SlideShare a Scribd company logo
1 of 172
CASTABLE
CERAMICS
INDIAN DENTAL ACADEMY
Leader in continuing Dental Education
www.indiandentalacademy.com
Glass-ceramics are polycrystalline materials developed
for application by casting procedures using the lost wax
technique, hence referred to as “castable ceramic”. Glass
ceramics in general are partially crystallized glass and show
properties of both crystalline and amorphous (glassy) materials.
They are fabricated in the vitreous (Glass or non-
crystalline/amorphous) state and converted to a ceramic
(crystalline state) by controlled crystallization using nucleating
agents during heat treatment.
www.indiandentalacademy.com
History of evolution of glass ceramics:
1837 – Murphy was probably the first dentist to melt glass
onto a platinum sheet that had been fit in the cavity
preparation.
1891 – Herbst made glass restoration out of pulverized
coloured glass particles with a gas flame directly on the
plaster model.
1930 – Frederick Carder, the founder of Steuben division
of the Corning Glass Works perfected fabricating 3-
dimensional glass articles for decorative purposes using the
lost wax technique. Although delicate objects were cast
accurately, the mechanical properties of glass restricted its
use to artistic application.
www.indiandentalacademy.com
1957 – S.D. Stookey from the Corning Glass Works observed
how an industrial impure glass changed into ceramic with
organic crystalline form and coined the term “Glass-ceramic”.
Thus ‘Pyroceram’ an industrial glass ceramic which had the
properties of both glass and ceramics was developed.
1968 W.T. MacCulloch realised the usefulness of glass
ceramics and proposed its use for dental restorative purposes
(denture teeth; crowns; inlays). He used a continous glass
molding process to produce denture teeth, and suggested
fabrication of crowns/ inlays by centrifugal casting of molten
glass.
1973- Dr. David Grossman developed and patented the
MaCor (Machninable Corning), a predecessor of Dicor
(Grossman D.G.).
www.indiandentalacademy.com
Since 1978 – Peter Adair of Biocor Inc, in association with
the Corning Glass Works and Dentsply international,
researched and developed the clinical application of glass-
ceramics.
1984 – Peter Adair patented Dicor, the commercial glass
ceramic material.
1985 – Sumiyo Hobo & Iwata developed a castable apatite
glass ceramic Cerapearl.
1986 – The world wide patent for the castable glass-ceramic
material and its entire processing system was given to the
manufacturing company De Trey/ Corning ware.
1988 – Tamura reported on fabrication of hydroxyapatite
crowns.
www.indiandentalacademy.com
Glass-ceramic systems for dental application:
Li2
O ZnO – SiO2
Li2
O - Si2
O
Li2
O – CaO - Al2
O3
– SiO2
-
Na2
O– K2
O– Cao – Mgo - Al2
O3
- P2
O5
- SiO3
– F
CaO P2
O5
CaO – MgO - P2
O5
– SiO2
R2
O – Mg - SiO2
– F
www.indiandentalacademy.com
Most glass ceramics are opaque or cloudy and are not
suitable for dental use. The first glass ceramic employed in
dentistry was introduced by MacCulloch (1968) for the
construction of denture teeth, and was based on the Li O2
-
ZnO - SiO2
- systems. At that time, the use of acrylic denture
teeth was becoming popular and the idea of glass ceramics
was not exploited further. The exploration of glass-ceramic
for dental use was taken up by other researchers and has
resulted in at least two major commercially available
products
www.indiandentalacademy.com
Castable dental Glass-Ceramics
Fluoromicas Apatite Glass-Ceramic OtherGlass-Ceramics
(SiO2
K2
MgOA12
O3
ZrO2
(CaOMgOP2
O5
SiO2
system) Based on a) Lithia
E.g Dicor E.g: Cera Pearl (Kyocera Bioceram) b)Calcium
phosphate
www.indiandentalacademy.com
Dicor:
Dicor, the first commercially available castable glass-ceramic
material for dental use was developed by The Corning Glass
Works (Corning N.Y.) and marketed by Dentsply International
(Yord, PA, U.S.A). The term “DICOR” is a combination of
the manufacturer’s names: Dentsply International & Corning
glass.
Dicor is a castable polycrystalline fluorine containing
tetrasilicic mica glass-ceramic material, initially cast as a glass
by a lost-wax technique and subsequently heat - treated
resulting in a controlled crystallization to produce a glass -
ceramic material.
www.indiandentalacademy.com
Composition of Dicor is based on the SiO2
K2
OmgOA12
O3
ZrO2
system. Its composition (w/w) according to different statements.
Supplied as : Dicor castable ceramic cartridges- special DICOR
casting crucibles each containing a 4.1 gm DICOR ingot and the
Dicor shading porcelain kit.
Equipment
 DICOR Casting Machine
 DICOR Ceramming Furnace with Ceramming Trays
Major Ingredients Minor Ingredients
SiO2
45-70%, K2
O upto 20%; MgO 13-
30%
MgF2
(nucleating agent & flux 4 to 9%)
A12
O3
upto 2% (durability &
hardness)
ZrO2
upto 7%; Fluorescing
agents (esthetics)
BaO 1 to 4% (radiopacity)
www.indiandentalacademy.com
Fabrication of castable ceramics restoration consists of
mainly 2 steps:
 Casting: The glass liquefies at 1370°C to such a degree
that it can be cast into a mold using lost-wax and centrifugal
casting techniques.
• The wax pattern of the proposed restoration made on the
model/ die is invested in Castable Ceramic Investment (a
carbon-free, phosphate-based investment, specially formulated
to match DICOR castable ceramic) in a double-line casting ring
and burned out in a conventional burnout at 900°C for 30 mins.
• Glass ingots of castable ceramic material is placed in a
special zirconia crucible (melted at 1360°C / 2600°F) and
centrifugally cast .in the electronically-controlled DICOR
Casting Machine (Dentsply Int), maintaining the spin pressure
for upto 4 minutes and 30 seconds.www.indiandentalacademy.com
• The transparent glass casting obtained is amorphous and
fragile. After cooling, it is divested, sandblasted (25um Al2O3
particles at 40 psi) and carefully separated from the sprue.
 Ceramming: The cast glass material is subject to a
single-step heat treatment called as 'Ceramming' to produce
controlled crystallization by internal nucleation and crystal
growth of microscopic plate like mica crystals within the glass
matrix. This procedure gives glass-ceramic the special
physical and mechanical properties of DICOR.
Method: The transparent fragile casting is embedded in
castable ceramic embedment material (Gypsum-based) and
placed in a Ceramming tray in the DICOR Ceramming
Furnace. www.indiandentalacademy.com
Ceramming cycle:
650-1075 °C for 1 1/2hours and sustained upto 6 hours.
The cerammed glass-ceramic casting is achromatic and
appears as a whitish opaque semi-crystalline material; hence
external colourants are required to develop the required
shade (by veneering self - glazing, pre-mixed DICOR shading
porcelain provided by the manufacturer).
www.indiandentalacademy.com
The computer controlled ceramic process is adjusted so that
the cast glass ceramic is composed of:
 Tetrasilic flouromica crystals (crystalline) - 55% by
volume.
 Glass matrix (non-crystalline) - 45% by volume.
The microstructure after ceramming consists of
multiple interlocking small plate-like crystals of tetrasilicic
flouromica (K2
Mg5
-Si4
O10
F2
) approximately 1 µm thick and 5-
6mm in diameter. On the surface of the cerammed glass are
‘Enstatite crystals’ at a thickness of 15-50µ m, which occur
through fluorine depletion (that occurs through interactions
with the embedment material used for the ceramming process.
The enstatite crystals are in an orthongnal direction to the
surface and are whitish and opaque in color.www.indiandentalacademy.com
The crystals function in following ways:
 Improved strength: Interlocking of randomly oriented small
plate-like mica crystals increases the resistance to fracture. The
mica crystals readily cleave along its long axis, causing cracks to
deflect, branch or blunt; thus disrupting crack propagation. Strength
also depends upon crystal diameter and crystal-glass expansion
mismatches.
 Improved esthetics - The varying crystal sizes and the
difference in the refractive indices of the glass and crystalline phase
makes the glass appear transparent. The refractive index of the mica
crystals is matched to that of the surrounding glass phase thus
reducing light scatter (as in aluminious porcelains) and results in
transparency close to that of enamel.
Reduced abrasive property - Since mica crystals replace the more
abrasive leucite crystals found in traditional feldspathic porcelain.www.indiandentalacademy.com
Following the ceramming process a “Ceram layer” or
‘skin’ of 25-100µm thickness is formed on the surface of the
DICOR restoration. Contained within that ‘ceram layer’ is what
has been described as crystal ‘whiskers’ oriented perpendicular
to the external surface. According to the manufacturer’s
laboratory manual, the ‘rod-like crystals that form on the
surface of the casting during ceramming increase its opacity ’.
Therefore, the outer ‘skin’ may or may not be removed
following the ceramming process, depending on the level of
translucency desired in the final restoration.
www.indiandentalacademy.com
Therefore, a shaded Dicor restoration should be
viewed as a non - homogenous material composed largely of
the internal (parent) castable glass-ceramic veneered with a
thick, hard cerammed “skin” covered with multiple layers of
shading porcelain.
DICOR components KHN KHN
The Ceram layer 505 Dental
porcelain
After adding shading
porcelain
447 460
Internal/parent Dicor glass-
ceramic material located below
the cerammed skin
369 Dental enamel 343
www.indiandentalacademy.com
Chameleon effect of Dicor
The transparent crystals scatter the incoming light. The light and
also its color, is disbursed as if the light is bouncing off a large
number of small mirrors that reflect the light and spread it over
the entire glass-ceramic. This property is called the ‘chameleon
effect’. This means Dicor glass – ceramics change color according
to their surroundings, which enhances its esthetic properties.
Dicor restoration surfaces were reported to have an appreciable
decrease in plaque accumulation compared to that of natural teeth.
Probable theories suggest the ability of Dicor surface to interfere
with the bacterial adhesion to different proteins (plaque) normally
found on natural teeth due to the following reasons :
 It has a smooth non-porous surface
 Presence of an electrical charge inhibiting plaque formation
or fluoride in the chemical structure.www.indiandentalacademy.com
Advantages of Dicor
 Chemical and physical uniformity
 Excellent marginal adaptation (fit)
 Compatibility with lost-wax casting process
 Uncomplicated fabrication from wax-up to casting,
ceramming and colouring
 Ease of adjustment
www.indiandentalacademy.com
 Excellent esthetics resulting from natural translucency,
light absorption, light refraction and natural colour for the
restoration.
 Relatively high strength (reported flexural strength of 152
MPa), surface hardness (abrasion resistance) and occlusal
wear similar to enamel.
 Inherent resistance to bacterial plaque and biocompatible
with surrounding tissues.
 Low thermal conductivity.
 Radiographic density is similar to that of enamel.
www.indiandentalacademy.com
Disadvantages
 Requires special and expensive equipments such as Dicor
casting machine, ceramming oven. (High investment cost for the
lab)
 Although short term clinical studies, verified the efficacy of
the Dicor system in laboratory studies for use as veneers and
inlays, failure rates as high as 8% (# of the restoration) were
reported, especially in the posterior region. In addition, failure
rates as high as 35% have been reported with full coverage Dicor
crowns not bonded to tooth (The poor strength is thought to be
caused by porosity, especially in the outermost "ceram layer").
 Dicor must be shaded/ stained with low fusing feldspathic
shading porcelain to achieve acceptable esthetics, however the
entire stain/ colors maybe lost during occlusal adjustment (use of
abrasives), during routine dental prophylaxis or through the use of
acidulated fluoride gels.
www.indiandentalacademy.com
Two ceramic products were introduced to overcome the
above problem:
 Dicor plus (Dentsply, Trubyte division) : Consists of
a cast cerammed core (Dicor substrate) and shaded
feldspathic porcelain veneer. However, as Dicor plus is a
feldspathic porcelain that contains leucite, the abrasiveness is
expected to be similar to other feldspathic porcelains.
 Willis Glass : Consists of a Dicor cast cerammed core
and a Vitadur-N porcelain veneer similar in nature to that
used for Dicor Plus.
www.indiandentalacademy.com
CASTABLE APATITE GLASS CERAMIC
Castable apatite ceramic is classified as CaO-P2
O5
-MgO-
SiO glass ceramic.
1985 -Sumiya Hobo & Iwata developed a castable apatite
glass-ceramic which was commercially available as Cera
Pearl (Kyocera Bioceram, Japan).
www.indiandentalacademy.com
CERA PEARL (Kyocera San Diego, CA): contains a glass
powder distributed in a vitreous or non-crystalline state.
Composition: Approximately (By weight)
 Calcium oxide (CaO) -45%
 Phosphorus Pentoxide (P2
O5
) -15% Aids in glass formation
 Magnesium oxide (MgO) -5% Decreases the viscosity
(antiflux)
 Silicon dioxide (SiO2
) -35% Forms the glass matrix.
 Other -Trace elements Nucleating agents(during
ceramming).
Chemistry: Apatite glass-ceramic melts (1460°C) and flows like
molten glass and when cast (1510°C) it has an amorphous
microstructure.
www.indiandentalacademy.com
Apatite Glass-Ceramic Molten glass CaPO4
(CaO-P2O5 -MgO-SiO2) (Amorphous)
The amorphous CaPO4
formed after melting and casting changes
into a crystalline oxyapatite on heat treatment (ceramming) at
870°C for 1 hour. The chemically unstable oxyapatite when
exposed to moisture (water) further converts to crystalline
hydroxyapatite (HA crystals).
CaPO4 Oxyapatite Hydroxyapatite
(Amorphous) (Crystalline) (Crystalline)
Ca10
(PO4
)8
20H
Strength is dependent on these crystals and the bond between the
1460°C
melting
1510o
C
casting
1460°C
Ceramming
Exposure
to moisture
www.indiandentalacademy.com
Natural Enamel Cerapearl
Composition of HA crystals Similar
Arrangement of H.A. crystals Regular Irregular
Light Refractive Index (Xo) 1.655 1.63
PH of solute in water 8.0 7.9
Density (g/cm3
) 2.97 2.9
Thermal conductivity (Cal. Cm/cm2
Sec. °C) 0.0022 0.0023
Compressive strength (Mpa / psi) 384/0.05 x 106
590 / 0.08 x 106
Young’s Modulus of Elasticity (Gpa / Psi) 84.1 / 12.2 x 106
103 / 15.0 x 106
Tensile strength (Mpa) 103 150
Knoop Hardness Number (KHN) 343 350
Comparison of Physical Properties of Natural Enamel and
Cerapearl
www.indiandentalacademy.com
Other Physical Properties:
 Coefficient of thermal expansion : 11.0 x 10-6
/°C
 Young's Modulus : 103Gpa
 Casting Shrinkage : 0.53%
 Flexural strength similar to Dicor
Biologic properties : Dense material, Chemically stable, pH
similar to natural enamel, Non toxic/ biocompatible
www.indiandentalacademy.com
Fabrication
 Casting: The wax pattern of the proposed restoration is
invested in phosphate-bonded high heat investment developed
exclusively for this system (CTE to match Cera Pearl's casting
shrinkage of 0.53%). Following burnout, the investment is
transferred to an automatic casting machine designed
especially for this system. The Cera Pearl crystals (8-10gms)
are placed in the ceramic crucible, melted under vacuum (at
1460o
C) and cast (at 1510o
C) into the mold. Annealing is done
one hour after the casting in an automatic furnace to release
the inner stresses of the cast structure. The investment
material around the cast structure is removed by sandblasting
(25-30um Al2
O3
beads) and ultrasonically cleaned. The
annealed casting is reinvested (CP crystal mold, Kyocera
Corp.) for ceramming.www.indiandentalacademy.com
 Ceramming: The ceramming oven is preheated at
750°C for 15 minutes. After the cast glass ceramic is place in
the oven the temperature is raised at the rate 50o
C/min until it
reaches 870°C and held for 1 hour. After crystallization, the
casting is dis-invested, and cleaned by sandblasting (201µm
Al2
O3
powder). It appears white in comparison with natural
enamel and requires the application of an external stain. Eg,
Cerastain (Bioceram), which consists of B2
O3
-SiO2
-Al2
03
-K2
O
glass, traces of various metal oxides.
www.indiandentalacademy.com
Desirable characteristics of Apatite Ceramics
 Cerapearl is similar to natural enamel in composition,
density, refractive index, thermal conductivity, coefficient of
thermal expansion and hardness. Similarity in hardness prevents
wear of opposing enamel.
 Bonding to tooth structure - Glass ionomer cements adhere
to tooth structure (dentin and enamel) primarily bonding to the
apatite component, and thus should also bond to the apatite phase
within the glass-ceramic. To enhance this possibility, Cerapearl
surface is activated by air abrading (to provide mechanical
interlocking effect) or treatment with activator solution (etching
of with 2N HCI preferentially removes the glassy phase from the
surface, thus exposing the apatite phase). The glass ionomer can
then bond to this apatite phase both chemically (ion-exchange)
and mechanically (interlocking effect).www.indiandentalacademy.com
Lithia Based Glass-Ceramic
Developed by Uryu; and commercially available as
-Olympus Castable Ceramic (OCC)
Composition: It contains mica crystals of NaMg3
(Si3AlO10) F2 and Beta Spodumene crystals of
LiO.AI2O3.4SiO2 after heat treatment.
www.indiandentalacademy.com
Calcium Phosphate Glass-Ceramic
Reported by Kihara and others, for fabrication of all-
ceramic crowns by the lost wax technique. It is a combination
of calcium phosphate and phosphorus pentoxide plus trace
elements. The glass ceramic is cast at 1050°C in gypsum
investment mold. The clear cast crown is converted to a
crystalline ceramic by heat treating at 645°C for 12 hours.
Reported Flexural strength (116 Mpa); Hardness close to tooth
structure.
Disadvantages
 Weaker than other castable ceramics;
 Opacity reduces the indication for use in anterior teeth.www.indiandentalacademy.com
Advantages of castable glass ceramics
 High strength because of controlled particle size
reinforcement.
 Excellent esthetics resulting from light transmission
similar to that of natural teeth .and convenient procedures for
imparting the required colour.
 Accurate form for occlusion, proximal contacts, and
marginal adaptation.
 Uniformity and purity of the material.
 Favorable soft tissue response.
 X-ray density allowing examination by radiograph
www.indiandentalacademy.com
 Hardness and wear properties closely matched to those
of natural enamel
 Similar thermal conductivity and thermal expansion
to natural enamel
 Dimensional stability regardless of any porcelain
corrective procedure and subsequent firings
www.indiandentalacademy.com
Advantage of cast glass-ceramics over metal-ceramics
 The component chemical compounds are standardized,
eliminating any inaccuracies, The forming procedures can be
quality controlled.
 Superior compressive strength because of its semi-
crystalline form and is also a machinable material, Crack
propagation's are interrupted by the crystalline structure.
 Utilized conventional lost-wax technique similar to casting
alloys. Hence, casting and finishing can be easily done.
 Colour control, optical effects allow predictable and esthetic
results.
 Cast glass ceramics are thermal resistant.
 Bacterial plaque adherence on the surface is inhibited, thus
maintaining the tissues surrounding the restoration.www.indiandentalacademy.com
 Radiolucency allows for a dimension of depth in the
observation of marginal integrity.
 Wear rate values are similar to that of human enamel.
www.indiandentalacademy.com
MACHINABLE
CERAMICS
www.indiandentalacademy.com
Regardless of the advanced state of the 300-year old
technique of casting, each of its steps could induce error in the
final casting. Until 1988, indirect ceramic dental restorations
were fabricated by conventional methods (sintering, casting
and pressing) and neither were pore-free. Pore-free
restorations can be alternately produced by machining blocks
of pore-free industrial quality ceramic. The tremendous
advances in computers and robotics could also be applied to
revolutionize dentistry and provide both precision and reduce
time consumption. With the combination of optoelectronics,
computer techniques and sinter-technology, the morphologic
shape of crowns can be sculpted in an automated way.
Registration of the mandibular jaw movements or of the
functionally generated path in the mouth provides the
necessary data for an interference-free escape of cusps from
their fossae. www.indiandentalacademy.com
CAD/CAM is an acronym for Computer Aided Design / Computer
Aided Manufacturing (or Milling).
History of machining systems:
1971 - CAD/CAM technologies were introduced to the dental
profession.
1979 - Heitlinger and Rodder followed by,
1980 -Moermann &Brandestini began to share this approach.
1983 -First dental CAD/CAM prototype was presented at the
Garanciere conference in France.
1985 -The first CAD/CAM crown was publicly milled and installed
in a mouth without any laboratory involvement.
1986 -The first generation Cerec 1 (Siemens Corp) was introduced.
1994 -The second generation Cerec 2 (Siemens Corp) was presented.www.indiandentalacademy.com
Application of CAD/CAM techniques was actively pursued
by three groups of researches :
 Group supported by Henson International of France.
 Combined group effort between the University of Zurich
and Brains, Brandestini Instruments of Switzerland.
 University of Minnesota, supported by the U.S.
National Institute of Dental Research.
www.indiandentalacademy.com
Although each group had a slightly different philosophy and
approach, they worked towards a common goal of integrating
engineering applications of automation in the creation of
dental restorations.
 French system: Optical impression -Laser scanner,
Data processed by : Shape recognition software. It has a
library (memory) describing theoretical teeth. The system
uses
• 3-D probe system based on electro-optical method
• Surface modelling and screen display
 Automatic milling by a numerically controlled 4-axis
machine
www.indiandentalacademy.com
 Swiss system: Optical impression - Optical topographic
scanning using a 3-D oral camera; Data processed by an
interactive CAD unit. The system uses:
• A desk top model computer
• Display monitor permitting visual verification of quality of
data being acquired
• Electronically controlled 3-axis N/C milling machine
 Minnesota system: Optical impression -Photographic
based system using a 35-mm camera with magnifying lens. Data
obtained in the dental office is sent to another location for
processing and machining. 3-D Reconstruction uses :
• Direct line transformation and an alternative technique
proposed by Grimson
 Milling with a 5-axis N/C machine.
www.indiandentalacademy.com
Triad of fabrication: Fabrication of a restoration whether
with traditional lost-wax casting technique or a highly
sophisticated- technology such as a CAD/CAM system has
three functional components:
 Data acquisition
 Restoration design
 Restoration fabrication
SUBTRACTIVE METHODS
Grinding of porcelain restorations out of a preformed block
either by means of CAD/CAM or by using a copy milling
unit can be done by the so-called subtractive methods.
www.indiandentalacademy.com
Machinable Ceramic system (MCS) for dental restorations:
      Digital Systems (CAD/CAM):
•Direct  
•Indirect
 
