SlideShare a Scribd company logo
1 of 51
Download to read offline
Molecular
    Printing: A
    Chemist’s
  Approach to a
  “Desktop Fab”

       Chad A. Mirkin
  Northwestern University
Department of Chemistry and
  International Institute for
      Nanotechnology
Modern Printing Tools Revolutionized
                   the World



                                     Is It Possible to
                                     Create A “Desk
                                     Top Fab”?
       Desk Top Printer
Information transfer, the semiconductor industry, the microelectronics
revolution, and gene chips


          It is exceedingly difficult to print with molecules and many materials
          on the “nanometer scale”
Dip Pen Nanolithography (DPN)
Attributes of DPN:
• Direct-write
• High resolution: 10 nm line width, ~5 nm spatial resolution
• Positive printing
• Writing and imaging with same tool
• Molecule general
• Substrate general
• Serial or massively parallel
The NSCRIPTORTM
An Integrated DPN System
Scanning Probe Lithography: A
        Dichotomy is Emerging


               Destructive   Constructive
Nanografting   Delivery of    Delivery of   DPN
Nanoshaving      Energy        Materials
Anodic Oxidation
“Millipede”
85 nm
                                                                            12 nm
                                                     135 nm
         90 nm                              100 nm
                                 185 nm
                                                                 Nanogap Electrodes

                                       Gold Nanostructures

Silver Nanostructures ~45 nm         Dip-Pen
                                  Nanolithograpy
                                  Hard Materials                       290 nm


                       500 nm                                    Sol Gel Materials

                                4mm




                        1 mm
                                      Nanoparticle Arrays     Single-Walled Carbon
   Silicon Nanostructures                                     Nanotubes
Combinatorial DPN Templates

                       Small Organic Molecules




 Polymer resists
                                                              4mm
                                                 Ultrahigh Density DNA Arrays




Conducting Polymers     Soft Materials
                                                        Virus Nanoarrays


                                                                     100 nm
                         550 nm
                         550 nm


                                       4 µm
                       Protein Nanostructures         Protein Nanoarrays

   Bio-nanoelectrics
The Ultimate in High Density Arrays
Conventional Microarray




  Robotic Spotter
(1 Dot/200x200 mm2)                                                    Feedback Controlled Lithography
                                                                       (100,000,000,000 Dot/200x200 mm2)




                        Low Resolution DPN
                      (50,000 Dot/200x200 mm2)
                                                   High Resolution DPN
                                                 (100,000,000 Dot/200x200
                                                           mm2)
     Biological Nanoarrays:
     • More than just miniaturization with higher density
     • New opportunities for biodetection and studying biorecognition
     • Templates for guiding the assembly of larger building blocks
     • Open up the opportunity to study multivalency and surface cooperativity
Can DPN be Used To Generate Multicomponent
Templates that are Used to Recognize and Larger
     Biological structures and Organisms?

                120 nm      ~20 µm         ~15 µm
   8.5 nm




  Protein         Virus      Spores      Living Cells
  (Human IgG)     (HIV)      (Anthrax)
DPN-Generated Biological Nanoarrays




                                4 mm                              5 mm

Single Virus Nanoarrays      Multicomponent DNA            Phospholipid Arrays
                             Nanoarrays




                                                                                 80 mm

                 4 mm             Cell Arrays on Nanopatterned Substrates
                          • Sub 50 nm  many mm resolution
Multicomponent Protein    • Large Array Patterning
Nanoarrays
                          • Multi-component Patterning Capabilities
                          • Reconstructing the extracellular matrix at the nm scale
DPN Generated Positive Photomasks

                          Au Etch
      Au                                            Au Etch
DPN   Cr                  Cr Etch
ODT   Quartz


           Cr Photomask




                                      Device Characterization
           Replicated Au Electrode                                Empty electrode
                                                    0.8           PPY nanotube
                                                                  PPY nanotube with UV

                                                    0.4




                                     Current (nA)
                                                    0.0


                                                    -0.4


                                                    -0.8

                                                           -1.0     -0.5      0.0        0.5   1.0
                                                                           Voltage (V)



                                                      Jang et al, Small, 2009, 5, 1850
DPN Spot Size Is Independent of
            Applied Force




Molecular diffusion from point source is independent of applied
                 force between tip and surface.
NanoPrint Array II: 55,000 tips ~ 1 cm2
 Pen fabrication yield >99% (preliminary)




20×90 µm




                               In collaboration
                 1.5 mm        with J. Fragala, NanoInk
40×40 dots at 400 nm pitch
                ~88 million features in ~20 min




         5 µm




                                   400 nm
100 mm               100 nm
Development of Cantilever-Free
          Scanning Probe Lithography
Cantilever-Based                          Cantilever-Free



 DPN      1D Multipen      2D 55,000 Pen Polymer Pen Scanning Probe Block     Hard-Tip, Soft
(1999)   Cantilever Array Cantilever Array Lithography Copolymer LithographySpring Lithography
              (2000)           (2006)         (2008)          (2010)              (2011)



Key Advance 1:                             Key Advance 2:                    Key Advance 3:
 Deposition of                           Use an elastomeric                 Move the “spring”
   materials                              pyramid on a solid                 from the tip to a
  rather than                           backing for cantilever-             polymer backing
                    Thermal DPN                                  Beam Pen
    energy                                   free printing                        layer
                       (2004)                                   Lithography
                                                                   (2010)




                                                     Giam, et al. Angew. Chem. 2011, 50, 7482.
PDMS Pen Array Fabrication




             Huo, F et al. Science. 2008, 321, 1658.
11 Million Pen Polymer Array
           A                                    B




            C                                   D




(A)11 million pen array. (B) SEM image of the polymer pen array. (C) An etched gold pattern on a
4 inch Si wafer. (D) Optical microscope image of gold patterns.


