Chapter 3:- Multiple Random Variables
Prepared by Getahun Sh.(MSc)
Ambo University
Hachalu Hundessa Campus
School of Electrical Engineering and Computing
Department of Electrical & Computer Engineering
Probability and Random Process (ECEg-2114)
Multiple Random Variables
Outline
The Joint Cumulative Distribution Function
The Joint Probability Density and Mass Functions
Marginal Statistics
Independence
Conditional Distributions
Correlation and Covariance
2
11/04/24
The Joint Cumulative Distribution Function
 The joint cdf of two random variables X and Y denoted by
FXY(x, y) is a function defined by:
Properties of the Joint cdf, FXY(x, y):
numbers.
real
arbitrary
are
and
where
)
,
(
)
,
(
]
)
(
and
)
(
[
)
,
(
y
x
y
Y
x
X
P
y
x
F
y
Y
x
X
P
y
x
F
XY
XY






 

1
)
,
(
0
. 
 y
x
F
i XY
1
)
,
(
)
,
(
lim
. 







XY
XY
y
x
F
y
x
F
ii
0
)
,
(
)
,
(
lim
. 







XY
XY
y
x
F
y
x
F
iii
3
11/04/24
The Joint Probability Density Function
 The joint probability function (pdf) of two continuous random
variables X and Y is defined as:
 Thus, the joint cumulative distribution function (cdf) is given
by:
y
x
y
x
F
y
x
f XY
XY




)
,
(
)
,
(
2

 

y x
XY
XY dxdy
y
x
f
y
x
F
- -
)
,
(
)
,
(
4
11/04/24
The Joint Probability Density Function Cont’d…..
Properties of the Joint pdf, fXY(x, y):
 
 











2
1
2
1
)
,
(
)
,
(
.
3
1
)
,
(
.
2
0
)
,
(
.
1
2
1
2
1
- -
y
y
x
x
XY
XY
XY
dxdy
y
x
f
y
Y
y
x
X
x
P
dxdy
y
x
f
y
x
f
5
11/04/24
The Joint Probability Mass Function
 The joint probability mass function (pmf) of two discrete
random variables X and Y is defined as:
 The joint cdf can be written as:
Properties of the Joint pmf, PXY (xi , yj ):
)
,
(
)
,
( j
i
j
i
XY y
Y
x
X
P
y
x
P 


 
 

x
x y
y
j
i
XY
XY
i j
y
x
P
y
x
F )
,
(
)
,
(
 


i j
x y
j
i
XY
j
i
XY
y
x
P
y
x
P
1
)
,
(
.
2
0
)
,
(
0
.
1
6
11/04/24
Marginal Statistics
 In the case of two or more random variables, the statistics of
each individual variable are called marginal statistics.
i. Marginal cdf of X and Y
ii. Marginal pdf of X and Y
)
,
(
)
,
(
lim
)
( 




x
F
y
x
F
x
F XY
XY
y
X
)
,
(
)
,
(
lim
)
( y
F
y
x
F
y
F XY
XY
x
Y 








-
)
,
(
)
( dy
y
x
f
x
f XY
X




-
)
,
(
)
( dx
y
x
f
y
f XY
Y
7
11/04/24
Marginal Statistics Cont’d…..
iii. Marginal pmf of X and Y




j
y
)
,
(
)
(
)
( i
i
XY
i
X
i y
x
P
x
P
x
X
P




i
x
)
,
(
)
(
)
( i
i
XY
j
Y
j y
x
P
y
P
y
Y
P
8
11/04/24
Independence
 If two random variables X and Y are independent, then
i. from the joint cdf
ii. from the joint pdf
iii.from the joint pmf
)
(
)
(
)
,
( y
F
x
F
y
x
F Y
X
XY 
)
(
)
(
)
,
( y
f
x
f
y
x
f Y
X
XY 
)
(
)
(
)
,
( j
Y
i
X
j
i
XY y
P
x
P
y
x
P 
9
11/04/24
Conditional Distributions
i. Conditional Probability Density Functions
ii. Conditional Probability Mass Functions
0
)
(
,
)
(
)
,
(
)
/
(
/ 
 y
f
y
f
y
x
f
y
x
f Y
Y
XY
Y
X
0
)
(
,
)
(
)
,
(
)
/
(
/ 
 x
f
x
f
y
x
f
x
y
f X
X
XY
X
Y
0
)
(
,
)
(
)
,
(
)
/
(
/ 
 j
Y
j
Y
j
i
XY
j
i
Y
X y
P
y
P
y
x
P
y
x
P
0
)
(
,
)
(
)
,
(
)
/
(
/ 
 i
X
i
X
j
i
XY
i
j
X
Y x
P
x
P
y
x
P
x
y
P
10
11/04/24
Correlation and Covariance
i. Correlation
ii. Covariance
iii. Correlation Coefficient
)
(
)
,
( XY
E
Y
X
Cor
RXY 