Three steps :
         3-dimensional surface scanning
         CAD -Modelling of the restoration
         Fabrication of restoration.
www.indiandentalacademy.com
      Analogous systems (Copying methods)
•Copy Milling / Copy Grinding or Pantography Systems
Two steps : 
         Fabrication of prototype for scanning;
         Copying and reproducing by milling
•Erosive techniques
        Sono Erosion
        Spark Erosion
www.indiandentalacademy.com
MACHINING SYSTEMS
CAD/CAM (Digital) COPYING SYSTEMS (Analogous)
Direct Indirect Copy Milling Erosion
Cerec 1
&
Cerec 2
Automill,
DCS-
President,
Cicero,
Denta,
Denti CAD,
Sopha –
Bioconcept
Manual Automatic Sono-
erosion
Spark
–
erosion
Celay Ceramatic
II DCP
DFE
Eroson
ic
DFE
Procer
a
www.indiandentalacademy.com
Traditional technique High technology
Data acquisition or
information by impressions
and translated into
articulated stone casts
Data acquisition or
information is captured
electronically, either by a
specialized camera, laser
system, or a miniature
contact digitizer.
Restoration design is the
process of creating the wax
pattern
Restoration design is done by
the computer – either with
interactive help from the user
or automatically.
Restoration fabrication
includes all the procedures
from dewaxing upto the final
casting (lost wax technique)
Restoration fabrication
includes machining with
computer controlled milling
machines, electrical discharge
machining and sintering
www.indiandentalacademy.com
IMPRESSION
CAMERA LASER
CONTACT
DIGITIZER
CASTS & DIE
COMPUTERIZED
DESIGN
WAX
PATTERN
INVEST
CAST
MACHINE ELECTRICAL
DISCHARGE
MACHINE
SINTER
Data
acquisition 
Restoration
Design 
Restoration 
fabrication 
www.indiandentalacademy.com
DIGITAL SYSTEMS
Computer  aided  design  and  computer  aided  manufacturing 
(CAD/ CAM) technologies have been integrated into systems 
to  automate  the  fabrication  of  the  equivalent  of  cast 
restorations. 
CAD/CAM milling  uses  digital  information  about  the  tooth 
preparation  or  a  pattern  of  the  restoration  to  provide  a 
computer-aided  design  (CAD)  on  the  video  monitor  for 
inspection  and  modification.  The  image  is  the  reference  for 
designing  a  restoration  on  the  video  monitor.  Once  the  3-D 
image  for  the  restoration  design  is  accepted,  the  computer 
translates  the  image  into  a  set  of  instructions  to  guide  a 
milling  tool  (computer-assisted  manufacturing  [CAM])  in 
cutting the restoration from a block of material. 
www.indiandentalacademy.com
Stages of fabrication: Although  numerous  approaches  to 
CAD/CAM for restorative dentistry have evolved, all systems 
ideally involve 5 basic stages:  
      Computerized surface digitization
      Computer - aided design
      Computer - assisted manufacturing
      Computer - aided esthetics
      Computer - aided finishing
(The  last  two  stages  are  more  complex  and  are  still  being 
developed for including in commercial systems). 
www.indiandentalacademy.com
Computerized surface digitization: 3D-surface digitizing 
or scanning methods are separated into : 
•     Direct (at the tooth)
•          Indirect  methods(via  impression  making  &  model 
fabrication or via pro-inlay)
•     Mechanical
•     Optical sensors 
www.indiandentalacademy.com
Types of computerized surface digitization techniques:
      Photogrammetry 
      Moire
      Laser scanning
      Computerized tomography (CT) scanning
      Magnetic resonance imaging (MRl)
      Ultrasound
      Contact profilometry 
www.indiandentalacademy.com
Mechanical  scannings  conducted  by  a  profilometer  or 
pinpoint  sensor  are  very  precise,  but  have  several 
shortcomings.  Among  the  various  methods  of  optical 
surface scanning, the active (laser) triangulation has been 
proven  the  most  suitable,  however  it  requires  non-
reflective surfaces for scanning (contact powder coating). 
Laser  technique  and  contact  digitization  are  the  most 
promising approaches from the point of view of cost and 
accuracy.
www.indiandentalacademy.com
FLOW CHART SHOWING SEQUENTIAL EVENTS OCCURING DURING CAD –
CAM TECHNIQE OF FABRICATING A CERAMIC RESTORATION :
The cavity preparation is scanned stereo-photogrammetrically, using a three-
dimensional miniature video camera
The small microprocessor unit stores the three dimensional pattern depicted
on the screen
The video display serves as a format for the necessary manual construction via
an electric signal
The microprocessor develops the final three-dimensional restoration from the two
dimensional construction
The processing unit automatically deletes data beyond the margins of
the preparation
The electronic information is transferred numerically to the miniature three-axis
milling device
Driven by a water turbine unit, the milling device generates a precision fitting
restoration from a standard ceramic block
www.indiandentalacademy.com
CEREC SYSTEM
The CEREC (Ceramic Reconstruction) system ( Siemen/sirna
corp) was originally developed by Brains AG in Switzerland 
and  first  demonstrated  in  1986,  but  had  been  repeatedly 
described since 1980. Identified as CEREC CAD/CAM system, 
it  was  manufactured  in  West  Germany  and  marketed  by  the 
Siemens group.
Cerec System consists of :
      A 3-D video camera (scan head)
   An  electronic  image  processor  (video  processor)  with 
memory unit (contour memory)
      A digital processor (computer) connected to,
      A miniature milling machine (3-axis machine)www.indiandentalacademy.com
The Optical impression: A small hand held video camera 
with  a  1-cm  wide  lens  (scanner)  when  placed  over  the 
occlusal  surface  of  the  prepared  tooth,  emits  infrared  light 
which passes through an internal grid containing a series of 
parallel  lines.  The  pattern  of  light  and  dark  stripes  which 
falls  on  the  prepared  tooth  surface  is  reflected  back  to  the 
scanning head and onto a photoreceptor, where its intensity 
is recorded as a measure of voltage and transmitted as digital 
data to the CAD unit. 
www.indiandentalacademy.com
Procedure:
•        The prepared and surrounding tooth surfaces are coated 
with CEREC powder (L.D. caulk -Ti02 and talc) to eliminate 
light  reflections  and  to  obtain  an  opaque  reflective  surface 
(few µm thick only).
•        The hand - held camera is positioned over the prepared 
tooth, and an image of the preparation is then simultaneously 
projected onto the screen.
•         The  camera  is  adjusted  until  the  image  is  clear  and 
properly angulated for all aspects of the prepared tooth to be 
visible in complete focus.
www.indiandentalacademy.com
•        The video search mode enables assessment whether 
the camera viewing axis is compatible with the inlay/ onlay 
path  of  insertion.  If  viewing  is  acceptable  the  three 
dimensional  scanning  is  triggered  by  release  of  the  foot 
pedal.
•         The  operator  now  checks  the  preparation  and  its 
three-dimensional  representation  for  corrections  or 
modifications  to  be  made,  if  necessary.  Once  the 
appropriate optical orientation is generated, the operator can 
'freeze-frame' the preparation into a static image.
www.indiandentalacademy.com
 Designing the Restoration:  The  proposed  restoration  is 
designed  by  tracing  frame  lines  on  the  optical  impression 
(fixed  image)  which  is  projected  onto  the  screen.  A  cursor 
controlled  by  reverse  'mouse'  located  on  top  of  the  unit  is 
used  to  define  the  limits/boundaries,  starting  from  the 
gingival margin and moved along the internal line angles at 
intermediate positions commands the computer which draws 
a continuos line, through all placed points and displays it on 
the  screen.  The  operator  can  carefully  examine,  edit  and  if 
necessary,  even  modify  the  pattern  at  any  moment  in  the 
procedure.  After  the  margins,  walls,  proximal  contour  and 
contact  as  well  as  the  location  of  marginal  ridges  are 
established, the electronically designed proposed restoration 
can be viewed as a 3-dimensional model on the monitor, and 
stored automatically on the program disk (floppy). 
www.indiandentalacademy.com
Milling of the Ceramic restoration:  The  restoration  is 
milled  (4  –  7minutes)  with  a  diamond  wheel  from  a  pre-
manufactured and standardized ceramic block in the milling 
chamber of the CAM unit. Factory standardized, preformed 
dental porcelain blocks are homogenous and almost pore-
free (Vita Cerec blocks; Dicor-Cerec blocks). 
www.indiandentalacademy.com
The CAM unit:
 A pump system with an attached water reservoir located at 
the  base  of  the  mobile  cart  maintains  the  water  pressure 
required for the hydraulic driven water turbine in the milling 
chamber.  During  milling  about  5  litres  of  water  is  cycled 
internally  which  eliminates  the  need  for  external  water 
supply  and  drainage.  The  water  reservoir  system  also 
contains a microporous filter that traps any of the loosened 
diamond  particles  separated  from  the  wheel  for  future 
retrieval. 
www.indiandentalacademy.com
 Procedure:
       The  appropriate  ceramic  block  is  selected  from  a  series 
consisting of different sizes and shades.
       The  ceramic  block  is  mounted  on  a  metal  stub  (retainer), 
inserted into the milling unit and grinding operation is initiated.
       Grinding  of  the  ceramic  restoration  is  done  by  a  diamond-
coated disk/ wheel in conjunction with a high velocity water-spray, 
which  simultaneously  cools  and  cleans  the  milling  disk.  The 
restoration is milled from the mesial to the distal proximal surfaces 
with  the  block  rotating  along  its  central  axis  and  being  steadily 
advanced  forward  during  the  milling  process.  In  addition,  the 
diamond wheel not only rotates but also translates up and down over 
the porcelain block being milled. A series of steps (200-400) or cuts 
are required for milling a ceramic restoration.
    At the end of the milling operation, the completed restoration 
falls  to  the  bottom  of  the  chamber  from  where  it  can  be  readily www.indiandentalacademy.com
 The computer program associated with the milling process
has additional interesting features such as:
       Before  the  milling  process,  the  screen  displays  the 
dimensions  of  the  restoration  from  one  proximal  surface  to 
the other in 1/900th 
 of a mm.
       During  the  milling  operation,  the  screen  continuously 
informs the operator of the percentage of the completion.
A  continuous  readout  is  displayed  concerning  the  cutting 
efficiency  of  the  diamond  wheel,  thereby  indicating  the 
probable need for replacement. 
www.indiandentalacademy.com
Clinical shortcoming of Cerec 1 system:
           Although the CEREC system generated all internal 
and external aspects of the restoration, the occlusal anatomy 
had  to be developed by the  clinician using  a flame-shaped, 
fine-particle diamond instrument and conventional porcelain 
polishing procedures were required to finalize the restoration.
             Inaccuracy of fit or large interfacial gaps.
      Clinical  fracture  related  to  insufficient  depth  of 
preparation.
            Relatively poor esthetics due to the uniform colour 
and lack of characterization in the materials used. 
www.indiandentalacademy.com
Cerec 2 system
The  Cerec  2  unit  (Siemen/Sirona),  based  on  the  process 
developed  by  Morman  &  Brandestini  was  introduced  in 
September 1994, and is the result of constant further development 
via different generations of Cerec units to eliminate the previous 
limitations.
 The maior changes include :
         Enlargement of the grinding unit from 3 axis to 6 axis.
   Upgrading of the software with more sophisticated technology 
which allows machining of the occlusal surfaces for the occlusion 
and the complex machining of the floor parts.
Other technical innovations of Cerec 2 compared to Cerec 1: 
      The improved Cerec 2 camera : new design, easy to handle, 
a  detachable  cover  (asepsis/sterilization),  reduction  in  the  pixel 
size/picture element to improve accuracy and reduce errors.
www.indiandentalacademy.com
      Data representation in the image memory and processing 
increased by 8 times, while the computing capacity is 6 times 
more efficient.
       Magnification  factor  increased  from  x8  to  x12  for 
improved accuracy during measurements.
      Monitor can be swiveled and tilted, thus facilitating visual 
control of the video image. Other changes include modification 
of foot control, keys and their positions on the keyboard.
      Simultaneous grinding using cylindrical diamonds (2mm 
diameter,  particle  #64um,  77,000rpm  and  cutting  speed  8m/s) 
and radial infeed grinding of the grinding disk (6um particle #, 
18000rpm and cutting speed 38m/s).
www.indiandentalacademy.com
       Extended  matching  options  facilitate  grounding  of 
complex  floor  shapes  in  inlays/  onlays.    Provides  three 
different  programs  for  Extrapolation,  Correlation  and 
Veneer.
       Cerec  2  software  (cos  4.20)  permits  custom  veneer 
preparation  and  class  IV  preparations  with  incisal  edge 
coverage.
       Improved  in  rigidity  and  grinding  precision  by  24 
times.
         Improved accuracy of fit (reduction in inter-facial 
gap from 84+38um/ Cerec 1 to 56+27um/ Cerec 2).
www.indiandentalacademy.com
Machinable ceramics ( Ceramics used in machining
systems) are  pre-fired  blocks  of  feldspathic  or  glass  - 
ceramics.
 