                                               Huo, F et al. Science. 2008, 321, 1658.
Polymer Pen Lithography (PPL)




    High Resolution
    High Throughput
Mask-free Nanofabrication


                            Huo, F et al. Science. 2008, 321, 1658.
Printing Circuit Designs on Multiple Scales
                                                        100 circuits in
                                                        1 cm2 with 500
                                                          nm and 100
                                                          µm features
  100 µm



                                                             500 nm
                                                               500 nm




           100 μm




  500 nm
              Huo, F et al. Science. 2008, 321, 1658.
Feature Size Control
    Time Dependence                           Z-Piezo Dependence




Feature Edge Length vs Dwell Time     Feature Size vs Z-Piezo Extension




                                    Huo, F. et al. Science. 2008, 321, 1658.
                                    Liao. et al. Small, 2010, 6, 1082.
Tip-Height Sensing: Force Dependence
    F1    <        F2
                                                                               Z
                                                     F  NELbottom Ltop
                                                                               H

                                                                           
                                                    L feature  Ltop              F
                                                                         NELtop



 Force Dependent Pattern    Feature Edge Length vs Force




                           Liao. et al. Small, 2010, 6, 1082.
Leveling the Pen Array by Force
          Tilted PPL Array             Z Height of the Tilted Pen Array




θ: tilting angle to the y axis
φ: tilting angle to the x axis   Z ( N x , N y , ,  )  Z0  DN x sin( )  DN y sin( )
M1, M2 and M3:                                         θ = 0.07°
Motors holding the pen array                           φ = 0.06 °


                                     Liao. et al. Nano Lett. 2010, 10, 1335.
Leveling the Pen Array by Force
                 Calculated Ftotal vs θ and φ                                    Experimental Ftotal vs θ and φ
F         / mN
Ftotal / mN
       total




                  θ/ °                           φ/ °


                           ELbottom Ltop                            •   At the perfect leveling position, the total force
F ( N x , N y , ,  )                    Z ( N x , N y , ,  )       reaches its global maximum
                                H                                   •   For each fixed θ, the force reaches its local
                                                                        maximum when φ=0 and vice verse
Ftotal ( ,  )   F (N x , N y , ,  )                          •   Around the perfect leveling position, the
                     Nx N y                                             gradient is very large


                                                                             Liao. et al. Nano Lett. 2010, 10, 1335.
Leveled Patterns


 0o
                                         θ = 0°
                                         2.54 ± 0.05 mm


–0.01o

                                         θ = –0.01°
                                         4.68 ± 0.89 mm

+0.01o

                                         θ = +0.01°
                                         5.33 ± 1.03 mm


                  Liao. et al. Nano Lett. 2010, 10, 1335.
Multiplexed Protein Patterning by PPL
  Inkjet print multiple   Pattern multiplexed         Feature size control
  protein into inkwells     protein arrays




             inkwells
Inkwells with different Multiplexed patterning
 fluorescent proteins     of protein arrays




                                        Zheng, Z et al. Angew Chem. 2009, 48, 7626 .
Combinatorial Libraries Generated by
             Tilting PPL Array



                                    PPL array



                                      substrate


High contact force


                     Printed Area


Low contact force
Large area patterns
                Why PPL?
•    Patterns over large areas for
     studying thousands to millions of
     cells
•    Ability to produce combinatorial
     arrays with different feature sizes
     (micro to nanoscale)
•    Ability to level the PPL array and
     produce homogeneous features
     over large areas
Feature width = 1.34 μm                    Feature width = 475 nm
Feature pitch = 2 μm                       Feature pitch = 2 μm
MSC Differentiation Studied by PPL-
 Generated Combinatorial Arrays




                                 100 μm

          CBFα1   actin   DAPI
Massively Parallel Hybrid Silicon
        Pen Nanolithography




                                        10 μm


       Z-piezo       Glue




  Ultra-High Resolution
    High Throughput
Mask-free Nanofabrication        1 mm
     Easy Alignment
Pen Tip Array



                                  500 μm




               Si tip
22 nm
           Soft backing layer



 1 um                           100 μm
Massively Parallel Hybrid Silicon
                  Pen Writing

Before contact with the surface




       Different light reflection

In contact with the surface
Feature Size Control
                               Time Dependence                                   Z-Piezo Dependence

                                                                                     Z=12 μm

                                                                                     6 μm

                                                                                     10 μm

                                                                                     4 μm
                                                                                                       5 μm
                                                                                     8 μm

              Feature Edge Length vs Dwell Time              Feature Size vs Z-Piezo Extension
                    1200                                                      1200
Dot diameter (nm)




                    1000                                                      1000




                                                              Diameter (nm)
                     800                                                       800

                     600                                                       600
                     400                                                       400
                     200                                                       200
                       0                                                         0
                           0      1     2     3         4                             4      6     8    10    12
                                                  1/2
                                  Contact time (s )                                       Z-piezo Extension (um)
Feature Size Resolution
i                                        ii

        5 μm                      5 μm




                            ii

                    i     iv


                    iii   10 μm

iii     5 μm                      5 μm
                                         iv


               Average Feature
                Size = 42 nm
Block Copolymer Assisted TBN
Block Copolymer (BCP) Patterns
BCP Deposition (Height)                       BCP Deposition (Phase)
                      100 nm                                                  90 °




               5 µm                                               5 µm



                      100 nm                       AFM Height Profile
                                             50




                               Height (nm)
                                             30

                                             10

                                             -10
               2 µm                                0   2    4   6    8   10
                                                        Distance (µm)

                                                          Cai et al, submitted
Single Nanoparticles Formed by
            Block Copolymer TBN
     SEM of AuNP Array                    TEM and Diffraction of AuNP




• The spatial resolution is controlled by the piezo-controlled tip position
• Fourier transform analysis confirms uniformity of the AuNP pattern
• Sub-10 nm single crystal Au NPs are formed by the BCP method
• TEM and Diffraction patterns confirm single crystal composition of the
 nanostructures

                                                           Cai et al, submitted
Nanoparticle Size Control




                      Cai et al, submitted
Large-Scale Patterning




                      1 µm


                      Au NPs on SiO2


                     Cai et al, submitted
Particle Size Consistency




                            Au NPs on SiO2

                        Cai et al, submitted
Growth Trajectories: Cryo-TEM Movie of
          Ripening Process




                          2 nm
Formation of Single
Nanoparticles Observed




                        -120 degrees C, ~ 1 min frame interval
     FOR OFFICIAL USE ONLY – Not Cleared for Open Release
Two Mechanisms are Occurring




• Coalescence observed for particles closer than ~ 5 nm
• Ostwald ripening observed for particles further apart
                                            -120 degrees C, ~ 5 min frame interval
                      FOR OFFICIAL USE ONLY – Not Cleared for Open Release
Beam Pen Lithography (BPL)
             Fabricating a Beam Pen Array




BPL array       200 nm Aperture    1 μm Aperture   2 μm Aperture




            100 μm          2 μm            2 μm           20 μm



                                                    Huo et al, submitted
Beam Pen Lithography (BPL)
   BPL Scheme         Au dot arrays by BPL       10 x 10 dot array
Patterning




                                      150 μm

                     Arbitrary patterns by BPL     Chicago Skyline
Develop
                                                                 20 μm