)
(
)
(
)
(
)
,
(
)]
)(
[(
)
,
(
Y
E
X
E
XY
E
Y
X
Cov
Y
X
E
Y
X
Cov
XY
Y
X
XY












Y
X
XY
Y
X
XY
Y
X
Cov





 

)
,
(
11
11/04/24
Examples on Two Random Variables
Example-1:
The joint pdf of two continuous random variables X and Y is
given by:
.
and
of
pdf
l
conditiona
the
Find
.
)
1
(
Find
.
t?
independen
and
Are
.
.
and
of
pdf
marginal
the
Find
.
.
of
value
the
Find
.
constant.
a
is
re
whe
otherwise
,
0
1
0
,
1
0
,
)
,
(
Y
X
e
Y
X
P
d
Y
X
c
Y
X
b
k
a
k
y
x
kxy
y
x
fXY




 




12
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
4
1
4
0
1
4
2
1
0
1
2
1
1
)
,
(
.
2
1
0
1
0
2
1
0
1
0
-






























 





k
k
y
k
ydy
k
x
y
k
kxydxdy
dxdy
y
x
f
a XY
13
11/04/24
Examples on Two Random Variables Cont’d……
Solution:


 















 



otherwise
,
0
1
0
,
2
)
(
2
0
1
2
4
)
(
4
)
,
(
)
(
of
pdf
Marginal
.
and
of
pdf
Marginal
.
2
1
0
x
x
x
f
x
y
x
x
f
xydy
dy
y
x
f
x
f
X
i
Y
X
b
X
X
XY
X
14
11/04/24
Examples on Two Random Variables Cont’d……
Solution:


 















 



otherwise
,
0
1
0
,
2
)
(
2
0
1
2
4
)
(
4
)
,
(
)
(
of
pdf
Marginal
.
and
of
pdf
Marginal
.
2
1
0
y
y
y
f
y
x
y
y
f
xydx
dx
y
x
f
y
f
Y
ii
Y
X
b
Y
Y
XY
Y
15
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
t
independen
are
and
)
(
)
(
)
,
(
.
Y
X
y
f
x
f
y
x
f
c Y
X
XY


6
/
1
)
1
(
6
/
1
)
4
/
3
/
2
2
/
(
2
)
2
(
2
]
)
1
(
2
/
1
[
4
0
1
2
4
4
)
1
(
.
4
3
2
1
0
3
2
1
0
2
1
0
1
0
1
0
2



























 

Y
X
P
y
y
y
dy
y
y
y
dy
y
y
dy
x
y
xydxdy
Y
X
P
d
y
16
11/04/24
Examples on Two Random Variables Cont’d……
Solution:




 








otherwise
,
0
1
0
,
1
0
,
2
)
/
(
2
2
4
)
(
)
,
(
)
/
(
of
pdf
l
Conditiona
.
and
of
pdf
l
Conditiona
.
/
/
y
x
x
y
x
f
x
y
xy
y
f
y
x
f
y
x
f
X
i
Y
X
e
Y
X
Y
XY
Y
X
17
11/04/24
Examples on Two Random Variables Cont’d……
Solution:




 








otherwise
,
0
1
0
,
1
0
,
2
)
/
(
2
2
4
)
(
)
,
(
)
/
(
of
pdf
l
Conditiona
.
and
of
pdf
l
Conditiona
.
/
/
y
x
y
x
y
f
y
x
xy
x
f
y
x
f
x
y
f
Y
ii
Y
X
e
X
Y
X
XY
X
Y
18
11/04/24
Examples on Two Random Variables Cont’d……
Example-2:
The joint pdf of two continuous random variables X and Y is
given by:
.
and
of
pdf
l
conditiona
the
Find
.
)
2
/
1
0
(
Find
.
t?
independen
and
Are
.
.
and
of
pdf
marginal
the
Find
.
.
of
value
the
Determine
.
constant.
a
is
re
whe
otherwise
,
0
1
0
,
)
,
(
Y
X
e
X
P
d
Y
X
c
Y
X
b
k
a
k
x
y
k
y
x
fXY






 



19
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
 
2
1
2
0
1
2
)
1
(
1
1
1
1
)
,
(
.
2
1
0
1
0
1
0
1
-
























 





k
k
y
y
k
dy
y
k
y
x
k
kdxdy
dxdy
y
x
f
a
y
XY
20
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
 


 







 



otherwise
,
0
1
0
,
2
)
(
2
0
2
)
(
2
)
,
(
)
(
of
pdf
Marginal
.
and
of
pdf
Marginal
.
0
x
x
x
f
x
x
y
x
f
dy
dy
y
x
f
x
f
X
i
Y
X
b
X
X
x
XY
X
21
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
 


 









 



otherwise
,
0
1
0
),
1
(
2
)
(
)
1
(
2
1
2
)
(
2
)
,
(
)
(
of
pdf
Marginal
.
and
of
pdf
Marginal
.
1
y
y
y
f
y
y
x
y
f
dx
dx
y
x
f
y
f
Y
ii
Y
X
b
Y
Y
y
XY
Y
22
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
t
independen
not
are
and
)
(
)
(
)
,
(
.
Y
X
y
f
x
f
y
x
f
c Y
X
XY


4
/
1
)
2
/
1
0
(
4
/
1
0
2
/
1
2
0
)
2
(
2
)
,
(
)
2
/
1
0
(
.
2
/
1
0
2
2
/
1
0 0
2
/
1
0
2
/
1
0 0













  
 
X
P
x
xdx
dx
x
y
dydx
dydx
y
x
f
X
P
d
x
x
XY
23
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
















otherwise
,
0
1
0
,
1
1
)
/
(
)
1
(
1
)
1
(
2
2
)
(
)
,
(
)
/
(
of
pdf
l
Conditiona
.
and
of
pdf
l
Conditiona
.
/
/
x
y
y
y
x
f
y
y
y
f
y
x
f
y
x
f
X
i
Y
X
e
Y
X
Y
XY
Y
X
24
11/04/24
Examples on Two Random Variables Cont’d……
Solution:













otherwise
,
0
1
0
,
1
)
/
(
1
2
2
)
(
)
,
(
)
/
(
of
pdf
l
Conditiona
.
and
of
pdf
l
Conditiona
.
/
/
x
y
x
x
y
f
x
x
x
f
y
x
f
x
y
f
Y
ii
Y
X
e
X
Y
X
XY
X
Y
25
11/04/24
Examples on Two Random Variables Cont’d……
Example-3:
The joint pmf of two discrete random variables X and Y is given
by:
t?
independen
and
Are
.
.
and
of
pmf
marginal
the
Find
.
.
of
value
the
Find
.
constant.
a
is
re
whe
otherwise
,
0
2
,
1
2;
,
1
,
)
2
(
)
,
(
Y
X
c
Y
X
b
k
a
k
y
x
y
x
k
y
x
P
i
j
i
j
i
XY


 



26
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
18
/
1
1
18
1
)]
2
4
(
)
1
4
(
)
2
2
(
)
1
2
[(
1
)
2
(
1
)
,
(
.
2
1
2
1

















 

 
k
k
k
y
x
k
y
x
P
a
i j
i j
x y
j
i
x y
j
i
XY
27
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
















 
 
otherwise
,
0
2
,
1
),
3
4
(
18
1
)
(
)
2
2
(
18
1
)
1
2
(
18
1
)
(
)
2
(
18
1
)
,
(
)
(
of
pmf
Marginal
.
and
of
pmf
Marginal
.
2
1
i
i
i
X
i
i
i
X
j
i
y
y
j
i
XY
i
X
x
x
x
P
x
x
x
P
y
x
y
x
P
x
P
X
i
Y
X
b
j
j
28
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
