Composition : Modified  feldspathic  porcelain  or  special 
fluoro-alumino-silicate  composition  are  used  for  machining 
restorations.
Properties
      Excellent fracture and wear resistance
      Pore-free
      Possess both crystalline and non-crystalline phase (a 2-
phase composition permits differential etching of the internal 
surface for bonding). www.indiandentalacademy.com
 Ceramic CAD/ CAM restorations are bonded to tooth
structure by : 
      Etching for a bond to enamel
      Conditioning, priming and bonding (when appropriate)
      Etching (by HF acid) and priming (silanating)
      Cementing with luting resin.
 
CAD/CAM  restorations  (inlay/onlays)  are  fabricated 
primarily  from  ceramic  materials,  while  subtractive 
fabrication  of  metal  alloys  or  titanium  have  only  been 
investigated for crowns, copings and bridges. 
www.indiandentalacademy.com
Machinable Ceramics
The industrially prefabricated ceramic ingots/ blank used are 
practically  pore-free  which  do  not  require  high  temperature 
processing and glazing, hence have a consistently high quality. 
The  blanks  measure  approximately  9  x  9  x  13  mm  and  are 
industrially  fabricated  using  conventional  dental  porcelain 
techniques.  Eg:  Vitadur  353N  (Vita  Zahnfabrik,  Bad 
Sackingen, West Germany) frit powder is mixed with distilled 
water, condensed into a 10 x 10 x l5 mm steel die and fired 
under  vacuum  (the  temperature  is  increased  at  a  rate  of 
60O
C/min to 950o
C and held for one minute).
Two classes of machinable ceramics available are:
      Fine-scale feldspathic porcelain
      Glass-ceramics  www.indiandentalacademy.com
 Cerec Vitabloc Mark I : This feldspathic porcelain was the first 
composition  used  with  the  Cerec  system  (Siemens)  with  a  large 
particle size (10 - 50µm). It is similar in composition, strength, and 
wear  properties  to  feldspathic  porcelain  used  for  metal-ceramic 
restorations.
Cerac Vitabloc Mark II  :  This  is  also  a  feldspathic  porcelain 
reinforced with aluminum oxide (20-30%) for increased strength and 
has a finer grain size (4µm) than the Mark I composition to reduce 
abrasive wear of opposing tooth.
Dicor MGC (Dentsply, L.D. Caulk Division)  : This  is  a 
machinable glass-ceramic composed of fluorosilica mica crystals in 
a glass matrix. The micaplates are smaller (average diameter 2 um) 
than  in  conventional  Dicor  (available  as  Dicor  MGC  -  light  and 
Dicor  MGC  -  dark).  Greater  textural  strength  than  castable  Dicor 
and  the  Cerec  compositions.  Softer  than  conventional  feldspathic 
porcelain. Less abrasive to opposing tooth than Cerec Mark I, and 
more than Cerec Mark II (invitro study results). 
www.indiandentalacademy.com
MGC -F (Corning Inc.) : Machinable glass ceramic developed to 
overcome the deficiencies of the Vita Mark II and Dicor MGC. It is 
a  tetrasilicic  mica  glass  -  ceramic  with  minor  compositional  and 
microstructural  changes  from  Dicor  MGC  to  enhance  its 
fluorescence and machinability. 
Pro CAD (Ivoclar AG, Liechtenstein) :  The  Pro  CAD  line 
(Professional  Computer  Assisted  Design)  is  a  product  package 
suitable for all Cerec 2 applications. It is a high-strength optimized, 
leucite-reinforced  glass  ceramic  material,  available  as  blocks  in 
different sizes and in the chromascop shades.
Celay :  This  material  can  be  used  in  both  copy  milling  and 
CAD/CAM techniques. According to the manufacturer, it is a fine-
grained  feldspathic  porcelain  used  to  reduce  abrasiveness  with  a 
composition  identical  to  that  of  Cerec  Vitablocs  Mark  II.  In 
addition,  both  In-Ceram  and  Spinell  (Vita)  are  available  for 
processing in the green state in conjunction with Celay.  www.indiandentalacademy.com
Other machinable ceramics being developed include: 
      Bioglass (Alldent Corp., Rugell, Liechtenstein)
       DFE  -Keramik/Krupp  Medizintechnir  GmbH,  Essen, 
Germany; Bioverit / Mikrodenta Corp
      Empress / Vivadent –lvoclar Corp, Schaan, Liectenstein. 
www.indiandentalacademy.com
Clinical procedures for Cerec CAD/CAM: 
Tooth  preparation  &  Optical  registration  :    Simple,  box  shaped 
preparations  suffice  for  the  Cerec  three-dimensional  scanning  and 
fabrication  process.  The  procedure  is  not  dependent  on  any  cavity 
preparation  size.  Simple  and  complex  proximal  preparations  for  both 
inlays  and  onlays  are  readily  and  correctly  milled.  Undercuts  in  cavity 
walls do not affect the optical scanning and are tilled in with composite 
resin  during  the  cementation.  Straight  walls  with  right  angles  are 
recommended The 4 to 6 degree divergence required for cast inlays is not 
necessary  using  Cerec  system;  parallel  walls  suffice,  thereby  ensuring 
maximal  preservation  of  hard  dental  tissues.  The  occlusal  and  proximal 
cavity margins are not beveled. Instead, the cavity walls and enamel edges 
are finished using diamond coated finishing stones. The gingival floor is 
horizontal  or  declines  between  5  and  15  degrees  towards  the  gingival 
margin. The optical scanning is facilitated by having clearly defined walls 
and  cavity  margins  and  by  the  use  of  rubber  dam  during  the  optical 
scanning  and  cementation  stages.  Gingival  margins  of  the  preparation 
must be made clearly visible by placement of retraction cord, or by use of 
electrosurgery incision surgery. www.indiandentalacademy.com
The optical scanning is facilitated by having clearly defined 
walls  and  cavity  margins  and  by  the  use  of  rubber  dam 
during  the  optical  scanning  and  cementation  stages. 
Gingival margins of the preparation must be made clearly 
visible  by  placement  of  retraction  cord,  or  by  use  of 
electrosurgery incision surgery.
Cementation:  The  small  quantities  of  composite  resin 
cement  required  for  cementation  ensures  a  thin  layer 
between  the  ceramic  and  the  enamel.  This  thin  layer, 
together  with  the  microretentive  bond  within  the  ceramic 
and  enamel  apparently  minimizes  the  negative  aspects  of 
the  polymerization  shrinkage  and  the  high  thermal 
expansion  of  the  cement.  Composite  resin  cements  blend 
esthetically with porcelain and enamel.
www.indiandentalacademy.com
 The clinical advantages of the Cerec system:
      The restorations made from prefabricated and optimized, 
quality-controlled ceramic porcelain can be placed in one visit.
       Transluency  and  color  of  porcelain  very  closely 
approximate the natural hard dental tissues.
       Further,  the  quality  of  the  ceramic  porcelain  is  not 
changed by the variations that may occur during processing in 
dental laboratories.
       The  prefabricated  ceramic  is  wear  resistant.  The 
optimized structure of the ceramic enables optimal polishability 
of  the  material  and  low  abrasion  of  the  cusp  enamel  of 
thCICERO System 
 
www.indiandentalacademy.com
•         Porcelain  ceramic  etching  (HF  5%  for  60  seconds): 
microrentive  adhesive  bond  between  porcelain/ceramic  and 
the bonding agent/composite resin cement.
                      Enamel-etching  technique  (H3PO4  35%  for  30 
seconds):  microretentive  adhesive  bond  between  composite 
resin cement/bonding agent and enamel. 
www.indiandentalacademy.com
CICERO System 
  Computer  Integrated  Crown  Reconstruction  (Elephant 
industries).  This  Dutch  system  was  marketed  with  the 
Duret  (French)  system,  Sopha  Bioconcept  and  the 
Minnesota system (Denti CAD) as the only three systems 
capable  of  producing  complete  crowns  and  FPD's.  The 
Cicero CAD/CAM system developed for the production of 
ceramic-fused-to-metal restorations, makes use of :
      Optical scanning
      Nearly net -shaped metal and ceramic sintering
  Computer-aided  crown  fabrication  techniques.  Alloy 
sintering eliminates casting and therewith many processing 
steps in the fabrication of metal-ceramic restorations.www.indiandentalacademy.com
The  unique  feature  of  the  Cicero  system  is  that  it 
produces Crowns, FPD's and inlays with different layers 
such  as  metal  and  dentin  and  incisal  porcelains,  for 
maximum strength and esthetics.
www.indiandentalacademy.com
COMET System
(Coordinate M Easuri ng Technique, Steinbichler Optotechnik, 
GmbH,  Neubeurn,  Germany)    This  system  allows  the 
generation  of  a  3-dimensional  data  record  for  each 
superstructure  with  or  without  the  use  of  a  wax-pattern.  For 
imaging,  2  -  dimensional  line  grids  are  projected  onto  an 
object,  which  allows  mathematical  reproduction  of  the  tooth 
surfaces.  It  uses  a  pattern  digitization  and  surface  feedback 
technique, which accelerates and simplifies the 3-dimensional 
representation  of  tooth  shapes  while  allowing,  individual 
customization and correction in the visualized monitor image. 
www.indiandentalacademy.com
Other Digital Systems:
 
The Duret System (Hanson International):
 The Duret CAD-CAM system was developed by Francois
Duret and produced by Sopha (Lyon, France). It was made 
of 3 discrete units :
      A camera module
      A CAD module 
The milling module. 
www.indiandentalacademy.com
Optical impression was made using Electro-optical method (a 
laser  scanner)  combining  Holography  and  Moire.  The 
digitized  data  from  the  CAD  unit  is  combined  with  data 
relating to the dynamic movements of jaw which is provided 
by  a  proprietary  articulator.  called  the  Access Articulator 
linked  to  the  CAD  unit.  This  original  Duret  system  using 
highly  sophisticated  and  complex  imaging/  designing 
procedure  was  designed  primarily  to  fabricate  full  crowns. 
However, since its introduction, both the original system and 
the derivative version The SOPHA system have had limited 
commercial success. 
www.indiandentalacademy.com
The SOPHA System (Sopha Bioconcept, Inc Los Angeles,
CA) was commercially introduced in 1990/91 in France, but 
is apparently no longer available.
 