Evaporation +
liftoff

                                        100 μm


                                                     Huo et al, submitted
Mask-Assisted BPL
        Mask assisted BPL                  Patterns of “NU” with selected pens




•   Drawbacks:
    –   Photo mask is needed
    –   Can not in-situ address the pens


                                                             Huo et al, submitted
Development of Molecular Printing Tools
Parallel Printing

Woodblock Printing         Printing Press
    (China ~200)           (Gutenberg, 1439)




   Movable Type           μ-Contact Printing                                 Beam Pen
                                                    Polymer Pen
(Bi Sheng, ~1041-1048)     (Whitesides, 1993)
                                                 Lithography (PPL)       Lithography (BPL)
                                                       (2008)                  (2010)




Serial Writing
                                                Hard Tip, Soft Spring   Scanning Probe Block
                            Dip-Pen                 Lithography         Copolymer Lithography
   Quill Pen         Nanolithography (DPN)             (2010)                   (2010)
  (~2000 BC)                (Mirkin, 1999)




            Ball-Point
           (Loud, 1888)
A Step Towards “Desktop Nanofabrication”:
          Take Home Messages


•   DPN and PPL are workhorse molecular printing research
    tools, which allow researchers to rapidly prototype and
    study molecule-based structures.

•   The barrier to scanning probe parallelization is
    crumbling; PPL, BPL, and SPBCL open the door for low
    cost and rapid nanofabrication procedures.

•   The techniques are poised to make the transition from
    primarily research tools to high throughput synthesis
    and fabrication tools, especially in the life sciences.
World Use of Dip Pen Nanolithography



Australia:
Swinburne U. – Nicolau
Canada:
U.of Alberta – Buriak                                          Japan:
China:                                                         NAIST– Ushijima
Chinese Acad. of Sci .(Lanzhou) – Li                           Nagoya U.– Ichimiya
CIST – Hua                                                     Korea:                                                MIT – Stellacci
Peking U. – J. Liu , Y Li.                                     Samsung Electronics, Co.                              NASA Langley – Watkins
Chinese Acad. of Sci. (Shanghai )- Zhang                       Seoul Nat. U. – Nam,                                  Naval Research – Byers,
Chinese Acad. of Sci.(Beijing) –Z. Liu                         S. Hong                                               Whitman, Sheehan
Xi’an Jiaotong U. – Zhang, Liu                                 Pusan Nati. U. – Il Kim                               N. Carolina State U. –
Southwest U. – Tang                                            Sungkyunkwan U. – HJ Kim                              Narayan
Columbia:                                                      Korea U. –Ahn                                         Northwestern U.– Dravid,
Servico Nacional de Aprendizaje (SENA)                         Yonsei U.–H. Jung        United States:               Liu, Mirkin, Wolinsky,
France:                                                        Netherlands:             Air Force Research –         Espinosa
CNRS France – Joachim                                          U. of Twente– Reinhoudt, Naik, Stone                  NYU – Braunschweig           UMass Lowell - Mead
Germany:                                                       Velders                  Albany NanoTech – Kossow     Ohio State U.– Lee           UC Davis – G. Liu
Inst. für NanoTechnologie,                                     Singapore:               Brookhaven – Ocko            Penn State U.– Weiss         UCSB – Hu
Forschungszentrum                  India:                      Nanyang Tech–Liu , Huo, Cal.Tech.– Collier            Portland State University-   U. of Chicago –
Karlsruhe– Fuchs                   CEERI – Kumar               Zhang , Boey, Huang      Cal. State – Schwartz        Yan, La Rosa                 Mrkisch
Ludwig Inst.– Bein                 Jawaharlal Nehru Cen. for   Spain:                   Corning Inc                  Purdue U. – Ivanesivic       U. of Florida – Ren
Max Planck Inst. – Bastiaen        Adv. Sci. Research– Rao     Inst. Català– Maspoch,   Science & Tech               Rensselaer Poly.– Nalamasu   UIUC – C. Liu,
Great Britain:                     Indian Inst. Sci. – Brar    Garcia, Martinez         Duke U. – J. Lui, Chilkoti   Sandia NL – Hsu              U. of Maryland – Gomez
U. of Cambridge –Rayment           Israel:                     Parc Cientific–Samitier  George Mason U. – Espina     Stanford U. – Bao            U. of N. Carolina –
Imperial College – Cass            Hebrew U. – Willner         Taiwan:                  Georgia NanoFab – Lewis      Stevens IT – Libera          Zauscher
U. of Ulster                       Italy:                      Acad. Sinica–Tao         Harvard U. – Lieber          Texas A & M – Banerjee,      U. of Washington –
U. of Strathclyde –Graham          Politec. di Milano – Levi   Nat. Chiao Tung U.– Sheu Lawrence Berkeley –           Batteas                     Ginger
Hong Kong:                         U. degli Studi di Milano    Nat. Taiwan U.– Lin      De Yoreo                     Texas Tech – Vaughn, Weeks   Washington Tech
Xu                                 Bicocca – Sassella          Schmidt Scientific       Loyola U. – Holz             Tufts U. – Kaplan            Center – Allen
Mirkin Group
Acknowledgements
                    Collaborators
                     Prof. Chang Liu (NU)
           Prof. Harald Fuchs (Münster, Germany)
           Dr. Steven Lenhert (Münster, Germany)
     Prof. Mark Ratner (NU), Prof. Michael Bedzyk (NU)
  Prof. Vinayak Dravid (NU), Dr. Morley Stone (WP AFRL)
         Prof. Milan Mrksich (University of Chicago)
   Prof. George Schatz (NU), Dr. Rajesh Naik (WP AFRL)
Prof. Hua Zhang (Nanyang Technical University, Singapore)
                    Joe Fragala (NanoInk)
                     Funding
          AFOSR, ARO DARPA (TBN Program),
              HSARPA, NSF, ONR, NIH,
               DOD NSSEF Fellowship

More Related Content

What's hot

Nanoimprint lithography (NIL)
 Nanoimprint lithography (NIL) Nanoimprint lithography (NIL)
Nanoimprint lithography (NIL)Preeti Choudhary
 
An assignment lithography
An assignment lithographyAn assignment lithography
An assignment lithographySagar Dutta
 
A brief description of photolithography
A brief description of photolithographyA brief description of photolithography
A brief description of photolithographyshashi kant
 
ETE444-lec6-nanofabrication.pptx
ETE444-lec6-nanofabrication.pptxETE444-lec6-nanofabrication.pptx
ETE444-lec6-nanofabrication.pptxmashiur
 