 
 
otherwise
,
0
2
,
1
),
6
2
(
18
1
)
(
)
4
(
18
1
)
2
(
18
1
)
(
)
2
(
18
1
)
,
(
)
(
of
pmf
Marginal
.
and
of
pmf
Marginal
.
2
1
j
j
j
Y
j
j
j
Y
j
i
x
x
j
i
XY
j
Y
y
y
y
P
y
y
y
P
y
x
y
x
P
y
P
Y
ii
Y
X
b
i
i
29
11/04/24
Examples on Two Random Variables Cont’d……
Solution:
t.
independen
not
are
and
)
(
)
(
)
,
(
.
Y
X
y
P
x
P
y
x
P
c j
Y
i
X
j
i
XY


30
11/04/24
11/04/24 31

Chapter three-Multiple_Random_Variables-I.ppt

  • 1.
    Chapter 3:- MultipleRandom Variables Prepared by Getahun Sh.(MSc) Ambo University Hachalu Hundessa Campus School of Electrical Engineering and Computing Department of Electrical & Computer Engineering Probability and Random Process (ECEg-2114)
  • 2.
    Multiple Random Variables Outline TheJoint Cumulative Distribution Function The Joint Probability Density and Mass Functions Marginal Statistics Independence Conditional Distributions Correlation and Covariance 2 11/04/24
  • 3.
    The Joint CumulativeDistribution Function  The joint cdf of two random variables X and Y denoted by FXY(x, y) is a function defined by: Properties of the Joint cdf, FXY(x, y): numbers. real arbitrary are and where ) , ( ) , ( ] ) ( and ) ( [ ) , ( y x y Y x X P y x F y Y x X P y x F XY XY          1 ) , ( 0 .   y x F i XY 1 ) , ( ) , ( lim .         XY XY y x F y x F ii 0 ) , ( ) , ( lim .         XY XY y x F y x F iii 3 11/04/24
  • 4.
    The Joint ProbabilityDensity Function  The joint probability function (pdf) of two continuous random variables X and Y is defined as:  Thus, the joint cumulative distribution function (cdf) is given by: y x y x F y x f XY XY     ) , ( ) , ( 2     y x XY XY dxdy y x f y x F - - ) , ( ) , ( 4 11/04/24
  • 5.
    The Joint ProbabilityDensity Function Cont’d….. Properties of the Joint pdf, fXY(x, y):                2 1 2 1 ) , ( ) , ( . 3 1 ) , ( . 2 0 ) , ( . 1 2 1 2 1 - - y y x x XY XY XY dxdy y x f y Y y x X x P dxdy y x f y x f 5 11/04/24
  • 6.
    The Joint ProbabilityMass Function  The joint probability mass function (pmf) of two discrete random variables X and Y is defined as:  The joint cdf can be written as: Properties of the Joint pmf, PXY (xi , yj ): ) , ( ) , ( j i j i XY y Y x X P y x P         x x y y j i XY XY i j y x P y x F ) , ( ) , (     i j x y j i XY j i XY y x P y x P 1 ) , ( . 2 0 ) , ( 0 . 1 6 11/04/24
  • 7.
    Marginal Statistics  Inthe case of two or more random variables, the statistics of each individual variable are called marginal statistics. i. Marginal cdf of X and Y ii. Marginal pdf of X and Y ) , ( ) , ( lim ) (      x F y x F x F XY XY y X ) , ( ) , ( lim ) ( y F y x F y F XY XY x Y          - ) , ( ) ( dy y x f x f XY X     - ) , ( ) ( dx y x f y f XY Y 7 11/04/24
  • 8.
    Marginal Statistics Cont’d….. iii.Marginal pmf of X and Y     j y ) , ( ) ( ) ( i i XY i X i y x P x P x X P     i x ) , ( ) ( ) ( i i XY j Y j y x P y P y Y P 8 11/04/24
  • 9.
