(Lesson Objectives)
• Write the standard form of the
equation of a circle.
• Graph a circle by hand and with a
calculator using the standard form
of the equation of a circle.
• Work with the general form of an
equation of a circle.
Definition A Circle is a set of
points in the xy
plane that are a
fixed distance r from
a fixed point (h,k),
where (h,k) is the
center of the circle
and r is the radius.
Standard Form of a Circle
Center is at (h, k)
   
2 2 2
x h y k r
   
r is the radius of the circle
Every binomial squared has been
multiplied out.
Every term is on the left side, set
equal to 0.
2 2
: 4 6 3 0
    
Example x y x y
General Form of a Circle
EX 1 Write the standard form for the equation of a
circle with center (3, -2) and a radius of 4.
   
2 2 2
+
x h y k r
  
   
 
2
2 2
3 + 2 4
x y
   
   
2 2
3 + 2 16
x y
  
EX 2 Write an equation of a circle with
center (-4, 0) and a diameter of 10.
   
2 2 2
+
x h y k r
  
 
   
2 2 2
4 + 0 5
x y
   
 
2 2
4 +y 25
x  
EX 3 Write an equation of a circle with
center (2, -9) and a radius of .
11
   
 
2
2
2
2 9 11
x y
    
   
2 2 2
+
x h y k r
  
   
2 2
2 + y+9 11
x  
EX 4 Find the coordinates of the center and
the measure of the radius.
   
2 2 2
6 + 3 25
x y
  
The center is
The radius is
The equation is
5. Find the center, radius, & equation of the
circle.
(0, 0)
12
x2
+ y2
= 144
The center is
The radius is
The equation is
6. Find the center, radius, & equation of the
circle.
(1, -3)
7
(x – 1)2
+ (y + 3)2
= 49
7. Graph the circle,
identify the center &
radius.
(x – 3)2
+ (y – 2)2
= 9
Center (3, 2)
Radius of 3
Converting from General Form to
Standard
1. Move the x terms together and the y
terms together.
2. Move C to the other side.
3. Complete the square (as needed) for
x.
4. Complete the square(as needed) for y.
5. Factor the left & simplify the right.
2 2
( 8 ) 7
  
x x y
8. Write the standard equation of the circle.
State the center & radius.
2 2
8 7 0
x y x
   
Center: (4, 0) radius: 3
2 2
( 4) 9
x y
  
2 2
( 8 )
16 16
7
    
x x y
   
2 2
4 6 3
   
x x y y
9. Write the standard equation of the circle.
State the center & radius.
2 2
4 6 3 0
    
x y x y
Center: (-2, 3) radius: 4
   
2 2
2 3 16
   
x y
   
2 2
4 6 9
3
9
4 4
     
 
x x y y
   
2 2
8 2 10
   
x x y y
10. Write the standard equation of the circle.
State the center & radius.
2 2
2 2 16 4 20 0
    
x y x y
   
2 2
4 1 7
   
x y
   
2 2
8 2 1 1
16 16
10

  
   
x x y y
2 2
8 2 10 0
    
x y x y
: (4, 1) : 7 2.6
 
Center Radius
11. Write the general form of the equation of the
circle.
   
2 2
4 3 36
   
x y
2 2
8 16 6 9 36
     
x x y y
2 2
8 16 6 9 36 0
      
x x y y
2 2
8 6 11 0
    
x y x y

G10 Math Q2- Week 8- Equation of a Circle.ppt

  • 2.
    (Lesson Objectives) • Writethe standard form of the equation of a circle. • Graph a circle by hand and with a calculator using the standard form of the equation of a circle. • Work with the general form of an equation of a circle.
  • 3.
    Definition A Circleis a set of points in the xy plane that are a fixed distance r from a fixed point (h,k), where (h,k) is the center of the circle and r is the radius.
  • 4.
    Standard Form ofa Circle Center is at (h, k)     2 2 2 x h y k r     r is the radius of the circle
  • 5.
    Every binomial squaredhas been multiplied out. Every term is on the left side, set equal to 0. 2 2 : 4 6 3 0      Example x y x y General Form of a Circle
  • 6.
    EX 1 Writethe standard form for the equation of a circle with center (3, -2) and a radius of 4.     2 2 2 + x h y k r          2 2 2 3 + 2 4 x y         2 2 3 + 2 16 x y   
  • 7.
    EX 2 Writean equation of a circle with center (-4, 0) and a diameter of 10.     2 2 2 + x h y k r          2 2 2 4 + 0 5 x y       2 2 4 +y 25 x  
  • 8.
    EX 3 Writean equation of a circle with center (2, -9) and a radius of . 11       2 2 2 2 9 11 x y          2 2 2 + x h y k r        2 2 2 + y+9 11 x  
  • 9.
    EX 4 Findthe coordinates of the center and the measure of the radius.     2 2 2 6 + 3 25 x y   
  • 10.
    The center is Theradius is The equation is 5. Find the center, radius, & equation of the circle. (0, 0) 12 x2 + y2 = 144
  • 11.
    The center is Theradius is The equation is 6. Find the center, radius, & equation of the circle. (1, -3) 7 (x – 1)2 + (y + 3)2 = 49
  • 12.
    7. Graph thecircle, identify the center & radius. (x – 3)2 + (y – 2)2 = 9 Center (3, 2) Radius of 3
  • 13.
    Converting from GeneralForm to Standard 1. Move the x terms together and the y terms together. 2. Move C to the other side. 3. Complete the square (as needed) for x. 4. Complete the square(as needed) for y. 5. Factor the left & simplify the right.
  • 14.
    2 2 ( 8) 7    x x y 8. Write the standard equation of the circle. State the center & radius. 2 2 8 7 0 x y x     Center: (4, 0) radius: 3 2 2 ( 4) 9 x y    2 2 ( 8 ) 16 16 7      x x y
  • 15.
       2 2 4 6 3     x x y y 9. Write the standard equation of the circle. State the center & radius. 2 2 4 6 3 0      x y x y Center: (-2, 3) radius: 4     2 2 2 3 16     x y     2 2 4 6 9 3 9 4 4         x x y y
  • 16.
       2 2 8 2 10     x x y y 10. Write the standard equation of the circle. State the center & radius. 2 2 2 2 16 4 20 0      x y x y     2 2 4 1 7     x y     2 2 8 2 1 1 16 16 10         x x y y 2 2 8 2 10 0      x y x y : (4, 1) : 7 2.6   Center Radius
  • 17.
    11. Write thegeneral form of the equation of the circle.     2 2 4 3 36     x y 2 2 8 16 6 9 36       x x y y 2 2 8 16 6 9 36 0        x x y y 2 2 8 6 11 0      x y x y