Lithography techniques,types
Lithography techniques,typesLithography techniques,types
Lithography techniques,typesANJANI S
 
Characterization of nanoparticles
Characterization of nanoparticlesCharacterization of nanoparticles
Characterization of nanoparticlesAnil Pethe
 
EUV Lithography Final
EUV Lithography FinalEUV Lithography Final
EUV Lithography FinalEhud Ben Ari
 
Lithography, Photolithography--ABU SYED KUET
Lithography, Photolithography--ABU SYED KUETLithography, Photolithography--ABU SYED KUET
Lithography, Photolithography--ABU SYED KUETA. S. M. Jannatul Islam
 
Lithography fabrication ppt
Lithography fabrication pptLithography fabrication ppt
Lithography fabrication pptAvinash Jadhav
 
photolithography_a
photolithography_aphotolithography_a
photolithography_aguestda8318
 
Particle size by sem and xrd
Particle size by sem and xrdParticle size by sem and xrd
Particle size by sem and xrdMehnaz Imran
 
Characterization of nanoparticles & its regulatory aspects
Characterization of nanoparticles & its regulatory aspectsCharacterization of nanoparticles & its regulatory aspects
Characterization of nanoparticles & its regulatory aspectsvivek vyas
 

What's hot (18)

Nano lithography techniques
Nano lithography techniquesNano lithography techniques
Nano lithography techniques
 
Nanoimprint lithography (NIL)
 Nanoimprint lithography (NIL) Nanoimprint lithography (NIL)
Nanoimprint lithography (NIL)
 
Nanolithography
NanolithographyNanolithography
Nanolithography
 
An assignment lithography
An assignment lithographyAn assignment lithography
An assignment lithography
 
A brief description of photolithography
A brief description of photolithographyA brief description of photolithography
A brief description of photolithography
 
ETE444-lec6-nanofabrication.pptx
ETE444-lec6-nanofabrication.pptxETE444-lec6-nanofabrication.pptx
ETE444-lec6-nanofabrication.pptx
 
Lithography techniques,types
Lithography techniques,typesLithography techniques,types
Lithography techniques,types
 
Photomask Fabrication
Photomask FabricationPhotomask Fabrication
Photomask Fabrication
 
Immersion lithography
Immersion lithographyImmersion lithography
Immersion lithography
 
Characterization of nanoparticles
Characterization of nanoparticlesCharacterization of nanoparticles
Characterization of nanoparticles
 
EUV Lithography Final
EUV Lithography FinalEUV Lithography Final
EUV Lithography Final
 
Lithography, Photolithography--ABU SYED KUET
Lithography, Photolithography--ABU SYED KUETLithography, Photolithography--ABU SYED KUET
Lithography, Photolithography--ABU SYED KUET
 
Alignment and Exposure System
Alignment and Exposure System Alignment and Exposure System
Alignment and Exposure System
 
Lithography fabrication ppt
Lithography fabrication pptLithography fabrication ppt
Lithography fabrication ppt
 
photolithography_a
photolithography_aphotolithography_a
photolithography_a
 
Particle size by sem and xrd
Particle size by sem and xrdParticle size by sem and xrd
Particle size by sem and xrd
 
Specimenprep
SpecimenprepSpecimenprep
Specimenprep
 
Characterization of nanoparticles & its regulatory aspects
Characterization of nanoparticles & its regulatory aspectsCharacterization of nanoparticles & its regulatory aspects
Characterization of nanoparticles & its regulatory aspects
 

Viewers also liked

Graphene@Manchester …beyond the sticky tape
Graphene@Manchester …beyond the sticky tapeGraphene@Manchester …beyond the sticky tape
Graphene@Manchester …beyond the sticky tapeTrinity College Dublin
 
ETE444-lec5-micro-fabrication.pdf
ETE444-lec5-micro-fabrication.pdfETE444-lec5-micro-fabrication.pdf
ETE444-lec5-micro-fabrication.pdfmashiur
 
Ete411 Lec4
Ete411 Lec4Ete411 Lec4
Ete411 Lec4mashiur
 
Nanofabrication Technologies
Nanofabrication TechnologiesNanofabrication Technologies
Nanofabrication Technologiestabirsir
 
Nanofabrication
NanofabricationNanofabrication
NanofabricationAfi Tah
 
ETE444-lec2-atomic_scale_characterization_techniques.pdf
ETE444-lec2-atomic_scale_characterization_techniques.pdfETE444-lec2-atomic_scale_characterization_techniques.pdf
ETE444-lec2-atomic_scale_characterization_techniques.pdfmashiur
 
Nano technology fabrication methods
Nano  technology fabrication methodsNano  technology fabrication methods
Nano technology fabrication methodskamal330
 

Viewers also liked (7)

Graphene@Manchester …beyond the sticky tape
Graphene@Manchester …beyond the sticky tapeGraphene@Manchester …beyond the sticky tape
Graphene@Manchester …beyond the sticky tape
 
ETE444-lec5-micro-fabrication.pdf
ETE444-lec5-micro-fabrication.pdfETE444-lec5-micro-fabrication.pdf
ETE444-lec5-micro-fabrication.pdf
 
Ete411 Lec4
Ete411 Lec4Ete411 Lec4
Ete411 Lec4
 
Nanofabrication Technologies
Nanofabrication TechnologiesNanofabrication Technologies
Nanofabrication Technologies
 
Nanofabrication
NanofabricationNanofabrication
Nanofabrication
 
ETE444-lec2-atomic_scale_characterization_techniques.pdf
ETE444-lec2-atomic_scale_characterization_techniques.pdfETE444-lec2-atomic_scale_characterization_techniques.pdf
ETE444-lec2-atomic_scale_characterization_techniques.pdf
 
Nano technology fabrication methods
Nano  technology fabrication methodsNano  technology fabrication methods
Nano technology fabrication methods
 

Similar to Molecular Printing: A Chemist’s Approach to a “Desktop Fab

UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)
UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)
UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)Alexander Novichkov
 
ETE444-lec2-atomic_scale_characterization_techniques.pdf
ETE444-lec2-atomic_scale_characterization_techniques.pdfETE444-lec2-atomic_scale_characterization_techniques.pdf
ETE444-lec2-atomic_scale_characterization_techniques.pdfmashiur
 
Practical Use Of Nanomaterials In Plastics
Practical Use Of Nanomaterials In PlasticsPractical Use Of Nanomaterials In Plastics
Practical Use Of Nanomaterials In Plasticslusik
 