The REKOW Svstem (Digital Dental System)  was 
developed  by  Dr. Diane Rekow  at  the  University  of     
Minnesota.  This  system  initially  used  a  photogrammetric 
method  for  intraoral  surface  digitization  of  the  preparation 
using  a  pen  digitizer,  but  later  used  mechanical  -  manual 
scanning  and  was  marketed  for  dental  laboratory  use  in 
Europe by Bego (Bremen, Germany). 
www.indiandentalacademy.com
The Denti CAD svstem:  Used  a  miniature  mechanical 
linkage  designed  by  Foster  Miller  Inc  (Wallham,  Mass 
USA)  (unique  robotic  arm  digitizer)  which  can  be  used 
both  intraoral1y  or  an  traditional  models  and  dies  for 
tracing the image. The Denti CAD system is capable of 
producing  restorations  from  alloys,  composites  and 
ceramics.  It  uses  a  unique  robotic  arm  digitizer  (a 
miniature mechanical linkage), designed by Foster Miller 
Inc  (Waltham,  Mass,  U.S.A.)  that  can  be  used  both 
intraorally or  traditional  models and  dies  for tracing the 
image. 
www.indiandentalacademy.com
The DUX s stem/The Titan System (DCS groups Dental,
Allschwill, Switzerland)  was  introduced  in  1991  by 
DCS/GIM -Alldent. It consists of ;
A miniature contact digitizer (pantograph)
A central computer
A milling unit. 
The  digitizer  consists  of  a  table  that  shifts  a  die  or  model 
beneath ~ contact stylus. This system is currently distributed 
under the brand name DCS -President (DCS/ Girrbach). 
www.indiandentalacademy.com
Advantage of CAD/CAM (Cerec system)over other systems 
      Eliminates impression model making and fabrication of 
temporary prosthesis.
       Dentist  controls  the  manufacturing  of  the  restoration 
entirely without laboratory assistance.
      Single visit restoration and good patient acceptance.
      Alternative materials can be used, since milling is not 
limited to castable materials.
      The use of CAD/ CAM system has helped provide void 
free porcelain restorations, without firing shrinkage and with 
better adaptation.
www.indiandentalacademy.com
       It  can  construct  various  types  of  ceramic  restorations. 
Hence,  can  be  used  as  an  alternative  to  metallic  restorations 
allowing  placement  of  esthetic  inlays/onlays  in  stress  bearing 
areas  of  posterior  teeth  (because  of  its  high  resistance  to 
abrasion, good marginal adaptation and also as an alternative to 
complete  or  full  coverage  crowns  that  require  extensive  tooth 
reduction).  Half  and  three-quarter  crowns  and  Cerec  veneer 
laminates can also be directly placed as easily.
       CAD  -  CAM  device  can  fabricate  a  ceramic  restoration 
such as inlay/ onlay at the chair-side.
      Eliminates the asepsis link between the patient, the dentist, 
operational field and ceramist.
        The shapes created in the CAD unit are well defined, and 
thus a factor such as correct dimensions can be evaluated and 
corrections/modifications  can  be  carried  out  on  the  display 
screen itself . 
www.indiandentalacademy.com
      Using industrially prefabricated ceramic blanks compared 
to that fabricated by the dental technician is the maintenance of 
consistently  optimally  high  quality  of  the  material  under 
industrial conditions controlled by the manufacturer.
      Glazing is not required and Cerec inlay onlays can easily 
be polished.
      Minimal abrasion of opposing tooth structure because of 
homogeneity of the material (abrasion does not exceed that of 
conventional and hybrid posterior composite resins).
       The mobile character of the entire system enables easy 
transport from one dental laboratory to another. 
www.indiandentalacademy.com
Disadvantages: 
      Limitations in the fabrication of multiple units.
      Inability to characterize shades and translucency.
      Inability to image in a wet environment (incapable of 
obtaining  an  accurate  image  in  the  presence  of  excessive 
saliva, water ore blood).
      Incompatibility with other imaging system.
      Extremely expensive and limited availability.
      Still  in  early  introductory  stage  with  few  long-term 
studies on the durability of the restorations.
www.indiandentalacademy.com
       Lack  of  computer-controlled  processing  support  for 
occlusal adjustment.
      Technique sensitive nature of surface imaging that is 
required for the prepared teeth.
            Time and cost must be invested for mastering the 
technique  and  the  fabrication  of  several  restorations,  to 
develop proficiency in the operator. 
www.indiandentalacademy.com
ANALOGOUS SYSTEMS (COPYING /
PANTOGRAPHY METHODS )
Copy milling
It  is  the  mechanical  shaping  of  an  industrially  prefabricated 
ceramic  material,  which  is  consistent  in  quality  and  its 
mechanical  properties  (an  improvement  over  conventional 
ceramics).  Copy  milling  includes  fabrication  of  a  prototype 
(pro-inlay or crown) usually via impression making and model 
preparation. Based on the model, a replica of inlay / crown is 
made and fixed in the copying device and transferred 1: 1 into 
the chosen material such as ceramic. 
www.indiandentalacademy.com
Materials used -The choice of material depends in mostly on 
the type of margin required for the restoration. Virtually any 
geometry  and  size  can  be  copy  milled  as  long  as  there  is 
direct  access  of  the  finger  guide  and  cutting  tool  to  the 
surfaces involved. Because titanium has a very high melting 
temperature,  it  is  difficult  to  conveniently  cast;  however  it 
can be copy milled easily and inexpensively. Composite and 
ceramic materials are most commonly used for copy milling 
dental restorations. 
www.indiandentalacademy.com
Sono erosion -is based on ultrasonic methods. First, metallic 
negative moulds (so-called sonotrodes) are produced of the 
desired  restoration,  both  from  the  occlusal  as well  as  from 
the basal direction. Both sonotrodes fitting exactly together 
in the equational plane of the intended restoration are guided 
onto  a  ceramic  blank  after  connecting  to  an  ultrasonic 
generator,  under  slight  pressure.  The  ceramic  blank  is 
surrounded by an abrasive suspension of hard particles, such 
as boron carbide, which are accelerated by ultrasonics, and 
thus erode the restoration out of the ceramic blank. 
www.indiandentalacademy.com
Spark Erosion refers to 'Electrical Discharge Machining' 
(EDM) which was used by the tool and die industry during 
the 1940's and was adapted into dentistry in 1982. It may 
be defined as a metal removal process using a series of
sparks to erode material from a workpiece in a liquid
medium under carefully controlled conditions.  The liquid 
medium usually, is a light oil called the dielectric fluid. It 
functions  as  an  insulator,  a  conductor  and  a  coolant  and 
flushes  away  the  particles  of  metal  generated  by  the 
sparks.
www.indiandentalacademy.com
Advantages of EDM desirable for dental applications: 
•EDM is not affected by metal-hardness because it is a thermal 
process.
•Adhesive characteristics of the workpiece do not affect EDM 
because it is a non-contact method of removing metal.
•EDM provides a smooth bur-free surface.
•EDM can be used to machine thin objects without distortion 
because there are virtually no mechanical forces created.
•EDM can be used to make long, small diameter cuts because 
there is little, if any, torque on the electrode to cause breakage.
•EDM is accurate to within 0.0001 inch. 
The major disadvantage is the cost of the equipment. 
www.indiandentalacademy.com
Spark Erosion (SAE) unit (Dental Arts Laboratories, Inc,
Illinois).
A graphite or copper electrode acts as a tool that invades the 
piece of base metal and erodes a negative form in the shape of 
the  electrode.  The  process  is  accomplished  by  lightning  like 
sparks generated between the electrode and the restoration. The 
sparks  melt  the  alloy  by  heating  it  to  between  3000°C  and 
5000°C.  These  sparks  remove  small  amounts  of  the  metal 
substrate within microseconds. The entire process takes place 
in a dielectric liquid bath that prevents the alloy from burning. 
Stress characteristics can be eliminated through the application 
of  spark  erosion  before  or  after  the  ceramic  or  acrylic  resin 
surface is added. The spark erosion method can be applied to 
any type of conductible metal/ alloy such as gold, base metal 
and titanium. This method of erosion has been named as SAE
Secotec.  www.indiandentalacademy.com
CELAY System
The Celay System (Mikrona AG, Spreintenbach, Switzerland) 
became  first  commercially  available  in  1992.  It  is  a  high 
precision,  manually  operated  copy  milling  machine  and  the 
fabrication principle is the same as for 'Key' duplication. This 
system  was  originally.  designed  and  intended  for  use  in  the 
dental  laboratory;  however.,  it  may  also  be  used  at  the 
chairside.
Method: 
       An  impression  (silicone)  of  the  prepared  tooth  is  made 
and poured in die stone.
       A  prototype  resin  coping  of  the  restoration  (prototype) 
called 'pro-inlay' (a provisional inlay) is fabricated on the die 
using  a  blue  light-cured  resin  (Celay-Tech,  Mikrona 
Technologies, AG, Switzerland).
www.indiandentalacademy.com
      The cured resin prototype is removed from the die and 
fixed on the left side of the relay unit using a special retaining 
device (rod shaped).
       A  prefabricated  ceramic  blank  (eg-aluminous  core 
ceramic'In- Ceram') is fixed in the carving chamber on the right 
side of the relay unit.
      The reference disk (tracing tool) mechanically traces or 
scans the surface of the prototype (pro-inlay).
www.indiandentalacademy.com
        Duplicating the movements of the reference disk, the 
rough milling disk (a coarse diamond instrument with a grit 
size  of  126  µm)  and  a  high  speed  turbine  driven  by  air 
pressure,  machines  the  rough  contour  of  the  ceramic 
restoration  by  synchronized  grinding  over  8-axes  for 
effective bulk reduction. For milling a coping, the lumen of 
the coping is scanned and milled with coarse ball and round 
tipped diamonds. Both sides of the relay unit are connected 
by  a  geometric  transfer  mechanism  to  link  the  three-
dimensional  movement  of  the  tracing  device  with  the 
milling  device.  During  the  milling  process,  the  milling 
chamber is protected with a clear cover and a cooling liquid 
(Celcool, Mikrona AG) is sprayed on the blank and on the 
instrument. 
www.indiandentalacademy.com
       Since  the  rough  milling  disk  is  slightly  smaller  than  the 
scanning disk, it produces a slightly oversized restoration. The final 
contour  of  the  restoration  is  developed  with  64µm  grit  finishing 
diamond instruments.
       To  ensure  a  complete  and  accurate  tracing,  the  pattern  is 
coated with contact or indicating powder (Celtouch, Mikrona AG). 
This powder is removed on contact with the tracing instruments so 
that  areas  already  scanned  can  be  differentiated  from  un  scanned 
areas.
      The external surfaces are finished with -disks and the internal 
surfaces with round-tipped and sharp/ fine-tipped diamond stones.
       Final  fit  of  the  machined  inlay/  coping  is  examined,  and 
internal discrepancies marked and reworked with repeated scanning
      The internal surface is either acid etched or air-abraded before 
silanization and cementation. www.indiandentalacademy.com
By combining the Celay system, with elements of In-Ceram 
technology,  copy  milled  glass-infiltrated  aluminous  core 
restorations can be fabricated. In-Ceram or In-Ceram Spinell 
materials are machined by Celay and then infiltrated with a 
sodium-lanthanum  glass  in  a  manner  similar  to  that  of 
conventional In-Ceram restorations, and finally veneered with 
Vitadur  Alpha  porcelain.  The  fabrication  of  copy-milled  In-
Ceram crown substructures with the Celay system combines 
the  positive  mechanical  properties  of  glass-infiltrated 
aluminous core materials with the advantages of industrially 
prefabricated ceramics. 
www.indiandentalacademy.com
Advantages over conventional In-Ceram technology:
       The  processing  time  is  considerably  shorter  because 
die duplication and 10 hour sintering are not necessary.
      Glass infiltration can be performed in a conventional 
ceramic  furnace  in  40  minutes,  because  of  the  higher 
capillary  effect  of  the  industrially  sintered  alumina  blank 
(homogenous structure, even particle distribution).
         The industrially prefabricated material also has a 
higher  flexural  strength  than  the  conventional  In-Ceram 
material. 
www.indiandentalacademy.com
PROCERA System : 
The  Procera  System  (Nobel  Biocare,  Gioteborg,  Sweden) 
embraces  the  concept  of  CAD/CAM  to  fabricate  dental 
restorations. It was developed by Andersson .M & Oden .A in 
1993,  through  a  co-operative  effort  between  Nobel  Biocare 
AB  (Sweden)  and  Sandvik  Hard  Materials  AB  (Stockholm, 
Sweden).
It consists  of  a  computer  controlled  design  station  in  the 
dental  laboratory  that  is  joined  through  a    modern 
communication  link  to  Procera  Sandvik  AB  in  Stockholm, 
Sweden,  where  the  coping  is  manufactured  with  advanced 
powder technology and CAD/CAM technique. 
www.indiandentalacademy.com
Procedure requires 3 steps for fabrication:
      Scanning : At the design station, a computer controlled 
optical scanning  device maps the surface of the master die 
and is sent via modem to the Procera production facility.
       Machining : At the production facility, an enlarged 
die is fabricated that compensates for the 15-20% sintering 
shrinkage of the alumina core material. High-purity alumina 
powder  is  pressed  onto  the  die  under  very  high  pressure, 
milled  to  required  shape,  and  fired  at  a  high  temperature 
(1550°C) to form a Procera coping. 
www.indiandentalacademy.com
            Veneering : The sintered alumina coping is returned 
to  the  dental  laboratory  for  veneering  thermally  compatible 
low  fusing  porcelains  (All  Ceram  veneering  porcelain)  to 
create  the  appropriate  anatomic  form  and  esthetic  qualities. 
All Ceram veneering porcelain (Ducera) has a coefficient of 
thermal expansion adjusted to match that of aluminium oxide 
(7x10-6
 /°C). It also has the fluorescent properties similar to 
that of natural teeth and the veneering procedures require no 
special  considerations.  The  reported  flexural  strength  of  the 
Procera All Ceram crown (687 Mpa) is relatively the highest 
amongst  all  the  all-ceramic  restorations  used  in  dentistry 
(attributed to the 99.9% alumina content). 
www.indiandentalacademy.com
This  system  can  be  used  to  fabricate  two  types  of  dental 
restorations :
       A  Porcelain-fused-to-metal  restoration  made  of 
titanium substructure with a compatible veneering porcelain 
using  a  combination  of  machine  duplication  and  spark-
erosion (The Procera Method, Noble Biocare).
          An  all-ceramic  restoration  using  a  densely  sintered 
high-purity  (99.9%)  alumina  coping  combined  with  a 
compatible veneering porcelain. 
www.indiandentalacademy.com
Porcelain-fused-to-metal restoration :  The  Procera 
System was initially used to fabricate veneered crowns and 
fixed partial dentures by combining a titanium substructure 
with compatible low-fusing veneering porcelain such as Ti-
Ceram.
 
