PRM1016 Mathematics I
Circle
George Tan Geok Shim
Centre for Pre University
Universiti Malaysia Sarawak
This OpenCourseWare@UNIMAS and its related course materials are licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
General Equation of a Circle
‱ The equation of a circle with the centre (h,k) and
radius r units is
‱ Where g,f, and c are constants, represents a circle.
‱ Coefficient of and are the same.
‱ There is no term in
   
2 2 2
2 2 2 2 2
2 2
2 2 0
2 2 0
x h y k r
x y hx ky h k r
x y gx fy c
   
      
    
‱ Completing the squares,
‱ The centre of circle is
‱ The radius is
02222
 cfygxyx
    cfgfygx
ffyyggxx
cfygxyx



2222
2222
22
022
022
 ,g f 
cfgr  22
Example 1
Find the centre and radius of the following circle.
Solution:
Centre(-2,1) and radius
   
    2012
0151142
015
2
2
2
2
2
2
4
2
4
4
01524
22
22
22
2
22
2
22







 





 














yx
yx
yyxx
yyxx
0152422
 yxyx
Example 2
Find the centre and radius of the following circle.
Solution:
Centre(-4,5), Radius = 9 units
04010822
 yxyx
       
8154
40255164
405510448
40
2
10
2
10
10
2
8
2
8
8
22
22
222222
22
2
22
2








 





 













)()(
)()(
yx
yx
yyxx
yyxx
Alternative Method
Example 3
Find the centre and radius of the following circle.
Solution:
Compare Radius
Centre(-g,-f)=(-2,1), Radius = 5 units
251222
 xyx
0
02
1
22
022
0242
22
22






f
f
g
g
cfygxyx
xyx
   
5
25
2401
22
22




r
r
cfgr
)(

Circle

  • 1.
    PRM1016 Mathematics I Circle GeorgeTan Geok Shim Centre for Pre University Universiti Malaysia Sarawak This OpenCourseWare@UNIMAS and its related course materials are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
  • 2.
    General Equation ofa Circle ‱ The equation of a circle with the centre (h,k) and radius r units is ‱ Where g,f, and c are constants, represents a circle. ‱ Coefficient of and are the same. ‱ There is no term in     2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 0 x h y k r x y hx ky h k r x y gx fy c                
  • 3.
    ‱ Completing thesquares, ‱ The centre of circle is ‱ The radius is 02222  cfygxyx     cfgfygx ffyyggxx cfygxyx    2222 2222 22 022 022  ,g f  cfgr  22
  • 4.
    Example 1 Find thecentre and radius of the following circle. Solution: Centre(-2,1) and radius         2012 0151142 015 2 2 2 2 2 2 4 2 4 4 01524 22 22 22 2 22 2 22                               yx yx yyxx yyxx 0152422  yxyx
  • 5.
    Example 2 Find thecentre and radius of the following circle. Solution: Centre(-4,5), Radius = 9 units 04010822  yxyx         8154 40255164 405510448 40 2 10 2 10 10 2 8 2 8 8 22 22 222222 22 2 22 2                               )()( )()( yx yx yyxx yyxx
  • 6.
    Alternative Method Example 3 Findthe centre and radius of the following circle. Solution: Compare Radius Centre(-g,-f)=(-2,1), Radius = 5 units 251222  xyx 0 02 1 22 022 0242 22 22       f f g g cfygxyx xyx     5 25 2401 22 22     r r cfgr )(