Nanotechnology and the Community - Nils Petersen
Nanotechnology and the Community - Nils PetersenNanotechnology and the Community - Nils Petersen
Nanotechnology and the Community - Nils PetersenCityRegionStudies
 
Nasa
NasaNasa
Nasalusik
 
Nanotechnology
NanotechnologyNanotechnology
NanotechnologyNajiya Kpp
 
Nanonics - Raman MultiProbe
Nanonics - Raman MultiProbeNanonics - Raman MultiProbe
Nanonics - Raman MultiProbeNanonics
 
NanoMas_FlexTech
NanoMas_FlexTechNanoMas_FlexTech
NanoMas_FlexTechzhy888
 
Nanotechnology by manish myst ssgbcoet
Nanotechnology by manish myst ssgbcoetNanotechnology by manish myst ssgbcoet
Nanotechnology by manish myst ssgbcoetManish Myst
 
Introduction to nanoparticles and bionanomaterials
Introduction to nanoparticles and bionanomaterialsIntroduction to nanoparticles and bionanomaterials
Introduction to nanoparticles and bionanomaterialsShreyaBhatt23
 

Similar to Molecular Printing: A Chemist’s Approach to a “Desktop Fab (20)

UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)
UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)
UMKA NANOTECHNOLOGICAL SYSTEM (www.cmcons.com)
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
ETE444-lec2-atomic_scale_characterization_techniques.pdf
ETE444-lec2-atomic_scale_characterization_techniques.pdfETE444-lec2-atomic_scale_characterization_techniques.pdf
ETE444-lec2-atomic_scale_characterization_techniques.pdf
 
Practical Use Of Nanomaterials In Plastics
Practical Use Of Nanomaterials In PlasticsPractical Use Of Nanomaterials In Plastics
Practical Use Of Nanomaterials In Plastics
 
Nanotechnology and the Community - Nils Petersen
Nanotechnology and the Community - Nils PetersenNanotechnology and the Community - Nils Petersen
Nanotechnology and the Community - Nils Petersen
 
Nasa
NasaNasa
Nasa
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Nanonics - Raman MultiProbe
Nanonics - Raman MultiProbeNanonics - Raman MultiProbe
Nanonics - Raman MultiProbe
 
NanoMas_FlexTech
NanoMas_FlexTechNanoMas_FlexTech
NanoMas_FlexTech
 
Nanobots
NanobotsNanobots
Nanobots
 
Nanobots
NanobotsNanobots
Nanobots
 
Nanomaterials for Leather (Tamanna (2119501).pdf)
Nanomaterials for Leather (Tamanna (2119501).pdf)Nanomaterials for Leather (Tamanna (2119501).pdf)
Nanomaterials for Leather (Tamanna (2119501).pdf)
 
Nanotechnology by manish myst ssgbcoet
Nanotechnology by manish myst ssgbcoetNanotechnology by manish myst ssgbcoet
Nanotechnology by manish myst ssgbcoet
 
Introduction to nanoparticles and bionanomaterials
Introduction to nanoparticles and bionanomaterialsIntroduction to nanoparticles and bionanomaterials
Introduction to nanoparticles and bionanomaterials
 
Revolution of Nanotechnology Theory and Application & Dr. Ahmed Abdel-Fatt...
Revolution  of Nanotechnology Theory and Application &  Dr. Ahmed Abdel-Fatt...Revolution  of Nanotechnology Theory and Application &  Dr. Ahmed Abdel-Fatt...
Revolution of Nanotechnology Theory and Application & Dr. Ahmed Abdel-Fatt...
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Huang
HuangHuang
Huang
 
Fabrication and characterization of nanowire devices
Fabrication and characterization of nanowire devicesFabrication and characterization of nanowire devices
Fabrication and characterization of nanowire devices
 
Nanotechnology
NanotechnologyNanotechnology
Nanotechnology
 
Nanofibers
NanofibersNanofibers
Nanofibers
 

More from The Air Force Office of Scientific Research

Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...
Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...
Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...The Air Force Office of Scientific Research
 

More from The Air Force Office of Scientific Research (20)

Schmisseur - Aerothermodynamics & Turbulence - Spring Review 2013
Schmisseur - Aerothermodynamics & Turbulence - Spring Review 2013Schmisseur - Aerothermodynamics & Turbulence - Spring Review 2013
Schmisseur - Aerothermodynamics & Turbulence - Spring Review 2013
 
Li - Energy Conversion and Combustion Sciences - Spring Review 2013
Li - Energy Conversion and Combustion Sciences - Spring Review 2013Li - Energy Conversion and Combustion Sciences - Spring Review 2013
Li - Energy Conversion and Combustion Sciences - Spring Review 2013
 
Birkan - Space Propulsion and Power - Spring Review 2013
Birkan - Space Propulsion and Power - Spring Review 2013Birkan - Space Propulsion and Power - Spring Review 2013
Birkan - Space Propulsion and Power - Spring Review 2013
 
Berman - Molecular Dynamics & Theoretical Chemistry - Spring review 2013
Berman - Molecular Dynamics & Theoretical Chemistry - Spring review 2013Berman - Molecular Dynamics & Theoretical Chemistry - Spring review 2013
Berman - Molecular Dynamics & Theoretical Chemistry - Spring review 2013
 
Bradshaw - Sensory Information Systems - Spring Review 2013
Bradshaw - Sensory Information Systems - Spring Review 2013Bradshaw - Sensory Information Systems - Spring Review 2013
Bradshaw - Sensory Information Systems - Spring Review 2013
 
Bradshaw - Human Performance and Biosystems - Spring Review 2013
Bradshaw - Human Performance and Biosystems - Spring Review 2013Bradshaw - Human Performance and Biosystems - Spring Review 2013
Bradshaw - Human Performance and Biosystems - Spring Review 2013
 
Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013
Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013
Schmisseur - Energy, Power and Propulsion Sciences - Spring Review 2013
 
DeLong - Natural Materials and Systems - Spring Review 2013
DeLong - Natural Materials and Systems - Spring Review 2013DeLong - Natural Materials and Systems - Spring Review 2013
DeLong - Natural Materials and Systems - Spring Review 2013
 
Harrison - Low Density Materials - Spring Review 2013
Harrison - Low Density Materials - Spring Review 2013Harrison - Low Density Materials - Spring Review 2013
Harrison - Low Density Materials - Spring Review 2013
 
Lee - Organic Materials Chemistry - Spring Review 2013
Lee - Organic Materials Chemistry - Spring Review 2013Lee - Organic Materials Chemistry - Spring Review 2013
Lee - Organic Materials Chemistry - Spring Review 2013
 