Components used: Rods of pre-fabricated cold-worked bars 
or solid cylindrical blanks of Commercially pure Titanium 
(CpTi) and a low fusing veneering porcelain Ti-Ceram fired 
at 750°C. 
www.indiandentalacademy.com
Procedure: The working time required to fabricate the titanium 
coping is about 35 minutes. It requires two procedures :
•Mechanical  milling  process  -external  surface  of  titanium 
coping  is  milled  from  the  cylindrical  titanium  blank  in  5-6 
minutes.
•Spark  erosion  process  -The  internal  configuration  of  the 
titanium  coping  is  developed  in  about  8  to  10  minutes.  The 
internal surface of the titanium coping is air abraded (120µm 
particles  of  Al2
O3
)  to  remove  the  surface  oxide  layer 
accumulated  during  the  spark  erosion  process.  The  external 
surface is also air abraded and then veneered with a low-fusing 
veneering porcelain compatible with titanium such as Ti-Ceram 
in the conventional manner and fired at 750°C. 
•This  method  can  also  be  used  for  milling  implant  system 
restorations. 
www.indiandentalacademy.com
Advantages (mainly related to use of titanium) :
•Biocompatibility of titanium - suitable for use mainly in 
metal sensitive patients.
•Low-cost of titanium relative to noble metal alternatives.
•Standardization  of  procedure  for  fabricating  titanium 
coping with consistent results.
•Accuracy of fit
•Ti-Ceram is less abrasive than conventional porcelain. 
www.indiandentalacademy.com
All-ceramic restoration: The Procera system has also been used to 
produce an all-ceramic crown known as Procera All Ceram Crown 
which  is  composed  of  a  densely  sintered,  high-purity  (99.9%) 
alumina coping combined with a compatible veneering low fusing 
porcelain such as All Ceram Porcelain (Ducera).
 
Other copying systems
      Ceramatic II Svstem (Askim Corp. Sweden): In this system 
scanning  is  performed  automatically,  and  this  applies  to  the  DCP 
system as well.
 The DFE -system and Erosonic (ESPE Dental Medizin
Corp., Seefeld Germany) both make use of ultrasonic erosion for 
the machining of ceramic. For this purpose sonotrodes must be made 
in advance as negative forms of the inner and outer contours of the 
restoration.  www.indiandentalacademy.com
Advantage of milling methods : 
•Reducing the labour time needed.
•Single  appointment  restorations  (in  a  period  of  3  to  13 
minutes).
•Can be used for both direct and indirect fabrications.
 
Advantages of Celay system over the Cerec system :
•Celay  could  recreate  all  surfaces  of  a  restoration  whereas 
Cerec I could not make the occlusal surface.
•Celay  has  the  potential  to  fabricate  crowns  and  short-span 
bridges with In-Ceram system (Vita, Germany). 
www.indiandentalacademy.com
PRESSABLE
CERAMICS 
www.indiandentalacademy.com
PRESSABLE CERAMICS
Shrink-free Ceramics  Leucite-reinforced
Glass-ceramics
Cerestore           IPSEmpress                      
                                                                                               
Al-Ceram          Optec
         Pressable Ceramic (OPC)
www.indiandentalacademy.com
SHRINK FREE ALUMINA CERAMICS
 The shortcomings of the traditional ceramic material and techniques; 
like failures related to poor functional strength and firing shrinkage 
limited the use of "all-ceramic" jacket crowns. The development of 
non-shrinking ceramics such as the Cere.store systen'l was directed 
towards providing an alternate treatment. 
Brief History :
1983  - Sozio & Riley  described  the  use  of  shrink-free  ceramic 
coping.
1987 - Hullah & Williams described the formulation of shrink free 
ceramics
Shrink-free ceramics were marketed as two generation of materials 
under the commercial names :
      Cerestore (Johnson & Johnson. NJ, USA)
      Al-Ceram (Innotek Dental Corp, USA) 
www.indiandentalacademy.com
CERESTORE Non-Shrink Alumina Ceramic (Coors
Biomedical Co., Lakewood, Colo.) is a shrink-free ceramic 
with crystallized magnesium alumina spinel fabricated by the 
injection molded technique to form a dispersion strengthened 
core. 
Composition Of Shrink Free Ceramic
Unfired Composition Fired Composition (Core)
A12
O3
(small particles) 43%
A12
O3
(large particle) 17%
MgO 9%
Glass frit 13%
Kaolin Clay 4%
Silicon resin (Binder) 12%
Calcium Stearate 1%
Sterylamide 1%
A12
O3
(Corundum) 60%
MgA12
O4
(Spinel) 22%
BaMg2
A13
(Barium
Osomilite) 10%
www.indiandentalacademy.com
Chemistry:  The  shrink-free  ceramic  material  essentially 
consists of Al2
O3
 and MgO mixed with a Barium glass frits. 
On  firing  a  combination  of  chemical  and  crystalline 
transformation produces Magnesium aluminate spinel, which 
occupies  a  greater  volume  than  the  original  mixed  oxides 
(raw ingredients), and thus compensates for the conventional 
firing shrinkage of ceramic.
      Chemical transformation: During firing from 160 °C to 
800°C, the silicone resin (binder) converts from SiO to SiO2 
which  in  turn  combines  with  alumina  to  form 
aluminosilicate.
            Crystalline  transformation:  The  primary  inorganic 
reaction  involves  MgO,  Al2
O3
  and  the  glass  frit.  The 
aluminosilicate  formed  reacts  with  the  incorporated 
magnesia to form spinel, which is also one of the strongest 
ceramic oxides. 
www.indiandentalacademy.com
Alumina (AI2
O3
) + Magnesia (MgO)  Magnesium
Aluminate
Spinel (MgAl2
O4
)
         Al2
O3
  +   MgO                  MgAI2
O4
Density (g/cm3
)         3.9   +    3.58                      3.60
Mol wt(g)         101.96  +  40.31                   142.27
Volume cm3
         25.72  +  11.26 (36.98)        39.52  
(Net Volume Increase - 2.54 cm3
) 
Net % volume expansion - 6.87% 
Net % linear expansion - 2.35% 
www.indiandentalacademy.com
During firing from 900 to 1300°C, the glass frit takes MgO & 
Al2
O3
  into  solution  and  subsequently  precipitates  the  spinel 
phase which in conjunction with the coarser alumina particles 
acts as strengthener in the fired core. The final microstructure 
of  the  core  material  consists  of  a  multiphased  mixed  oxide 
system of aluminates. Flexural strength is similar to that of the 
traditional alumina core. 
Fabrication: By Transfer Molding process which is identical to 
injection moulding of acrylic resin denture bases. Copings are 
formed  by  transfer-molding  the  ceramic  directly  onto  non-
shrinking heat stable epoxy master dies
      The wax pattern on the epoxy die is sprued, invested and 
burned out. www.indiandentalacademy.com
       The  flask  is  placed  on  a  heating  element  (oven)  and 
removed after it reaches the molding temperature.
      Shrink-free ceramic material supplied as dense pellets is 
heated until the silicone resin binder is flowable (160°C) and 
then transferred by pressure (under a plunger) directly on the 
master  die.  The  silicone  resin  binder  is  thermoplastic  and 
thermosetting, hence after injection into the mold and around 
the master die, it automatically sets.
      The flask is quenched and the ceramic coping is fired in a 
micro-processor controlled furnace (1300°C) to achieve zero-
shrinkage.
      The sintered coping is replaced on the die and veneered 
with conventional aluminous porcelain. 
www.indiandentalacademy.com
Physical  properties  of  First  Generation  Cerestore  Core 
Material :
Compressive Strength : 10.48 MN/m2
; 
Flexural Strength : 120 MN/m2
Modulus of elasticity : 1.23 x 105MN/m2
Density : 2.9 gm/cm3
Linear coefficient thermal expansion  : 5.6xl0-6
/°C
Poison's ratio  : 0.23 
www.indiandentalacademy.com
Advantages : 
       Innovative  feature  is  the  dimensional  stability  of  the  core 
material  in  the  molded  (unfired)  and  fired  states.  Hence,  failures 
related to firing shrinkage are eliminated.
      Better accuracy of fit and marginal integrity. 
      Esthetics enhanced due to depth of colour due to the lack of 
metal coping.
       Biocompatible  (inert)  and  resistant  to  plaque  formation 
(glazed surface).
       Radiodensity  similar to that  of  enamel  (presence  of Barium 
osumilite phase in the fired core allows radiographic examination of 
marginal adaptation and visualization under the crown).
      Low thermal conductivity; thus reduced thermal sensitivity.
      Low coefficient of thermal expansion and high modulus of 
elasticity results in protection of cement seal. 
www.indiandentalacademy.com
Disadvantages :
      Complexity of the fabrication process.
       Need  for  specialized  laboratory  equipment  (Transfer 
molding process) and high cost.
      Inadequate flexural strength (89MPa) compared to the 
metal-ceramic restorations.
       Poor  abrasion  resistance,  hence  not  recommended  in 
patients with heavy bruxism or inadequate clearance.
                  Limitations  and  high  clinical  failure  rates  of  the 
Cerestore  led  to  the  withdrawal  of  this  product  from  the 
market.  The  material  underwent  further  improvement  and 
developed  into  a  product  with  a  70  to  90%  higher  flexural 
strength. This was marketed under the commercial name Al 
Ceram (Innotek Dental, Lakewood, Colo.). www.indiandentalacademy.com
Advantage second generation Cerestore Core Materials :
      Recrystallization of residual glass - Flexural strength > 
22.5 MN/m2
 (32,000psi)
       High  polycrystalline  content  -  static  fatigue  potential 
comparable to high glass content systems.
      Same relative thermal conductivity of core and veneer 
porcelain  -  Interfacial  stress  comparable  to  ceramometal 
systems.
      Low coefficient of thermal expansion - Thermal shock 
resistance, Interfacial stress.
         High modulus of elasticity - Low stress on cement. 
www.indiandentalacademy.com
LEUCITE REINFORCED PORCELAINS ( Transfer-molded )
Leucite  reinforced  porcelains  can  be  broadly  divided  into  two 
groups:
      Pressed –
•        IPS Empress & IPS Empress 2 (Ivoclar)
•        Optec Pressable Ceramic / OPC (Jeneric/Pentron)
      Non-Pressed 
•        Optec HSP & Optec VP (Jeneric / Pentron)
•        Fortress (Mirage)
 
www.indiandentalacademy.com
Pressed Ceramic / Injection Molded Glass Ceramic are leucite-
reinforced,  vacuum-pressed  glass-ceramic,  also  referred  to  as 
Heat transfer-molded glass ceramics.
Eg: IPS Empress (Ivoclar Williams); Optec (Jeneric Pentron)
IPS EMPRESS (Ivoclar Williams)  is  a  pre-cerammed,  pre-
coloured leucite reinforced glass-ceramic formed from the leucite 
system  (SiO2
-AI2
O3
-K2
0)  by  controlled  surface  crystallization, 
subsequent process stages and heat treatment. This technique was 
first  described  by  Wohlwend & Scharer;  and  marketed  by 
Ivoclar (Vivadent Schaan, Liechtensein). The glass contains latent 
nucleating agents and controlled crystallization is used to produce 
leucite crystals measuring a few microns in the glass matrix. The 
partially  pre-cerammed  product  of  leucite-reinforced  ceramic 
powder  available  in  different  shades  is  pressed  into  ingots  and 
sintered.  The  ingots  are  heated  in  the  pressing  furnace  until 
molten and then injected into the investment mold. www.indiandentalacademy.com
 
Composition : (wt %)
      SiO2
 -63% 
      Al2
O3
 -17.7%
      K2
O -11.2%  
      Na2
O -4.6%
      B2
O3
 -0.6%
      CeO2
 -0.4% 
      CaO -1.6% 
      BaO -1.6% 
      TiO2
 -0.2% 
www.indiandentalacademy.com
It  is  a  type  of  feldspathic  porcelain  containing  a  higher 
concentration  of  leucite  crystals,  which  increases  the 
resistance to crack propagation.
A special furnace Empress EP500 designed for this system is 
capable of high temperatures. The pressing furnace contains 
an  enlarged    heat  dome,  a  pneumatic  pressure  system,  a 
reducing valve, and a monometer to control the pressure. 
Leucite content
Conventional
Porcelain
Dicor Glass-
ceramic
IPS Empress
Pressable
ceramic
30-35% 50-60% 80-85%
www.indiandentalacademy.com
Brief history of the evolution of pressable ceramics :
1936 - A patented heat-press technique was first described for 
the construction of ceramic complete dentures.
1969  -  Droge  described  a  ceramic  press  technique  based  on 
the  hot-press  resin  technique.  McPhee  improved  Droge's 
technique  to  produce  complete  coverage  metal-ceramic 
restorations that accurately duplicated occlusal surfaces.
1983  -  To  overcome  the  disadvantage  of  additional  ceramic 
shrinkage during ceramming of castable glass-ceramic, a heat-
pressed technique (Empress) was researched and developed by 
Arnold Wohlwend  of  the  Dept.  of  Fixed  and  Removable 
Prosthodontics  and  Dental  Materials  at  the  University  of 
Zurich, Zurich, Switzerland. Since 1986, the development has 
proceeded  in  conjunction  with  a  dental  company  Ivoclar 
(Schaan Liechtensein). www.indiandentalacademy.com
Fabrication:
       Lost-wax  technique:  The  wax  pattern  of  the  proposed 
restoration  is  invested  in  a  special  flask  (specially  designed 
cylindrical crucible former) using IPS Empress special investment 
material (phosphate bonded).
              Pressing Procedure : Following burnout (at 850°C) the 
crucible former is placed into the base of a specialized automated 
furnace  (EP  500  Press  furnace)  that  has  an  alumina  plunger.  The 
ceramic  ingot  of  the  selected  dentinal  shade  is  placed  under  the 
plunger and the entire assembly is preheated to 1,1000
C (at which 
temperature the ceramic plasticizes). When the temperature reaches 
11500
C  after  a  20  minute  holding  time  the  plunger  presses  the 
ceramic under vacuum (0.3-0.4 MPa) into the mold, in which it is 
held  under  pneumatic  pressure  (for  a  45-minute  period)  to  allow 
complete and accurate fill of the mold. 
www.indiandentalacademy.com
      Veneering: Shade reproduction may be carried out either by 
the :
•  Staining technique  :  In  the  staining  technique,  the  selected 
dentinal  stain  is  applied  and  thinned  to  the  desired  consistency 
with glazing stains before firing and repeated until the necessary 
shade  is  achieved  Individual  characterization  can  be  achieved 
with final stain firing.
• Layering technique  :  In  the  layering  technique,  the  dentinal 
core is cut back and wash fired. The latter provides an optimum 
bond between the dentinal core and layering material. Appropriate 
incisal and neutral materials are mixed with IPS Empress build-up 
liquid  and  then  applied  in  thin  layers  before  drying.  This  is 
repeated until the correct shape and shades are achieved. The final 
restoration  is  glazed  and  fired  before  polishing  is  carried  out. 
Internal crown surfaces can be roughened by etching;  silaned and 
bonded to tooth using resin-based luting agents. www.indiandentalacademy.com
Properties : Reported flexural strengths are in the range of 160 
to I80MPa. The increase in strength has been attributed to :
      The pressing step which increases the density of leucite 
crystals.
       Subsequent  heat  treatments  which  initiate  growth  of 
additional leucite crystals.
 
