Ni[ ]NiY[ ]cNi[ ]NiY[ KK α=== ++ (a) pH 3.0 → α4 = 2.5 × 10-11 , 81811 22 1005.1102.4105.2 ]Ni[ 0150.0 ×=×××= − + M102.1101.43]Ni[ 510-2 −+ ×=×= (b) pH 8.0 → α4 = 5.4 × 10-3 , 16183' NiY 1027.2102.4104.5 ×=×××= − K M101.8)10270.0150/(2.]Ni[ 10162 −+ ×=×= Ex. 17-3 Calculate the conc. of Ni2+ in a solution prepared by mixing 50.0 mL of 0.0300 M Ni2+ with 50.0 mL of 0.0500 M EDTA. The mixture is buffered to a pH of 3.00.
  • 7. 114 CNiY 2- = 50.0 × 0.0300/100 = 0.0150 M M0100.0 mL100.0 l0.0300)mmo(50.0-mmol)0500.00.50( EDTA = ×× =c assume [Ni2+ ] << [NiY2- ] → [NiY2- ] = 0.0150 - [Ni2+ ] ≈ 0.0150 CT = 0.0100 M NiY42 ' NiY 0100.0]Ni[ 0150.0 KK α== + M104.1 1005.10100.0 0150.0 ]Ni[ 8 8 2 −+ ×= ×× = 17D-4 EDTA Titration Curves Ex. 17-4 Derive a curve (pCa as a function of EDTA volume) for the titration of 50.0 mL of 0.00500 M Ca2+ with 0.0100 M EDTA in a solution buffered to pH 10.0. Ca2+ + Y4- ⇔ CaY2- KCaY = 5.0 × 1010 1. Calculating the conditional constant 1010 CaY4 T 2 -2 ' CaY 1075.1100.535.0 ]Ca[ ][CaY ×=××=α== + K c K 2. Preequivalence-point values for pCa (added 5.0 mL EDTA) M1064.3 )00.550( 0.01005.00-0.0050050.0 ][Ca 3 T 2 −+ ×≅+ + ×× = c pCa = -log 3.64 × 10-3 = 2.44 3. The equivalence-point pCa (added 25.0 mL EDTA) M1033.3 mL)0.2550( mmol0.0050050.0 c 3 CaY -2 − ×= + × = [Ca2+ ] = CT , [CaY2- ] = 0.00333 - [Ca2+ ] ≈ 0.00333 M 22 CaY T 2 -2 ' CaY ][Ca]Ca[ ][CaY -2 ++ ≈= c c K ; M1036.4 1075.1 00333.0 ]Ca[ 7 10' CaY2 -2 −+ ×= × == CaYK c pCa = -log 4.36 × 10-7 = 6.36 4. Postequivalence-point pCa (add 26.0 mL EDTA) M1029.3 mL)0.2650( mmol0.0050050.0 c 3 CaY -2 − ×= + × = M1032.1 )0.2650( 0.0050050.0-0.010026.0 c 4 EDTA − ×= + ×× =
  • 8. 115 [CaY2- ] = 3.29 × 10-3 - [Ca2+ ] ≈ 3.29 × 10-3 M cT = cEDTA + [Ca2+ ] ≈ cEDTA = 1.32 × 10-4 M EDTA 2 CaY T 2 -2 ' CaY c][Ca]Ca[ ][CaY -2 × ≈= ++ c c K 9 410 3 EDTA ' CaY CaY2 1142.1 1032.11075.1 1029.3 c ][Ca -2 − − − + ×= ××× × = × = K c pCa = -log 1.42 × 10-9 = 8.85 Fig. 17-5 Spreadsheet for the titration of 50.00 mL of 0.00500 M Ca2+ with 0.0100 M EDTA in a solution buffered at pH 10.0. Fig. 17-6 EDTA titration curves for 50.00 mL of 0.00500 M Ca2+ (K’ CaY=1.75×1010 ) and Mg2+ (K’ MgY=1.72×108 ) at pH 10.0. Fig. 17-7 Influence of pH on the titration of 0.0100 M Ca2+ with 0.0100 M EDTA.