Sayir - Aerospace Materials for Extreme Environments - Spring Review 2013
Sayir - Aerospace Materials for Extreme Environments - Spring Review 2013Sayir - Aerospace Materials for Extreme Environments - Spring Review 2013
Sayir - Aerospace Materials for Extreme Environments - Spring Review 2013
 
Weinstock - Quantum Electronic Solids - Spring Review 2013
Weinstock - Quantum Electronic Solids - Spring Review 2013Weinstock - Quantum Electronic Solids - Spring Review 2013
Weinstock - Quantum Electronic Solids - Spring Review 2013
 
Hwang - Adaptive Multimode Sensing - Spring Review 2013
Hwang - Adaptive Multimode Sensing - Spring Review 2013Hwang - Adaptive Multimode Sensing - Spring Review 2013
Hwang - Adaptive Multimode Sensing - Spring Review 2013
 
Hwang - GHz-THz Electronics - Spring Review 2013
Hwang - GHz-THz Electronics - Spring Review 2013Hwang - GHz-THz Electronics - Spring Review 2013
Hwang - GHz-THz Electronics - Spring Review 2013
 
Pomrenke - Photonics and Optoelectronics - Spring Review 2013
Pomrenke - Photonics and Optoelectronics - Spring Review 2013Pomrenke - Photonics and Optoelectronics - Spring Review 2013
Pomrenke - Photonics and Optoelectronics - Spring Review 2013
 
Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...
Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...
Les Lee - Mechanics of Multifunctional Materials and Microsystems - Spring Re...
 
DeLong - Complex Materials and Devices - Spring Review 2013
DeLong - Complex Materials and Devices - Spring Review 2013DeLong - Complex Materials and Devices - Spring Review 2013
DeLong - Complex Materials and Devices - Spring Review 2013
 
Myung - Computational Cognition and Robust Decision Making - Spring Review 2013
Myung - Computational Cognition and Robust Decision Making - Spring Review 2013Myung - Computational Cognition and Robust Decision Making - Spring Review 2013
Myung - Computational Cognition and Robust Decision Making - Spring Review 2013
 
Darema - Dynamic Data Driven Applications Systems (DDDAS) - Spring Review 2013
Darema - Dynamic Data Driven Applications Systems (DDDAS) - Spring Review 2013Darema - Dynamic Data Driven Applications Systems (DDDAS) - Spring Review 2013
Darema - Dynamic Data Driven Applications Systems (DDDAS) - Spring Review 2013
 
Nguyen - Sensing, Surveillance and Navigation - Spring Review 2013
Nguyen - Sensing, Surveillance and Navigation - Spring Review 2013Nguyen - Sensing, Surveillance and Navigation - Spring Review 2013
Nguyen - Sensing, Surveillance and Navigation - Spring Review 2013
 

Recently uploaded

My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetEnjoy Anytime
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationSafe Software
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 

Recently uploaded (20)

E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptxE-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
E-Vehicle_Hacking_by_Parul Sharma_null_owasp.pptx
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry InnovationBeyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
Beyond Boundaries: Leveraging No-Code Solutions for Industry Innovation
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 