Uses : 
      Laminate veneers and full crowns for anterior teeth
      Inlays, Onlays and partial coverage crowns
      Complete crowns on posterior teeth.
www.indiandentalacademy.com
Advantages :
      Lack of metal or an opaque ceramic core
      Moderate flexural strength (120-180MPa range)
      Excellent fit (low-shrinkage ceramic)
      Improved esthetics (translucent, fluorescence)
      Etchable
      Less susceptible to fatigue and stress failure
      Less abrasive to opposing tooth
      Biocompatible material
      Unlike previous glass-ceramic systems IPS Empress does not 
require ceramming to initiate the crystalline phase of leucite crystals 
(They are formed throughout the various temperature cycles). www.indiandentalacademy.com
Disadvantages :
      Potential to fracture in posterior areas.
      Need for special laboratory equipment such as pressing 
oven and die material (expensive)
       Inability  to  cover  the  colour  of  a  darkened  tooth 
preparation  or  post  and  core,  since  the  crowns  are  relatively 
translucent.
      Difficulty in removing the crown and cementing medium 
during replacement.
      Compressive strength and flexural strength lesser than 
metal-ceramic or glass-infiltrated (In-Ceram) crowns. 
www.indiandentalacademy.com
OPTEC (Optimal Pressable Ceramic/OPC):  Optec  stands 
for Optimal Technology. It is a type of feldspathic porcelain 
with  increased  Ieucite  content  designed  to  press  restorations 
using  leucite-reinforced  ceramic  in  a  press  furnace  that 
doubles as a conventional porcelain furnace. The manufacturer 
claims  that  the  crystalline  leucite  particle  size  has  been 
reduced  with  a  more  homogenous  distribution  without 
reducing  the  crystalline  content  and  this  leucite  content 
increase has resulted in an overall increase in flexural strength 
of  OPC  (over  23,000  psi  and  compressive  strength  upto 
187,320 psi). However, because of its high leucite content, it 
can be expected that its abrasion against natural teeth will be 
higher  than  that  of  conventional  feldspathic  porcelain. 
Fabrication is similar to IPS Empress 
www.indiandentalacademy.com
Uses : 
      Full contour restorations (inlays, veneers full crowns)
            Alternately  used  as  a  core  material,  veneered  with 
conventional feldspathic porcelain (similar to Optec HSP). 
www.indiandentalacademy.com
Leucite
content
Convention
al
Porcelain
Dicor Glass-
ceramic
IPS Empress
Pressable
ceramic
30-35% 50-60% 80-85%
www.indiandentalacademy.com
 IPS EMPRESS 2 (Ivoclar) -Second generation of pressable 
materials  for  all-ceramic  bridges.  It  is  made  from  a  lithium 
disilicate  framework  with  an  apatite  layered  ceramic.  The 
glass-ceramic  ingots  are  made  from  lithium  silicate  glass 
crystals with crystal content of more than 60 volume%. The 
apatite crystals incorporated are responsible for the improved 
optical  properties  (translucency,  light  scattering)  which 
contribute  to  the  unique  chameleon  effect  of  leucite  glass-
ceramic materials.
 IPS Empress 2 is used with special investment material, an 
EP500 press furnace and a fully automatic high-tech furnace. 
Other applications : Cosmopost and IPS Empress cosmoingot 
-  core  build-up  system  with  the  pre-fabricated  zircon  oxide 
root canal posts and the optimally coordinated ingot. 
www.indiandentalacademy.com
IPS
Empress
IPS Empress 2 (frame work)
Flexural
strength
Upto 150
MPa
> 400 Mpa
www.indiandentalacademy.com
Advantages claimed by manufacturer :
      High biocompatibility
      Excellent fracture resistance
      High radiopacity
     Outstanding translucency. 
www.indiandentalacademy.com
INFILTRATED
CERAMICS 
www.indiandentalacademy.com
In-Ceram Alumina
In – Ceram In – Ceram Spinell
In – Ceram Zirconia 
www.indiandentalacademy.com
In-Ceram:  Strengthening  of  porcelain  by  incorporation  of 
crystalline material like alumina particles is limited due to the 
resultant  porosity  in  the  final  product.  An  improved  high 
aluminous  porcelain  system  termed  In-Ceram  (Vita 
Zahnfabrik,  Bad  Sackingen,  Germany)  was  developed  by  a 
French scientist and dentist Dr. Michael Sadoun (1980) and  
first introduced in France in  1988.
 The  In-Ceram  Crown  (Vident)  process  involves  three  basic 
steps :
      Making an intensely dense core by slip casting of fine 
grained alumina particles and  sintering.
      The sintered alumina core is infiltrated with molten glass 
to yield a ceramic coping of high density and strength.
                  The  infiltrated  core  is  veneered  with  feldspathic 
porcelain and fired. 
www.indiandentalacademy.com
The densely packed alumina crystals limit crack propagation, 
while  the  glass  infiltration  eliminated  residual  porosity  and 
improves flexural strength upto 2-5 times that of glass-ceramic 
and feldspathic porcelain.
 
Composition:  In-Ceram  ceramic  consists  of  two  three-
dimensional interpenetrating phases :
      Alumina/ Al2
03
 crystalline (Volume fraction) 99.56 wt% 
of with a particle size distribution averaging 3.8µm
            An  Infiltration  glass  lanthanum  aluminosilicate  with 
small  amounts  of  sodium  and  calcium  (Lanthanum-decreases 
the viscosity of the glass to assist infiltration and increases its 
refractive index to improve translucency). www.indiandentalacademy.com
Fabrication stages : 
      Slip casting
      Glass infiltration
      Veneering of core
Slip casting :
A  slip  is  a  suspension  of  fine  insoluble  particles  in  a  liquid.  Slip
casting is the art or science of preparing stable suspensions and
forming ware by building up a solid layer on the surface of a porous
mold that sucks up the liquid phase by means of capillary forces 
(Kingery,  1958).  Slip  casting  is  an  ancient  process  used  to  make 
common objects such as beer steins, where a much more watery slip 
(a dispersion of alumina particles in water) is poured into a porous 
split mold (usually Plaster Of Paris). Slip casting was also used for 
the fabrication of ceramic tableware. Sadoun (1989) refined the slip 
casting technique to produce In-Ceram. www.indiandentalacademy.com
Slip casting for In-Ceram restorations : 
      A special ultrasonic device (In-Ceram Vitasonic II) is used 
for  the  preparation  of  the  slip.  Liquid  (water),  fine  grained  (1-
5um) alumina powder and an additive are combined and stirred 
under ultrasonic agitation until a homogenous mass with so-called 
rheopex  properties  (when  a  liquid  mass  stiffens  under  sudden 
pressure) is achieved.
       The  slip  is  painted  on  a  special  plaster  model  made  of 
porous  refractory  matrix  (In-Ceram  Special  Plaster,  Vita 
Zahnfabrik) needed to compensate for the sintering shrinkage of 
the  slip casting (The slip is applied with an acrylic brush in quick 
strokes, so that previously applied masses do not dry).
      As the liquid from the slip cast is absorbed into the die by 
capillary action, additional layers are added (0.5 to 0.7mm thick) 
causing the porcelain particles to aggregate and condense tightly 
forming a dense layer.
www.indiandentalacademy.com
       The  mass  can  be  cut  with  a  scalpel,  so  that  the 
framework is shaped roughly before the first firing.
       The  alumina  layer  is  allowed  to  dry  (30  mins),  and  a 
stabilizer is applied to the frame-work, followed by sintering 
(10 hour firing cycle of upto 1120 0
C) in a special furnace (In-
Ceramat,  Vita    Zahnfabrik)  to  produce  an  organized 
microstructure  with  0.3%  sintering  shrinkage.  The  sintered 
alumina  particles  in  the  coping  are  partially  fused  at  their 
grain  boundaries,  hence  the  coping  is  fragile  and  porous  in 
nature.
      The plaster shrinks during sintering, so that the sintered 
frameworks are easily removed from the die. 
www.indiandentalacademy.com
Glass – infiltration :
A specially formulated low-fusing glass-infiltrate (lanthanum glass) 
powder  of  appropriate  shade  and  matching  thermal  expansion  is 
mixed with distilled water.
The frameworks are set on a platinum-gold foil (Pt-95; Au-5) and 
the  glass-water  slurry  is  amply  applied  (to  avoid  air  impactions) 
over the external surface of the porous substructure. 
The infiltration firing is performed for 4 to 6 hours at 11000
 C (in 
the  In-Ceramat  furnace),  depending  on  the  size  of  the  restoration 
(number of units). The glass infiltrate melts at 800°C and at 1100°C 
the molten glass infiltrates / diffuses through the interstitial spaces 
of the porus alumina core by capillary action and encapsulates the 
fine grain alumina particles. This infiltration firing with glass not 
only  confers  the  selected  shade  to  the  core,  it  also  increases  the 
strength  of  the  core  to  about  20  times  its  original  strength  and 
flexural strength of upto 446 Mpa have been reported. www.indiandentalacademy.com
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics
Castable Ceramics: A Guide to Dicor Glass-Ceramics

More Related Content

What's hot

maxillofacial prosthesis materials
 maxillofacial  prosthesis materials maxillofacial  prosthesis materials
maxillofacial prosthesis materialsRohit Patil
 
5.biologic considerations in fixed restorations 2013
5.biologic considerations in fixed restorations 20135.biologic considerations in fixed restorations 2013
5.biologic considerations in fixed restorations 2013Maged El-Gendy
 
class II cast metal restorations
class II cast metal restorationsclass II cast metal restorations
class II cast metal restorationsdr maliha
 
Post endodontic restoration/ orthodontic continuing education
Post  endodontic restoration/ orthodontic continuing educationPost  endodontic restoration/ orthodontic continuing education
Post endodontic restoration/ orthodontic continuing educationIndian dental academy
 
Abutment selection in FPD
Abutment selection in FPDAbutment selection in FPD
Abutment selection in FPDDr. Anshul Sahu
 
Castable ceramics/ dentistry training
Castable ceramics/ dentistry trainingCastable ceramics/ dentistry training
Castable ceramics/ dentistry trainingIndian dental academy
 
Evolution of all ceramics&recent advances (2)/ dental courses
Evolution of all ceramics&recent advances (2)/ dental coursesEvolution of all ceramics&recent advances (2)/ dental courses
Evolution of all ceramics&recent advances (2)/ dental coursesIndian dental academy
 
Recent advances in composite dentistry
Recent advances in composite dentistryRecent advances in composite dentistry
Recent advances in composite dentistryYogha Padhma Asokan
 
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental materialDENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental materialDr-Faisal Al-Qahtani
 
3D impressions in prosthodontics
3D impressions in prosthodontics3D impressions in prosthodontics
3D impressions in prosthodonticsSiripurapu Sravani
 
Luting agents used in prosthodontics
Luting agents used in prosthodonticsLuting agents used in prosthodontics
Luting agents used in prosthodonticsaruncs92
 
Ceramics for Dental Restorations , Ceramic-Metal Restorations ,All-Ceramic Re...
Ceramics for Dental Restorations , Ceramic-Metal Restorations ,All-CeramicRe...Ceramics for Dental Restorations , Ceramic-Metal Restorations ,All-CeramicRe...
Ceramics for Dental Restorations , Ceramic-Metal Restorations ,All-Ceramic Re...Dr-Faisal Al-Qahtani
 
TEMPORIZATION IN PROSTHODONTICS
TEMPORIZATION IN PROSTHODONTICSTEMPORIZATION IN PROSTHODONTICS
TEMPORIZATION IN PROSTHODONTICSDrPrakashNidawani
 
All ceramic restorations
All ceramic restorationsAll ceramic restorations
All ceramic restorationsDR PAAVANA
 
Pontics Design in fixed prosthodontics
Pontics Design in fixed prosthodonticsPontics Design in fixed prosthodontics
Pontics Design in fixed prosthodonticsIndian dental academy
 

What's hot (20)

maxillofacial prosthesis materials
 maxillofacial  prosthesis materials maxillofacial  prosthesis materials
maxillofacial prosthesis materials
 
5.biologic considerations in fixed restorations 2013
5.biologic considerations in fixed restorations 20135.biologic considerations in fixed restorations 2013
5.biologic considerations in fixed restorations 2013
 
Ceramic2
Ceramic2Ceramic2
Ceramic2
 
class II cast metal restorations
class II cast metal restorationsclass II cast metal restorations
class II cast metal restorations
 
Dental ceramics
Dental ceramicsDental ceramics
Dental ceramics
 
All ceramic-restoration
All ceramic-restorationAll ceramic-restoration
All ceramic-restoration
 
Post endodontic restoration/ orthodontic continuing education
Post  endodontic restoration/ orthodontic continuing educationPost  endodontic restoration/ orthodontic continuing education
Post endodontic restoration/ orthodontic continuing education
 
Abutment selection in FPD
Abutment selection in FPDAbutment selection in FPD
Abutment selection in FPD
 
Castable ceramics/ dentistry training
Castable ceramics/ dentistry trainingCastable ceramics/ dentistry training
Castable ceramics/ dentistry training
 
Evolution of all ceramics&recent advances (2)/ dental courses
Evolution of all ceramics&recent advances (2)/ dental coursesEvolution of all ceramics&recent advances (2)/ dental courses
Evolution of all ceramics&recent advances (2)/ dental courses
 
Conectors in fpd
Conectors in fpdConectors in fpd
Conectors in fpd
 
Recent advances in composite dentistry
Recent advances in composite dentistryRecent advances in composite dentistry
Recent advances in composite dentistry
 
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental materialDENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
 
3D impressions in prosthodontics
3D impressions in prosthodontics3D impressions in prosthodontics
3D impressions in prosthodontics
 
Luting agents used in prosthodontics
Luting agents used in prosthodonticsLuting agents used in prosthodontics
Luting agents used in prosthodontics
 
Ceramics for Dental Restorations , Ceramic-Metal Restorations ,All-Ceramic Re...
Ceramics for Dental Restorations , Ceramic-Metal Restorations ,All-CeramicRe...Ceramics for Dental Restorations , Ceramic-Metal Restorations ,All-CeramicRe...
Ceramics for Dental Restorations , Ceramic-Metal Restorations ,All-Ceramic Re...
 