    Independence  If tworandom variables X and Y are independent, then i. from the joint cdf ii. from the joint pdf iii.from the joint pmf ) ( ) ( ) , ( y F x F y x F Y X XY  ) ( ) ( ) , ( y f x f y x f Y X XY  ) ( ) ( ) , ( j Y i X j i XY y P x P y x P  9 11/04/24
  • 10.
    Conditional Distributions i. ConditionalProbability Density Functions ii. Conditional Probability Mass Functions 0 ) ( , ) ( ) , ( ) / ( /   y f y f y x f y x f Y Y XY Y X 0 ) ( , ) ( ) , ( ) / ( /   x f x f y x f x y f X X XY X Y 0 ) ( , ) ( ) , ( ) / ( /   j Y j Y j i XY j i Y X y P y P y x P y x P 0 ) ( , ) ( ) , ( ) / ( /   i X i X j i XY i j X Y x P x P y x P x y P 10 11/04/24
  • 11.
    Correlation and Covariance i.Correlation ii. Covariance iii. Correlation Coefficient ) ( ) , ( XY E Y X Cor RXY   ) ( ) ( ) ( ) , ( )] )( [( ) , ( Y E X E XY E Y X Cov Y X E Y X Cov XY Y X XY             Y X XY Y X XY Y X Cov         ) , ( 11 11/04/24
  • 12.
    Examples on TwoRandom Variables Example-1: The joint pdf of two continuous random variables X and Y is given by: . and of pdf l conditiona the Find . ) 1 ( Find . t? independen and Are . . and of pdf marginal the Find . . of value the Find . constant. a is re whe otherwise , 0 1 0 , 1 0 , ) , ( Y X e Y X P d Y X c Y X b k a k y x kxy y x fXY           12 11/04/24
  • 13.
    Examples on TwoRandom Variables Cont’d…… Solution: 4 1 4 0 1 4 2 1 0 1 2 1 1 ) , ( . 2 1 0 1 0 2 1 0 1 0 -                                      k k y k ydy k x y k kxydxdy dxdy y x f a XY 13 11/04/24
  • 14.
    Examples on TwoRandom Variables Cont’d…… Solution:                         otherwise , 0 1 0 , 2 ) ( 2 0 1 2 4 ) ( 4 ) , ( ) ( of pdf Marginal . and of pdf Marginal . 2 1 0 x x x f x y x x f xydy dy y x f x f X i Y X b X X XY X 14 11/04/24
  • 15.
    Examples on TwoRandom Variables Cont’d…… Solution:                         otherwise , 0 1 0 , 2 ) ( 2 0 1 2 4 ) ( 4 ) , ( ) ( of pdf Marginal . and of pdf Marginal . 2 1 0 y y y f y x y y f xydx dx y x f y f Y ii Y X b Y Y XY Y 15 11/04/24
  • 16.
    Examples on TwoRandom Variables Cont’d…… Solution: t independen are and ) ( ) ( ) , ( . Y X y f x f y x f c Y X XY   6 / 1 ) 1 ( 6 / 1 ) 4 / 3 / 2 2 / ( 2 ) 2 ( 2 ] ) 1 ( 2 / 1 [ 4 0 1 2 4 4 ) 1 ( . 4 3 2 1 0 3 2 1 0 2 1 0 1 0 1 0 2                               Y X P y y y dy y y y dy y y dy x y xydxdy Y X P d y 16 11/04/24
  • 17.
    Examples on TwoRandom Variables Cont’d…… Solution:               otherwise , 0 1 0 , 1 0 , 2 ) / ( 2 2 4 ) ( ) , ( ) / ( of pdf l Conditiona . and of pdf l Conditiona . / / y x x y x f x y xy y f y x f y x f X i Y X e Y X Y XY Y X 17 11/04/24
  • 18.
    Examples on TwoRandom Variables Cont’d…… Solution:               otherwise , 0 1 0 , 1 0 , 2 ) / ( 2 2 4 ) ( ) , ( ) / ( of pdf l Conditiona . and of pdf l Conditiona . / / y x y x y f y x xy x f y x f x y f Y ii Y X e X Y X XY X Y 18 11/04/24
  • 19.
    Examples on TwoRandom Variables Cont’d…… Example-2: The joint pdf of two continuous random variables X and Y is given by: . and of pdf l conditiona the Find . ) 2 / 1 0 ( Find . t? independen and Are . . and of pdf marginal the Find . . of value the Determine . constant. a is re whe otherwise , 0 1 0 , ) , ( Y X e X P d Y X c Y X b k a k x y k y x fXY            19 11/04/24
