The document discusses harmonic maps from the Riemann surface M=S1×R or CP1\{0,1,∞} into the complex projective space CPn. It presents the DPW method for constructing harmonic maps using loop groups. Specifically, it constructs equivariant harmonic maps in CPn from degree one potentials in the loop algebra Λgσ, relating these to whether the maps are isotropic, weakly conformal, or non-conformal. It then considers the system of ODEs and scalar ODE that must be solved to generate the harmonic maps using this method.