Chapter 1 - Lesson 4:
Properties of Addition
I am me!
You cannot change
My identity!
property/ˈprɑːpərti/: tính chất
7 + 2 = 9
sum /sʌm/: tổng
attend /əˈtend/: số hạng
3 + 4 + 2 = 3 + (4 + 2)
regroup/ˌriːˈɡruːp/
nhóm lại
a + 2
placeholder/ˈpleɪshoʊldər/: ẩn số
Car a Car b
Car aCar b
commute/kəˈmjuːt/(v): giao hoán
commutative /kəˈmjuːtətɪv/(a)
tính giao hoán
(3 + 4) + 2
parentheses/pəˈrenθəsɪs/:
dấu ngoặc đơn
remain /rɪˈmeɪn/:
số còn lại, phần còn lại
1. The Commutative Property
a + b = b + a
1. The Commutative Property
a + b = b + a
Rule: The order in which numbers are
added does not change the sum
Ex: 5 + 4 = 4 + 5 = 9
(a + b) + c = a + (b + c)
a c
b
a c
b
THEN THEN
associate/əˈsəʊsieɪt/(v): kết hợp
associative/əˈsoʊʃiətɪv/(a): có tính kết
hợp
a c
b
Here are three associates.
b calls a first He calls c last
If he called C first, then
called A, would it have
made a difference?
NO!
(a + b) + c = a + (b + c)
THEN THEN
2. The Associative Property
Rule: The way numbers are
grouped for adding does not change
the sum
Ex: (4 + 3) + 2 = 4 + (3 + 2)
2. The Associative Property
Note: You do the addition in the
parentheses first.
(3 + 4) + 2 = 3 + (4 + 2)
7 + 2 = 3 + 6
9 = 9
Exercise A:
Write each addition problem a
different way using the commutative
property. Think of letters as
placeholders for numbers.
1. 2 + 5
2. 3 + 7
6. a + 6
7. y + 7
Exercise B:
Using the associative property,
regroup each problem. Think of
letters as numbers
1. (1 + 2) + 3
2. (6 + 3) + 10
3. (a + 7) + 10
4. (6 + y) + x
Exercise C:
Show that the sums remain equal
1. (5 + 2) + 3 = 5 + (2 + 3)
2. (6 + 10) + 15 = 6 + (10 + 15)
Exercise E:
Which property of addition is shown,
commutative or associative?
1. 5 + x = x + 5
2. (x + y) + z = x + (z + y)

Chapter 1 lesson 4

  • 1.
    Chapter 1 -Lesson 4: Properties of Addition
  • 2.
    I am me! Youcannot change My identity! property/ˈprɑːpərti/: tính chất
  • 3.
    7 + 2= 9 sum /sʌm/: tổng attend /əˈtend/: số hạng
  • 4.
    3 + 4+ 2 = 3 + (4 + 2) regroup/ˌriːˈɡruːp/ nhóm lại
  • 5.
  • 6.
    Car a Carb Car aCar b commute/kəˈmjuːt/(v): giao hoán commutative /kəˈmjuːtətɪv/(a) tính giao hoán
  • 7.
    (3 + 4)+ 2 parentheses/pəˈrenθəsɪs/: dấu ngoặc đơn remain /rɪˈmeɪn/: số còn lại, phần còn lại
  • 8.
    1. The CommutativeProperty a + b = b + a
  • 9.
    1. The CommutativeProperty a + b = b + a Rule: The order in which numbers are added does not change the sum Ex: 5 + 4 = 4 + 5 = 9
  • 10.
    (a + b)+ c = a + (b + c) a c b a c b THEN THEN associate/əˈsəʊsieɪt/(v): kết hợp associative/əˈsoʊʃiətɪv/(a): có tính kết hợp
  • 11.
    a c b Here arethree associates. b calls a first He calls c last If he called C first, then called A, would it have made a difference? NO!
  • 12.
    (a + b)+ c = a + (b + c) THEN THEN 2. The Associative Property Rule: The way numbers are grouped for adding does not change the sum Ex: (4 + 3) + 2 = 4 + (3 + 2)
  • 13.
    2. The AssociativeProperty Note: You do the addition in the parentheses first. (3 + 4) + 2 = 3 + (4 + 2) 7 + 2 = 3 + 6 9 = 9
  • 14.
    Exercise A: Write eachaddition problem a different way using the commutative property. Think of letters as placeholders for numbers. 1. 2 + 5 2. 3 + 7 6. a + 6 7. y + 7
  • 15.
    Exercise B: Using theassociative property, regroup each problem. Think of letters as numbers 1. (1 + 2) + 3 2. (6 + 3) + 10 3. (a + 7) + 10 4. (6 + y) + x
  • 16.
    Exercise C: Show thatthe sums remain equal 1. (5 + 2) + 3 = 5 + (2 + 3) 2. (6 + 10) + 15 = 6 + (10 + 15)
  • 17.
    Exercise E: Which propertyof addition is shown, commutative or associative? 1. 5 + x = x + 5 2. (x + y) + z = x + (z + y)