  • 20.
    Examples on TwoRandom Variables Cont’d…… Solution:   2 1 2 0 1 2 ) 1 ( 1 1 1 1 ) , ( . 2 1 0 1 0 1 0 1 -                                k k y y k dy y k y x k kdxdy dxdy y x f a y XY 20 11/04/24
  • 21.
    Examples on TwoRandom Variables Cont’d…… Solution:                   otherwise , 0 1 0 , 2 ) ( 2 0 2 ) ( 2 ) , ( ) ( of pdf Marginal . and of pdf Marginal . 0 x x x f x x y x f dy dy y x f x f X i Y X b X X x XY X 21 11/04/24
  • 22.
    Examples on TwoRandom Variables Cont’d…… Solution:                     otherwise , 0 1 0 ), 1 ( 2 ) ( ) 1 ( 2 1 2 ) ( 2 ) , ( ) ( of pdf Marginal . and of pdf Marginal . 1 y y y f y y x y f dx dx y x f y f Y ii Y X b Y Y y XY Y 22 11/04/24
  • 23.
    Examples on TwoRandom Variables Cont’d…… Solution: t independen not are and ) ( ) ( ) , ( . Y X y f x f y x f c Y X XY   4 / 1 ) 2 / 1 0 ( 4 / 1 0 2 / 1 2 0 ) 2 ( 2 ) , ( ) 2 / 1 0 ( . 2 / 1 0 2 2 / 1 0 0 2 / 1 0 2 / 1 0 0                   X P x xdx dx x y dydx dydx y x f X P d x x XY 23 11/04/24
  • 24.
    Examples on TwoRandom Variables Cont’d…… Solution:                 otherwise , 0 1 0 , 1 1 ) / ( ) 1 ( 1 ) 1 ( 2 2 ) ( ) , ( ) / ( of pdf l Conditiona . and of pdf l Conditiona . / / x y y y x f y y y f y x f y x f X i Y X e Y X Y XY Y X 24 11/04/24
  • 25.
    Examples on TwoRandom Variables Cont’d…… Solution:              otherwise , 0 1 0 , 1 ) / ( 1 2 2 ) ( ) , ( ) / ( of pdf l Conditiona . and of pdf l Conditiona . / / x y x x y f x x x f y x f x y f Y ii Y X e X Y X XY X Y 25 11/04/24
  • 26.
    Examples on TwoRandom Variables Cont’d…… Example-3: The joint pmf of two discrete random variables X and Y is given by: t? independen and Are . . and of pmf marginal the Find . . of value the Find . constant. a is re whe otherwise , 0 2 , 1 2; , 1 , ) 2 ( ) , ( Y X c Y X b k a k y x y x k y x P i j i j i XY        26 11/04/24
  • 27.
    Examples on TwoRandom Variables Cont’d…… Solution: 18 / 1 1 18 1 )] 2 4 ( ) 1 4 ( ) 2 2 ( ) 1 2 [( 1 ) 2 ( 1 ) , ( . 2 1 2 1                       k k k y x k y x P a i j i j x y j i x y j i XY 27 11/04/24
  • 28.
    Examples on TwoRandom Variables Cont’d…… Solution:                     otherwise , 0 2 , 1 ), 3 4 ( 18 1 ) ( ) 2 2 ( 18 1 ) 1 2 ( 18 1 ) ( ) 2 ( 18 1 ) , ( ) ( of pmf Marginal . and of pmf Marginal . 2 1 i i i X i i i X j i y y j i XY i X x x x P x x x P y x y x P x P X i Y X b j j 28 11/04/24
  • 29.
    Examples on TwoRandom Variables Cont’d…… Solution:                     otherwise , 0 2 , 1 ), 6 2 ( 18 1 ) ( ) 4 ( 18 1 ) 2 ( 18 1 ) ( ) 2 ( 18 1 ) , ( ) ( of pmf Marginal . and of pmf Marginal . 2 1 j j j Y j j j Y j i x x j i XY j Y y y y P y y y P y x y x P y P Y ii Y X b i i 29 11/04/24
  • 30.
    Examples on TwoRandom Variables Cont’d…… Solution: t. independen not are and ) ( ) ( ) , ( . Y X y P x P y x P c j Y i X j i XY   30 11/04/24
  • 31.