  • 9. 116 Fig. 17-8 Titration curves for 50.0 mL of 0.0100 M of various cations at pH 6.0. Fig. 17-9 Min. pH needed for satisfactory titration of various cations with EDTA. 17D-5 The effect of other complexing agents on EDTA titration curves Auxiliary complexing agents must be used in EDTA titrations to prevent precipitation of the analyte as a hydrous oxide. Such reagents cause end points to be less sharp. ex: Zn ion in NH3 solution (buffer soln) in basic : Zn2+ + 2OH- ⇔ Zn(OH)2(s) Zn(NH3)3 2+ + HY3- ⇔ ZnY2- + 3NH3 + NH4 + Zn(NH3)3 2+ , Zn(NH3)2 2+ , and Zn(NH3)2+ Fig. 17-10 Influence of ammonia conc. on the end point for the titration of 50.0 mL of 0.00500 M Zn2+ . Solutions are buffered to pH 9.00. 17D-6 Indicator for EDTA titration Reilley & Barnard: nearly 200 organic compounds *Eriochrome Black T (EBT) NSO3 - O2N N OH OH *Calmagite SO3 - OH N N CH3 HO
  • 10. 117 H2O + H2In- ⇔ HIn2- + H3O+ K1 = 5 × 10-7 red blue H2O + HIn2- ⇔ In3- + H3O+ K2 = 2.8 × 10-12 blue orange MIn- + HY3- ⇔ HIn2- + MY2- red blue pH color predominant form 1 - 6.9 purple-red H2EBT- 6.9 - 11.5 blue HEBT2- 11.5 - 14 orange EBT3- Ex. 17-5 Determine the transition range for Eriochrome Black T in titrations of Mg2+ and Ca2+ at pH 10.0 given that (a) the K2 for the indicator is HIn2- + H2O ⇔ In3- + H3O+ 12 -2 -3 3 2 108.2 ][HIn ]][InO[H K − + ×== (b) Kf for MgIn- : Mg2+ + In3- ⇔ MgIn- 7 -32 - f 100.1 ]][In[Mg ][MgIn K ×== + (c) Kf for CaIn- : Ca2+ + In3- ⇔ CaIn- Kf = 2.5 × 105 5712 2-2 3 - 108.2100.1108.2 ]][Mg[HIn ]O][H[MgIn −− + + ×=×××= 5 10 -2 - 5 3 -2 - 2 108.2 100.1 ][HIn ][MgIn 108.2 ]O[H ][HIn ][MgIn ][Mg − − − + + × × ×= × ×= For a color change; [MgIn- ]/[HIn2- ] = from 10/1 to 1/10 (10~0.1) [Mg2+ ] = 3.6 × 10-5 M ~ 3.6 × 10-7 M ⇒ pMg = 5.4 ± 1.0 512 10 -2 - 2 105.2108.2 100.1 ][HIn ][CaIn ][C ××× × ×= − − + a [Ca2+ ] = 1.4 × 10-3 M ~ 1.4 × 10-5 M ⇒ pCa = 3.8 ± 1.0 17D-7 Titration Methods Employing EDTA 1. Direct-titration methods: 40 cations Based on indicators for the analyte: for Mg2+ : indicator → EBT or calmagite Based on indicators for an added metal ion for Ca2+ : indicator → EBT + small amount of MgCl2 or Mg-EDTA Potentiometric Methods Spectrophotometric Methods
  • 11. 118 2. Back-titration methods: used when no suitable indicator is available, when the reaction between analyte and EDTA is slow, or when the analyte forms ppts at the pH required for its titration. Titrant : EDTA and standard Mg2+ or Zn2+ soln MgEDTA or ZnEDTA complexes must less stable than analyte-EDTA complex. 3. Displacement method : used when no indicator for an analyte is available sample + excess Mg2+ - or Zn2+ -EDTA complex MgY2- + M2+ (analyte cation) ⇔ MY2- + Mg2+ ↑ standard EDTA solution * Masking agent: a complexing agent that reacts selectively with a component from interfering in an analysis. ex: CN- for Mg2+ and Ca2+ analysis, in the presence of ions- Cd, Co, Cu, Ni, Zn and Pd ions. 17D-8 The Scope of EDTA Titration Metal cation exception of the alkali metal ions 17D-9 The Determining of Water Hardness Water "hardness": the capacity of cations (Ca, Mg and heavy-metal ions) in the water to replace the Na or K ions in soaps and form sparingly soluble products. Hardness expressed in terms of the conc. of CaCO3 equivalent to the total conc. of all multivalent cations in the sample. Titrant: EDTA, pH: 10 → NH3 buffer Indicator: Calmagite or EBT + Mg-EDTA, End-point color : pink-red → blue *Calculation of Titration Results Conc. of EDTA titrant expressed in (a). Molarity (M) L EDTAofmole mL EDTAofmmole (M)EDTA == (b). Titer or EDTA for a certain ion or compound EDTAL speciesofg EDTAmL speciesofmg EDTA titer ==
  • 12. 119 Ex. Exactly 0.1001 g of pure CaCO3 (100.1 g/mol) is dissolved in 100.0 mL of water. A 10.0-mL aliquot is titrated with 9.00 mL of EDTA. Calculate the molarity of the EDTA and its titer for CaCO3. M0111.0 mL00.9 mg1.100 mmol1 100 10 mg100.1 EDTAofM = ×× = mg/mL112.1 mL00.9 100 10 mg100.1 EDTA titer = × = Ex. A 50.00-mL water sample requires 12.00 mL of 0.0100 M EDTA. Calculate the hardness of this sample as ppm CaCO3 (100.1 g/mol). mg CaCO3 = (12.00 mL)(0.0100 M)(100.1 mg /mmole) = 12.01 mg ppm CaCO3 = 12.01 mg/0.0500 L = 240.2 ppm