Molecular Printing: A Chemist’s Approach to a “Desktop Fab

  • 1. Molecular Printing: A Chemist’s Approach to a “Desktop Fab” Chad A. Mirkin Northwestern University Department of Chemistry and International Institute for Nanotechnology
  • 2. Modern Printing Tools Revolutionized the World Is It Possible to Create A “Desk Top Fab”? Desk Top Printer Information transfer, the semiconductor industry, the microelectronics revolution, and gene chips It is exceedingly difficult to print with molecules and many materials on the “nanometer scale”
  • 3. Dip Pen Nanolithography (DPN) Attributes of DPN: • Direct-write • High resolution: 10 nm line width, ~5 nm spatial resolution • Positive printing • Writing and imaging with same tool • Molecule general • Substrate general • Serial or massively parallel
  • 5. Scanning Probe Lithography: A Dichotomy is Emerging Destructive Constructive Nanografting Delivery of Delivery of DPN Nanoshaving Energy Materials Anodic Oxidation “Millipede”
  • 6. 85 nm 12 nm 135 nm 90 nm 100 nm 185 nm Nanogap Electrodes Gold Nanostructures Silver Nanostructures ~45 nm Dip-Pen Nanolithograpy Hard Materials 290 nm 500 nm Sol Gel Materials 4mm 1 mm Nanoparticle Arrays Single-Walled Carbon Silicon Nanostructures Nanotubes
  • 7. Combinatorial DPN Templates Small Organic Molecules Polymer resists 4mm Ultrahigh Density DNA Arrays Conducting Polymers Soft Materials Virus Nanoarrays 100 nm 550 nm 550 nm 4 µm Protein Nanostructures Protein Nanoarrays Bio-nanoelectrics
  • 8. The Ultimate in High Density Arrays Conventional Microarray Robotic Spotter (1 Dot/200x200 mm2) Feedback Controlled Lithography (100,000,000,000 Dot/200x200 mm2) Low Resolution DPN (50,000 Dot/200x200 mm2) High Resolution DPN (100,000,000 Dot/200x200 mm2) Biological Nanoarrays: • More than just miniaturization with higher density • New opportunities for biodetection and studying biorecognition • Templates for guiding the assembly of larger building blocks • Open up the opportunity to study multivalency and surface cooperativity
  • 9. Can DPN be Used To Generate Multicomponent Templates that are Used to Recognize and Larger Biological structures and Organisms? 120 nm ~20 µm ~15 µm 8.5 nm Protein Virus Spores Living Cells (Human IgG) (HIV) (Anthrax)
  • 10. DPN-Generated Biological Nanoarrays 4 mm 5 mm Single Virus Nanoarrays Multicomponent DNA Phospholipid Arrays Nanoarrays 80 mm 4 mm Cell Arrays on Nanopatterned Substrates • Sub 50 nm  many mm resolution Multicomponent Protein • Large Array Patterning Nanoarrays • Multi-component Patterning Capabilities • Reconstructing the extracellular matrix at the nm scale
  • 11. DPN Generated Positive Photomasks Au Etch Au Au Etch DPN Cr Cr Etch ODT Quartz Cr Photomask Device Characterization Replicated Au Electrode Empty electrode 0.8 PPY nanotube PPY nanotube with UV 0.4 Current (nA) 0.0 -0.4 -0.8 -1.0 -0.5 0.0 0.5 1.0 Voltage (V) Jang et al, Small, 2009, 5, 1850
  • 12. DPN Spot Size Is Independent of Applied Force Molecular diffusion from point source is independent of applied force between tip and surface.
  • 13. NanoPrint Array II: 55,000 tips ~ 1 cm2 Pen fabrication yield >99% (preliminary) 20×90 µm In collaboration 1.5 mm with J. Fragala, NanoInk
  • 14. 40×40 dots at 400 nm pitch ~88 million features in ~20 min 5 µm 400 nm 100 mm 100 nm
  • 15. Development of Cantilever-Free Scanning Probe Lithography Cantilever-Based Cantilever-Free DPN 1D Multipen 2D 55,000 Pen Polymer Pen Scanning Probe Block Hard-Tip, Soft (1999) Cantilever Array Cantilever Array Lithography Copolymer LithographySpring Lithography (2000) (2006) (2008) (2010) (2011) Key Advance 1: Key Advance 2: Key Advance 3: Deposition of Use an elastomeric Move the “spring” materials pyramid on a solid from the tip to a rather than backing for cantilever- polymer backing Thermal DPN Beam Pen energy free printing layer (2004) Lithography (2010) Giam, et al. Angew. Chem. 2011, 50, 7482.
  • 16. PDMS Pen Array Fabrication Huo, F et al. Science. 2008, 321, 1658.
  • 17. 11 Million Pen Polymer Array A B C D (A)11 million pen array. (B) SEM image of the polymer pen array. (C) An etched gold pattern on a 4 inch Si wafer. (D) Optical microscope image of gold patterns. Huo, F et al. Science. 2008, 321, 1658.
  • 18. Polymer Pen Lithography (PPL) High Resolution High Throughput Mask-free Nanofabrication Huo, F et al. Science. 2008, 321, 1658.
  • 19. Printing Circuit Designs on Multiple Scales 100 circuits in 1 cm2 with 500 nm and 100 µm features 100 µm 500 nm 500 nm 100 μm 500 nm Huo, F et al. Science. 2008, 321, 1658.
  • 20. Feature Size Control Time Dependence Z-Piezo Dependence Feature Edge Length vs Dwell Time Feature Size vs Z-Piezo Extension Huo, F. et al. Science. 2008, 321, 1658. Liao. et al. Small, 2010, 6, 1082.
  • 21. Tip-Height Sensing: Force Dependence F1 < F2 Z F  NELbottom Ltop H  L feature  Ltop  F NELtop Force Dependent Pattern Feature Edge Length vs Force Liao. et al. Small, 2010, 6, 1082.
  • 22. Leveling the Pen Array by Force Tilted PPL Array Z Height of the Tilted Pen Array θ: tilting angle to the y axis φ: tilting angle to the x axis Z ( N x , N y , ,  )  Z0  DN x sin( )  DN y sin( ) M1, M2 and M3: θ = 0.07° Motors holding the pen array φ = 0.06 ° Liao. et al. Nano Lett. 2010, 10, 1335.
  • 23. Leveling the Pen Array by Force Calculated Ftotal vs θ and φ Experimental Ftotal vs θ and φ F / mN Ftotal / mN total θ/ ° φ/ ° ELbottom Ltop • At the perfect leveling position, the total force F ( N x , N y , ,  )  Z ( N x , N y , ,  ) reaches its global maximum H • For each fixed θ, the force reaches its local maximum when φ=0 and vice verse Ftotal ( ,  )   F (N x , N y , ,  ) • Around the perfect leveling position, the Nx N y gradient is very large Liao. et al. Nano Lett. 2010, 10, 1335.
  • 24. Leveled Patterns 0o θ = 0° 2.54 ± 0.05 mm –0.01o θ = –0.01° 4.68 ± 0.89 mm +0.01o θ = +0.01° 5.33 ± 1.03 mm Liao. et al. Nano Lett. 2010, 10, 1335.
  • 25. Multiplexed Protein Patterning by PPL Inkjet print multiple Pattern multiplexed Feature size control protein into inkwells protein arrays inkwells Inkwells with different Multiplexed patterning fluorescent proteins of protein arrays Zheng, Z et al. Angew Chem. 2009, 48, 7626 .
  • 26. Combinatorial Libraries Generated by Tilting PPL Array PPL array substrate High contact force Printed Area Low contact force
  • 27. Large area patterns Why PPL? • Patterns over large areas for studying thousands to millions of cells • Ability to produce combinatorial arrays with different feature sizes (micro to nanoscale) • Ability to level the PPL array and produce homogeneous features over large areas Feature width = 1.34 μm Feature width = 475 nm Feature pitch = 2 μm Feature pitch = 2 μm
