- The document discusses different geometric approaches for clustering multinomial distributions, including total variation distance, Fisher-Rao distance, Kullback-Leibler divergence, and Hilbert cross-ratio metric.
- It benchmarks k-means clustering using these four geometries on the probability simplex, finding that Hilbert geometry clustering yields good performance with theoretical guarantees.
- The Hilbert cross-ratio metric defines a non-Riemannian Hilbert geometry on the simplex with polytopal balls, and satisfies information monotonicity properties desirable for clustering distributions.