  • 28. MSC Differentiation Studied by PPL- Generated Combinatorial Arrays 100 μm CBFα1 actin DAPI
  • 29. Massively Parallel Hybrid Silicon Pen Nanolithography 10 μm Z-piezo Glue Ultra-High Resolution High Throughput Mask-free Nanofabrication 1 mm Easy Alignment
  • 30. Pen Tip Array 500 μm Si tip 22 nm Soft backing layer 1 um 100 μm
  • 31. Massively Parallel Hybrid Silicon Pen Writing Before contact with the surface Different light reflection In contact with the surface
  • 32. Feature Size Control Time Dependence Z-Piezo Dependence Z=12 μm 6 μm 10 μm 4 μm 5 μm 8 μm Feature Edge Length vs Dwell Time Feature Size vs Z-Piezo Extension 1200 1200 Dot diameter (nm) 1000 1000 Diameter (nm) 800 800 600 600 400 400 200 200 0 0 0 1 2 3 4 4 6 8 10 12 1/2 Contact time (s ) Z-piezo Extension (um)
  • 33. Feature Size Resolution i ii 5 μm 5 μm ii i iv iii 10 μm iii 5 μm 5 μm iv Average Feature Size = 42 nm
  • 35. Block Copolymer (BCP) Patterns BCP Deposition (Height) BCP Deposition (Phase) 100 nm 90 ° 5 µm 5 µm 100 nm AFM Height Profile 50 Height (nm) 30 10 -10 2 µm 0 2 4 6 8 10 Distance (µm) Cai et al, submitted
  • 36. Single Nanoparticles Formed by Block Copolymer TBN SEM of AuNP Array TEM and Diffraction of AuNP • The spatial resolution is controlled by the piezo-controlled tip position • Fourier transform analysis confirms uniformity of the AuNP pattern • Sub-10 nm single crystal Au NPs are formed by the BCP method • TEM and Diffraction patterns confirm single crystal composition of the nanostructures Cai et al, submitted
  • 37. Nanoparticle Size Control Cai et al, submitted
  • 38. Large-Scale Patterning 1 µm Au NPs on SiO2 Cai et al, submitted
  • 39. Particle Size Consistency Au NPs on SiO2 Cai et al, submitted
  • 40. Growth Trajectories: Cryo-TEM Movie of Ripening Process 2 nm
  • 41. Formation of Single Nanoparticles Observed -120 degrees C, ~ 1 min frame interval FOR OFFICIAL USE ONLY – Not Cleared for Open Release
  • 42. Two Mechanisms are Occurring • Coalescence observed for particles closer than ~ 5 nm • Ostwald ripening observed for particles further apart -120 degrees C, ~ 5 min frame interval FOR OFFICIAL USE ONLY – Not Cleared for Open Release
  • 43. Beam Pen Lithography (BPL) Fabricating a Beam Pen Array BPL array 200 nm Aperture 1 μm Aperture 2 μm Aperture 100 μm 2 μm 2 μm 20 μm Huo et al, submitted
  • 44. Beam Pen Lithography (BPL) BPL Scheme Au dot arrays by BPL 10 x 10 dot array Patterning 150 μm Arbitrary patterns by BPL Chicago Skyline Develop 20 μm Evaporation + liftoff 100 μm Huo et al, submitted
  • 45. Mask-Assisted BPL Mask assisted BPL Patterns of “NU” with selected pens • Drawbacks: – Photo mask is needed – Can not in-situ address the pens Huo et al, submitted
  • 46. Development of Molecular Printing Tools Parallel Printing Woodblock Printing Printing Press (China ~200) (Gutenberg, 1439) Movable Type μ-Contact Printing Beam Pen Polymer Pen (Bi Sheng, ~1041-1048) (Whitesides, 1993) Lithography (PPL) Lithography (BPL) (2008) (2010) Serial Writing Hard Tip, Soft Spring Scanning Probe Block Dip-Pen Lithography Copolymer Lithography Quill Pen Nanolithography (DPN) (2010) (2010) (~2000 BC) (Mirkin, 1999) Ball-Point (Loud, 1888)
  • 47. A Step Towards “Desktop Nanofabrication”: Take Home Messages • DPN and PPL are workhorse molecular printing research tools, which allow researchers to rapidly prototype and study molecule-based structures. • The barrier to scanning probe parallelization is crumbling; PPL, BPL, and SPBCL open the door for low cost and rapid nanofabrication procedures. • The techniques are poised to make the transition from primarily research tools to high throughput synthesis and fabrication tools, especially in the life sciences.
  • 48. World Use of Dip Pen Nanolithography Australia: Swinburne U. – Nicolau Canada: U.of Alberta – Buriak Japan: China: NAIST– Ushijima Chinese Acad. of Sci .(Lanzhou) – Li Nagoya U.– Ichimiya CIST – Hua Korea: MIT – Stellacci Peking U. – J. Liu , Y Li. Samsung Electronics, Co. NASA Langley – Watkins Chinese Acad. of Sci. (Shanghai )- Zhang Seoul Nat. U. – Nam, Naval Research – Byers, Chinese Acad. of Sci.(Beijing) –Z. Liu S. Hong Whitman, Sheehan Xi’an Jiaotong U. – Zhang, Liu Pusan Nati. U. – Il Kim N. Carolina State U. – Southwest U. – Tang Sungkyunkwan U. – HJ Kim Narayan Columbia: Korea U. –Ahn Northwestern U.– Dravid, Servico Nacional de Aprendizaje (SENA) Yonsei U.–H. Jung United States: Liu, Mirkin, Wolinsky, France: Netherlands: Air Force Research – Espinosa CNRS France – Joachim U. of Twente– Reinhoudt, Naik, Stone NYU – Braunschweig UMass Lowell - Mead Germany: Velders Albany NanoTech – Kossow Ohio State U.– Lee UC Davis – G. Liu Inst. für NanoTechnologie, Singapore: Brookhaven – Ocko Penn State U.– Weiss UCSB – Hu Forschungszentrum India: Nanyang Tech–Liu , Huo, Cal.Tech.– Collier Portland State University- U. of Chicago – Karlsruhe– Fuchs CEERI – Kumar Zhang , Boey, Huang Cal. State – Schwartz Yan, La Rosa Mrkisch Ludwig Inst.– Bein Jawaharlal Nehru Cen. for Spain: Corning Inc Purdue U. – Ivanesivic U. of Florida – Ren Max Planck Inst. – Bastiaen Adv. Sci. Research– Rao Inst. Català– Maspoch, Science & Tech Rensselaer Poly.– Nalamasu UIUC – C. Liu, Great Britain: Indian Inst. Sci. – Brar Garcia, Martinez Duke U. – J. Lui, Chilkoti Sandia NL – Hsu U. of Maryland – Gomez U. of Cambridge –Rayment Israel: Parc Cientific–Samitier George Mason U. – Espina Stanford U. – Bao U. of N. Carolina – Imperial College – Cass Hebrew U. – Willner Taiwan: Georgia NanoFab – Lewis Stevens IT – Libera Zauscher U. of Ulster Italy: Acad. Sinica–Tao Harvard U. – Lieber Texas A & M – Banerjee, U. of Washington – U. of Strathclyde –Graham Politec. di Milano – Levi Nat. Chiao Tung U.– Sheu Lawrence Berkeley – Batteas Ginger Hong Kong: U. degli Studi di Milano Nat. Taiwan U.– Lin De Yoreo Texas Tech – Vaughn, Weeks Washington Tech Xu Bicocca – Sassella Schmidt Scientific Loyola U. – Holz Tufts U. – Kaplan Center – Allen
  • 49.
  • 51. Acknowledgements Collaborators Prof. Chang Liu (NU) Prof. Harald Fuchs (Münster, Germany) Dr. Steven Lenhert (Münster, Germany) Prof. Mark Ratner (NU), Prof. Michael Bedzyk (NU) Prof. Vinayak Dravid (NU), Dr. Morley Stone (WP AFRL) Prof. Milan Mrksich (University of Chicago) Prof. George Schatz (NU), Dr. Rajesh Naik (WP AFRL) Prof. Hua Zhang (Nanyang Technical University, Singapore) Joe Fragala (NanoInk) Funding AFOSR, ARO DARPA (TBN Program), HSARPA, NSF, ONR, NIH, DOD NSSEF Fellowship