TEMPORIZATION IN PROSTHODONTICS
TEMPORIZATION IN PROSTHODONTICSTEMPORIZATION IN PROSTHODONTICS
TEMPORIZATION IN PROSTHODONTICS
 
All ceramic restorations
All ceramic restorationsAll ceramic restorations
All ceramic restorations
 
Dental Ceramics
Dental Ceramics Dental Ceramics
Dental Ceramics
 
Pontics Design in fixed prosthodontics
Pontics Design in fixed prosthodonticsPontics Design in fixed prosthodontics
Pontics Design in fixed prosthodontics
 

Similar to Castable Ceramics: A Guide to Dicor Glass-Ceramics

Dicor and cerestore /certified fixed orthodontic courses by Indian dental ac...
Dicor and cerestore  /certified fixed orthodontic courses by Indian dental ac...Dicor and cerestore  /certified fixed orthodontic courses by Indian dental ac...
Dicor and cerestore /certified fixed orthodontic courses by Indian dental ac...Indian dental academy
 
Evolution of Dental ceramic restorations /certified fixed orthodontic course...
 Evolution of Dental ceramic restorations /certified fixed orthodontic course... Evolution of Dental ceramic restorations /certified fixed orthodontic course...
Evolution of Dental ceramic restorations /certified fixed orthodontic course...Indian dental academy
 
All ceramics /fixed orthodontic training
All ceramics /fixed orthodontic trainingAll ceramics /fixed orthodontic training
All ceramics /fixed orthodontic trainingIndian dental academy
 
Evolution of all ceramics&recent advances (2)
Evolution of all ceramics&recent advances (2)Evolution of all ceramics&recent advances (2)
Evolution of all ceramics&recent advances (2)Indian dental academy
 
Introduction to ceramics
Introduction to ceramics Introduction to ceramics
Introduction to ceramics mennakoriam
 
Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...Ajjay Kumar Gupta
 
Classification of porcelain / dental implant companies
Classification of porcelain / dental implant companiesClassification of porcelain / dental implant companies
Classification of porcelain / dental implant companiesIndian dental academy
 
dental ceramics silicate ceramics and oxidceramics/ oral surgery courses  
dental ceramics silicate ceramics and oxidceramics/ oral surgery courses  dental ceramics silicate ceramics and oxidceramics/ oral surgery courses  
dental ceramics silicate ceramics and oxidceramics/ oral surgery courses  Indian dental academy
 
All Ceramic Materials.pptx
All Ceramic Materials.pptxAll Ceramic Materials.pptx
All Ceramic Materials.pptxDentalYoutube
 
METAL FREE CERAMICS- AN UPDATE
METAL FREE CERAMICS- AN UPDATEMETAL FREE CERAMICS- AN UPDATE
METAL FREE CERAMICS- AN UPDATESHAHEEN VENGAT
 
Cement, Glass & Refractories
Cement, Glass & RefractoriesCement, Glass & Refractories
Cement, Glass & RefractoriesNandan Pomal
 
Copy of metal free ceramics/ dentistry work
Copy of metal free ceramics/ dentistry workCopy of metal free ceramics/ dentistry work
Copy of metal free ceramics/ dentistry workIndian dental academy
 
Glass ceramics dental materials
Glass ceramics dental materialsGlass ceramics dental materials
Glass ceramics dental materialsAlfredo Nevárez
 
Introduction to ceramics menna
Introduction to ceramics mennaIntroduction to ceramics menna
Introduction to ceramics mennamennakoriam
 
Classification of dental porcelain / dental courses
Classification of dental porcelain / dental coursesClassification of dental porcelain / dental courses
Classification of dental porcelain / dental coursesIndian dental academy
 
ALL CERAMIC RESTORATIONS-Dr MEENU MERRY C PAUL
ALL CERAMIC RESTORATIONS-Dr MEENU MERRY C PAULALL CERAMIC RESTORATIONS-Dr MEENU MERRY C PAUL
ALL CERAMIC RESTORATIONS-Dr MEENU MERRY C PAULMeenuMerryCPaul
 

Similar to Castable Ceramics: A Guide to Dicor Glass-Ceramics (20)

Dicor and cerestore /certified fixed orthodontic courses by Indian dental ac...
Dicor and cerestore  /certified fixed orthodontic courses by Indian dental ac...Dicor and cerestore  /certified fixed orthodontic courses by Indian dental ac...
Dicor and cerestore /certified fixed orthodontic courses by Indian dental ac...
 
Evolution of Dental ceramic restorations /certified fixed orthodontic course...
 Evolution of Dental ceramic restorations /certified fixed orthodontic course... Evolution of Dental ceramic restorations /certified fixed orthodontic course...
Evolution of Dental ceramic restorations /certified fixed orthodontic course...
 
All ceramics /fixed orthodontic training
All ceramics /fixed orthodontic trainingAll ceramics /fixed orthodontic training
All ceramics /fixed orthodontic training
 
Dental ceramics part II
Dental ceramics part IIDental ceramics part II
Dental ceramics part II
 
Evolution of all ceramics&recent advances (2)
Evolution of all ceramics&recent advances (2)Evolution of all ceramics&recent advances (2)
Evolution of all ceramics&recent advances (2)
 
Introduction to ceramics
Introduction to ceramics Introduction to ceramics
Introduction to ceramics
 
Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
Ceramics and Glass Technology (Silicate Glasses, Boric Oxide and Borate Glass...
 
Classification of porcelain / dental implant companies
Classification of porcelain / dental implant companiesClassification of porcelain / dental implant companies
Classification of porcelain / dental implant companies
 
dental ceramics silicate ceramics and oxidceramics/ oral surgery courses  
dental ceramics silicate ceramics and oxidceramics/ oral surgery courses  dental ceramics silicate ceramics and oxidceramics/ oral surgery courses  
dental ceramics silicate ceramics and oxidceramics/ oral surgery courses  
 
All Ceramic Materials.pptx
All Ceramic Materials.pptxAll Ceramic Materials.pptx
All Ceramic Materials.pptx
 
METAL FREE CERAMICS- AN UPDATE
METAL FREE CERAMICS- AN UPDATEMETAL FREE CERAMICS- AN UPDATE
METAL FREE CERAMICS- AN UPDATE
 
Cement, Glass & Refractories
Cement, Glass & RefractoriesCement, Glass & Refractories
Cement, Glass & Refractories
 
Copy of metal free ceramics/ dentistry work
Copy of metal free ceramics/ dentistry workCopy of metal free ceramics/ dentistry work
Copy of metal free ceramics/ dentistry work
 
Glass ceramics dental materials
Glass ceramics dental materialsGlass ceramics dental materials
Glass ceramics dental materials
 
Introduction to ceramics menna
Introduction to ceramics mennaIntroduction to ceramics menna
Introduction to ceramics menna
 
Classification of dental porcelain / dental courses
Classification of dental porcelain / dental coursesClassification of dental porcelain / dental courses
Classification of dental porcelain / dental courses
 
Glass Report
Glass ReportGlass Report
Glass Report
 
ALL CERAMIC RESTORATIONS-Dr MEENU MERRY C PAUL
ALL CERAMIC RESTORATIONS-Dr MEENU MERRY C PAULALL CERAMIC RESTORATIONS-Dr MEENU MERRY C PAUL
ALL CERAMIC RESTORATIONS-Dr MEENU MERRY C PAUL
 
Glass
GlassGlass
Glass
 
Ceramics for dental use
Ceramics for dental useCeramics for dental use
Ceramics for dental use
 

More from Indian dental academy

Indian Dentist - relocate to united kingdom
Indian Dentist - relocate to united kingdomIndian Dentist - relocate to united kingdom
Indian Dentist - relocate to united kingdomIndian dental academy
 
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...Indian dental academy
 
Invisalign -invisible aligners course in india
Invisalign -invisible aligners course in india Invisalign -invisible aligners course in india
Invisalign -invisible aligners course in india Indian dental academy
 
Invisible aligners for your orthodontics pratice
Invisible aligners for your orthodontics praticeInvisible aligners for your orthodontics pratice
Invisible aligners for your orthodontics praticeIndian dental academy
 
Development of muscles of mastication / dental implant courses
Development of muscles of mastication / dental implant coursesDevelopment of muscles of mastication / dental implant courses
Development of muscles of mastication / dental implant coursesIndian dental academy
 
Corticosteriods uses in dentistry/ oral surgery courses  
Corticosteriods uses in dentistry/ oral surgery courses  Corticosteriods uses in dentistry/ oral surgery courses  
Corticosteriods uses in dentistry/ oral surgery courses  Indian dental academy
 
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...Indian dental academy
 
Diagnosis and treatment planning in completely endntulous arches/dental courses
Diagnosis and treatment planning in completely endntulous arches/dental coursesDiagnosis and treatment planning in completely endntulous arches/dental courses
Diagnosis and treatment planning in completely endntulous arches/dental coursesIndian dental academy
 
Properties of Denture base materials /rotary endodontic courses
Properties of Denture base materials /rotary endodontic coursesProperties of Denture base materials /rotary endodontic courses
Properties of Denture base materials /rotary endodontic coursesIndian dental academy
 
Use of modified tooth forms in complete denture occlusion / dental implant...
Use of modified  tooth forms  in  complete denture occlusion / dental implant...Use of modified  tooth forms  in  complete denture occlusion / dental implant...
Use of modified tooth forms in complete denture occlusion / dental implant...Indian dental academy
 
Dental luting cements / oral surgery courses  
Dental   luting cements / oral surgery courses  Dental   luting cements / oral surgery courses  
Dental luting cements / oral surgery courses  Indian dental academy
 
Dental casting alloys/ oral surgery courses  
Dental casting alloys/ oral surgery courses  Dental casting alloys/ oral surgery courses  
Dental casting alloys/ oral surgery courses  Indian dental academy
 
Dental casting investment materials/endodontic courses
Dental casting investment materials/endodontic coursesDental casting investment materials/endodontic courses
Dental casting investment materials/endodontic coursesIndian dental academy
 
Dental casting waxes/ oral surgery courses  
Dental casting waxes/ oral surgery courses  Dental casting waxes/ oral surgery courses  
Dental casting waxes/ oral surgery courses  Indian dental academy
 
Dental ceramics/prosthodontic courses
Dental ceramics/prosthodontic coursesDental ceramics/prosthodontic courses
Dental ceramics/prosthodontic coursesIndian dental academy
 
Dental implant/ oral surgery courses  
Dental implant/ oral surgery courses  Dental implant/ oral surgery courses  
Dental implant/ oral surgery courses  Indian dental academy
 
Dental perspective/cosmetic dentistry courses
Dental perspective/cosmetic dentistry coursesDental perspective/cosmetic dentistry courses
Dental perspective/cosmetic dentistry coursesIndian dental academy
 
Dental tissues and their replacements/ oral surgery courses  
Dental tissues and their replacements/ oral surgery courses  Dental tissues and their replacements/ oral surgery courses  
Dental tissues and their replacements/ oral surgery courses  Indian dental academy
 

More from Indian dental academy (20)

Indian Dentist - relocate to united kingdom
Indian Dentist - relocate to united kingdomIndian Dentist - relocate to united kingdom
Indian Dentist - relocate to united kingdom
 
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...
1ST, 2ND AND 3RD ORDER BENDS IN STANDARD EDGEWISE APPLIANCE SYSTEM /Fixed ort...
 
Invisalign -invisible aligners course in india
Invisalign -invisible aligners course in india Invisalign -invisible aligners course in india
Invisalign -invisible aligners course in india
 
Invisible aligners for your orthodontics pratice
Invisible aligners for your orthodontics praticeInvisible aligners for your orthodontics pratice
Invisible aligners for your orthodontics pratice
 
online fixed orthodontics course
online fixed orthodontics courseonline fixed orthodontics course
online fixed orthodontics course
 
online orthodontics course
online orthodontics courseonline orthodontics course
online orthodontics course
 
Development of muscles of mastication / dental implant courses
Development of muscles of mastication / dental implant coursesDevelopment of muscles of mastication / dental implant courses
Development of muscles of mastication / dental implant courses
 
Corticosteriods uses in dentistry/ oral surgery courses  
Corticosteriods uses in dentistry/ oral surgery courses  Corticosteriods uses in dentistry/ oral surgery courses  
Corticosteriods uses in dentistry/ oral surgery courses  
 
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...
Cytotoxicity of silicone materials used in maxillofacial prosthesis / dental ...
 
Diagnosis and treatment planning in completely endntulous arches/dental courses
Diagnosis and treatment planning in completely endntulous arches/dental coursesDiagnosis and treatment planning in completely endntulous arches/dental courses
Diagnosis and treatment planning in completely endntulous arches/dental courses
 
Properties of Denture base materials /rotary endodontic courses
Properties of Denture base materials /rotary endodontic coursesProperties of Denture base materials /rotary endodontic courses
Properties of Denture base materials /rotary endodontic courses
 
Use of modified tooth forms in complete denture occlusion / dental implant...
Use of modified  tooth forms  in  complete denture occlusion / dental implant...Use of modified  tooth forms  in  complete denture occlusion / dental implant...
Use of modified tooth forms in complete denture occlusion / dental implant...
 
Dental luting cements / oral surgery courses  
Dental   luting cements / oral surgery courses  Dental   luting cements / oral surgery courses  
Dental luting cements / oral surgery courses  
 
Dental casting alloys/ oral surgery courses  
Dental casting alloys/ oral surgery courses  Dental casting alloys/ oral surgery courses  
Dental casting alloys/ oral surgery courses  
 
Dental casting investment materials/endodontic courses
Dental casting investment materials/endodontic coursesDental casting investment materials/endodontic courses
Dental casting investment materials/endodontic courses
 
Dental casting waxes/ oral surgery courses  
Dental casting waxes/ oral surgery courses  Dental casting waxes/ oral surgery courses  
Dental casting waxes/ oral surgery courses  
 
Dental ceramics/prosthodontic courses
Dental ceramics/prosthodontic coursesDental ceramics/prosthodontic courses
Dental ceramics/prosthodontic courses
 
Dental implant/ oral surgery courses  
Dental implant/ oral surgery courses  Dental implant/ oral surgery courses  
Dental implant/ oral surgery courses  
 
Dental perspective/cosmetic dentistry courses
Dental perspective/cosmetic dentistry coursesDental perspective/cosmetic dentistry courses
Dental perspective/cosmetic dentistry courses
 
Dental tissues and their replacements/ oral surgery courses  
Dental tissues and their replacements/ oral surgery courses  Dental tissues and their replacements/ oral surgery courses  
Dental tissues and their replacements/ oral surgery courses  
 

Recently uploaded

Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 

Recently uploaded (20)

Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 

Castable Ceramics: A Guide to Dicor Glass-Ceramics

  • 1. CASTABLE CERAMICS INDIAN DENTAL ACADEMY Leader in continuing Dental Education www.indiandentalacademy.com
  • 2. Glass-ceramics are polycrystalline materials developed for application by casting procedures using the lost wax technique, hence referred to as “castable ceramic”. Glass ceramics in general are partially crystallized glass and show properties of both crystalline and amorphous (glassy) materials. They are fabricated in the vitreous (Glass or non- crystalline/amorphous) state and converted to a ceramic (crystalline state) by controlled crystallization using nucleating agents during heat treatment. www.indiandentalacademy.com
  • 3. History of evolution of glass ceramics: 1837 – Murphy was probably the first dentist to melt glass onto a platinum sheet that had been fit in the cavity preparation. 1891 – Herbst made glass restoration out of pulverized coloured glass particles with a gas flame directly on the plaster model. 1930 – Frederick Carder, the founder of Steuben division of the Corning Glass Works perfected fabricating 3- dimensional glass articles for decorative purposes using the lost wax technique. Although delicate objects were cast accurately, the mechanical properties of glass restricted its use to artistic application. www.indiandentalacademy.com
  • 4. 1957 – S.D. Stookey from the Corning Glass Works observed how an industrial impure glass changed into ceramic with organic crystalline form and coined the term “Glass-ceramic”. Thus ‘Pyroceram’ an industrial glass ceramic which had the properties of both glass and ceramics was developed. 1968 W.T. MacCulloch realised the usefulness of glass ceramics and proposed its use for dental restorative purposes (denture teeth; crowns; inlays). He used a continous glass molding process to produce denture teeth, and suggested fabrication of crowns/ inlays by centrifugal casting of molten glass. 1973- Dr. David Grossman developed and patented the MaCor (Machninable Corning), a predecessor of Dicor (Grossman D.G.). www.indiandentalacademy.com
  • 5. Since 1978 – Peter Adair of Biocor Inc, in association with the Corning Glass Works and Dentsply international, researched and developed the clinical application of glass- ceramics. 1984 – Peter Adair patented Dicor, the commercial glass ceramic material. 1985 – Sumiyo Hobo & Iwata developed a castable apatite glass ceramic Cerapearl. 1986 – The world wide patent for the castable glass-ceramic material and its entire processing system was given to the manufacturing company De Trey/ Corning ware. 1988 – Tamura reported on fabrication of hydroxyapatite crowns. www.indiandentalacademy.com
  • 6. Glass-ceramic systems for dental application: Li2 O ZnO – SiO2 Li2 O - Si2 O Li2 O – CaO - Al2 O3 – SiO2 - Na2 O– K2 O– Cao – Mgo - Al2 O3 - P2 O5 - SiO3 – F CaO P2 O5 CaO – MgO - P2 O5 – SiO2 R2 O – Mg - SiO2 – F www.indiandentalacademy.com
  • 7. Most glass ceramics are opaque or cloudy and are not suitable for dental use. The first glass ceramic employed in dentistry was introduced by MacCulloch (1968) for the construction of denture teeth, and was based on the Li O2 - ZnO - SiO2 - systems. At that time, the use of acrylic denture teeth was becoming popular and the idea of glass ceramics was not exploited further. The exploration of glass-ceramic for dental use was taken up by other researchers and has resulted in at least two major commercially available products www.indiandentalacademy.com
  • 8. Castable dental Glass-Ceramics Fluoromicas Apatite Glass-Ceramic OtherGlass-Ceramics (SiO2 K2 MgOA12 O3 ZrO2 (CaOMgOP2 O5 SiO2 system) Based on a) Lithia E.g Dicor E.g: Cera Pearl (Kyocera Bioceram) b)Calcium phosphate www.indiandentalacademy.com
  • 9. Dicor: Dicor, the first commercially available castable glass-ceramic material for dental use was developed by The Corning Glass Works (Corning N.Y.) and marketed by Dentsply International (Yord, PA, U.S.A). The term “DICOR” is a combination of the manufacturer’s names: Dentsply International & Corning glass. Dicor is a castable polycrystalline fluorine containing tetrasilicic mica glass-ceramic material, initially cast as a glass by a lost-wax technique and subsequently heat - treated resulting in a controlled crystallization to produce a glass - ceramic material. www.indiandentalacademy.com
  • 10. Composition of Dicor is based on the SiO2 K2 OmgOA12 O3 ZrO2 system. Its composition (w/w) according to different statements. Supplied as : Dicor castable ceramic cartridges- special DICOR casting crucibles each containing a 4.1 gm DICOR ingot and the Dicor shading porcelain kit. Equipment  DICOR Casting Machine  DICOR Ceramming Furnace with Ceramming Trays Major Ingredients Minor Ingredients SiO2 45-70%, K2 O upto 20%; MgO 13- 30% MgF2 (nucleating agent & flux 4 to 9%) A12 O3 upto 2% (durability & hardness) ZrO2 upto 7%; Fluorescing agents (esthetics) BaO 1 to 4% (radiopacity) www.indiandentalacademy.com
  • 11. Fabrication of castable ceramics restoration consists of mainly 2 steps:  Casting: The glass liquefies at 1370°C to such a degree that it can be cast into a mold using lost-wax and centrifugal casting techniques. • The wax pattern of the proposed restoration made on the model/ die is invested in Castable Ceramic Investment (a carbon-free, phosphate-based investment, specially formulated to match DICOR castable ceramic) in a double-line casting ring and burned out in a conventional burnout at 900°C for 30 mins. • Glass ingots of castable ceramic material is placed in a special zirconia crucible (melted at 1360°C / 2600°F) and centrifugally cast .in the electronically-controlled DICOR Casting Machine (Dentsply Int), maintaining the spin pressure for upto 4 minutes and 30 seconds.www.indiandentalacademy.com
  • 12. • The transparent glass casting obtained is amorphous and fragile. After cooling, it is divested, sandblasted (25um Al2O3 particles at 40 psi) and carefully separated from the sprue.  Ceramming: The cast glass material is subject to a single-step heat treatment called as 'Ceramming' to produce controlled crystallization by internal nucleation and crystal growth of microscopic plate like mica crystals within the glass matrix. This procedure gives glass-ceramic the special physical and mechanical properties of DICOR. Method: The transparent fragile casting is embedded in castable ceramic embedment material (Gypsum-based) and placed in a Ceramming tray in the DICOR Ceramming Furnace. www.indiandentalacademy.com
  • 13. Ceramming cycle: 650-1075 °C for 1 1/2hours and sustained upto 6 hours. The cerammed glass-ceramic casting is achromatic and appears as a whitish opaque semi-crystalline material; hence external colourants are required to develop the required shade (by veneering self - glazing, pre-mixed DICOR shading porcelain provided by the manufacturer). www.indiandentalacademy.com
  • 14. The computer controlled ceramic process is adjusted so that the cast glass ceramic is composed of:  Tetrasilic flouromica crystals (crystalline) - 55% by volume.  Glass matrix (non-crystalline) - 45% by volume. The microstructure after ceramming consists of multiple interlocking small plate-like crystals of tetrasilicic flouromica (K2 Mg5 -Si4 O10 F2 ) approximately 1 µm thick and 5- 6mm in diameter. On the surface of the cerammed glass are ‘Enstatite crystals’ at a thickness of 15-50µ m, which occur through fluorine depletion (that occurs through interactions with the embedment material used for the ceramming process. The enstatite crystals are in an orthongnal direction to the surface and are whitish and opaque in color.www.indiandentalacademy.com
  • 15. The crystals function in following ways:  Improved strength: Interlocking of randomly oriented small plate-like mica crystals increases the resistance to fracture. The mica crystals readily cleave along its long axis, causing cracks to deflect, branch or blunt; thus disrupting crack propagation. Strength also depends upon crystal diameter and crystal-glass expansion mismatches.  Improved esthetics - The varying crystal sizes and the difference in the refractive indices of the glass and crystalline phase makes the glass appear transparent. The refractive index of the mica crystals is matched to that of the surrounding glass phase thus reducing light scatter (as in aluminious porcelains) and results in transparency close to that of enamel. Reduced abrasive property - Since mica crystals replace the more abrasive leucite crystals found in traditional feldspathic porcelain.www.indiandentalacademy.com
  • 16. Following the ceramming process a “Ceram layer” or ‘skin’ of 25-100µm thickness is formed on the surface of the DICOR restoration. Contained within that ‘ceram layer’ is what has been described as crystal ‘whiskers’ oriented perpendicular to the external surface. According to the manufacturer’s laboratory manual, the ‘rod-like crystals that form on the surface of the casting during ceramming increase its opacity ’. Therefore, the outer ‘skin’ may or may not be removed following the ceramming process, depending on the level of translucency desired in the final restoration. www.indiandentalacademy.com
  • 17. Therefore, a shaded Dicor restoration should be viewed as a non - homogenous material composed largely of the internal (parent) castable glass-ceramic veneered with a thick, hard cerammed “skin” covered with multiple layers of shading porcelain. DICOR components KHN KHN The Ceram layer 505 Dental porcelain After adding shading porcelain 447 460 Internal/parent Dicor glass- ceramic material located below the cerammed skin 369 Dental enamel 343 www.indiandentalacademy.com
  • 18. Chameleon effect of Dicor The transparent crystals scatter the incoming light. The light and also its color, is disbursed as if the light is bouncing off a large number of small mirrors that reflect the light and spread it over the entire glass-ceramic. This property is called the ‘chameleon effect’. This means Dicor glass – ceramics change color according to their surroundings, which enhances its esthetic properties. Dicor restoration surfaces were reported to have an appreciable decrease in plaque accumulation compared to that of natural teeth. Probable theories suggest the ability of Dicor surface to interfere with the bacterial adhesion to different proteins (plaque) normally found on natural teeth due to the following reasons :  It has a smooth non-porous surface  Presence of an electrical charge inhibiting plaque formation or fluoride in the chemical structure.www.indiandentalacademy.com
  • 19. Advantages of Dicor  Chemical and physical uniformity  Excellent marginal adaptation (fit)  Compatibility with lost-wax casting process  Uncomplicated fabrication from wax-up to casting, ceramming and colouring  Ease of adjustment www.indiandentalacademy.com
  • 20.  Excellent esthetics resulting from natural translucency, light absorption, light refraction and natural colour for the restoration.  Relatively high strength (reported flexural strength of 152 MPa), surface hardness (abrasion resistance) and occlusal wear similar to enamel.  Inherent resistance to bacterial plaque and biocompatible with surrounding tissues.  Low thermal conductivity.  Radiographic density is similar to that of enamel. www.indiandentalacademy.com
  • 21. Disadvantages  Requires special and expensive equipments such as Dicor casting machine, ceramming oven. (High investment cost for the lab)  Although short term clinical studies, verified the efficacy of the Dicor system in laboratory studies for use as veneers and inlays, failure rates as high as 8% (# of the restoration) were reported, especially in the posterior region. In addition, failure rates as high as 35% have been reported with full coverage Dicor crowns not bonded to tooth (The poor strength is thought to be caused by porosity, especially in the outermost "ceram layer").  Dicor must be shaded/ stained with low fusing feldspathic shading porcelain to achieve acceptable esthetics, however the entire stain/ colors maybe lost during occlusal adjustment (use of abrasives), during routine dental prophylaxis or through the use of acidulated fluoride gels. www.indiandentalacademy.com
  • 22. Two ceramic products were introduced to overcome the above problem:  Dicor plus (Dentsply, Trubyte division) : Consists of a cast cerammed core (Dicor substrate) and shaded feldspathic porcelain veneer. However, as Dicor plus is a feldspathic porcelain that contains leucite, the abrasiveness is expected to be similar to other feldspathic porcelains.  Willis Glass : Consists of a Dicor cast cerammed core and a Vitadur-N porcelain veneer similar in nature to that used for Dicor Plus. www.indiandentalacademy.com
  • 23. CASTABLE APATITE GLASS CERAMIC Castable apatite ceramic is classified as CaO-P2 O5 -MgO- SiO glass ceramic. 1985 -Sumiya Hobo & Iwata developed a castable apatite glass-ceramic which was commercially available as Cera Pearl (Kyocera Bioceram, Japan). www.indiandentalacademy.com
  • 24. CERA PEARL (Kyocera San Diego, CA): contains a glass powder distributed in a vitreous or non-crystalline state. Composition: Approximately (By weight)  Calcium oxide (CaO) -45%  Phosphorus Pentoxide (P2 O5 ) -15% Aids in glass formation  Magnesium oxide (MgO) -5% Decreases the viscosity (antiflux)  Silicon dioxide (SiO2 ) -35% Forms the glass matrix.  Other -Trace elements Nucleating agents(during ceramming). Chemistry: Apatite glass-ceramic melts (1460°C) and flows like molten glass and when cast (1510°C) it has an amorphous microstructure. www.indiandentalacademy.com
  • 25. Apatite Glass-Ceramic Molten glass CaPO4 (CaO-P2O5 -MgO-SiO2) (Amorphous) The amorphous CaPO4 formed after melting and casting changes into a crystalline oxyapatite on heat treatment (ceramming) at 870°C for 1 hour. The chemically unstable oxyapatite when exposed to moisture (water) further converts to crystalline hydroxyapatite (HA crystals). CaPO4 Oxyapatite Hydroxyapatite (Amorphous) (Crystalline) (Crystalline) Ca10 (PO4 )8 20H Strength is dependent on these crystals and the bond between the 1460°C melting 1510o C casting 1460°C Ceramming Exposure to moisture www.indiandentalacademy.com
  • 26. Natural Enamel Cerapearl Composition of HA crystals Similar Arrangement of H.A. crystals Regular Irregular Light Refractive Index (Xo) 1.655 1.63 PH of solute in water 8.0 7.9 Density (g/cm3 ) 2.97 2.9 Thermal conductivity (Cal. Cm/cm2 Sec. °C) 0.0022 0.0023 Compressive strength (Mpa / psi) 384/0.05 x 106 590 / 0.08 x 106 Young’s Modulus of Elasticity (Gpa / Psi) 84.1 / 12.2 x 106 103 / 15.0 x 106 Tensile strength (Mpa) 103 150 Knoop Hardness Number (KHN) 343 350 Comparison of Physical Properties of Natural Enamel and Cerapearl www.indiandentalacademy.com
  • 27. Other Physical Properties:  Coefficient of thermal expansion : 11.0 x 10-6 /°C  Young's Modulus : 103Gpa  Casting Shrinkage : 0.53%  Flexural strength similar to Dicor Biologic properties : Dense material, Chemically stable, pH similar to natural enamel, Non toxic/ biocompatible www.indiandentalacademy.com
  • 28. Fabrication  Casting: The wax pattern of the proposed restoration is invested in phosphate-bonded high heat investment developed exclusively for this system (CTE to match Cera Pearl's casting shrinkage of 0.53%). Following burnout, the investment is transferred to an automatic casting machine designed especially for this system. The Cera Pearl crystals (8-10gms) are placed in the ceramic crucible, melted under vacuum (at 1460o C) and cast (at 1510o C) into the mold. Annealing is done one hour after the casting in an automatic furnace to release the inner stresses of the cast structure. The investment material around the cast structure is removed by sandblasting (25-30um Al2 O3 beads) and ultrasonically cleaned. The annealed casting is reinvested (CP crystal mold, Kyocera Corp.) for ceramming.www.indiandentalacademy.com
  • 29.  Ceramming: The ceramming oven is preheated at 750°C for 15 minutes. After the cast glass ceramic is place in the oven the temperature is raised at the rate 50o C/min until it reaches 870°C and held for 1 hour. After crystallization, the casting is dis-invested, and cleaned by sandblasting (201µm Al2 O3 powder). It appears white in comparison with natural enamel and requires the application of an external stain. Eg, Cerastain (Bioceram), which consists of B2 O3 -SiO2 -Al2 03 -K2 O glass, traces of various metal oxides. www.indiandentalacademy.com
  • 30. Desirable characteristics of Apatite Ceramics  Cerapearl is similar to natural enamel in composition, density, refractive index, thermal conductivity, coefficient of thermal expansion and hardness. Similarity in hardness prevents wear of opposing enamel.  Bonding to tooth structure - Glass ionomer cements adhere to tooth structure (dentin and enamel) primarily bonding to the apatite component, and thus should also bond to the apatite phase within the glass-ceramic. To enhance this possibility, Cerapearl surface is activated by air abrading (to provide mechanical interlocking effect) or treatment with activator solution (etching of with 2N HCI preferentially removes the glassy phase from the surface, thus exposing the apatite phase). The glass ionomer can then bond to this apatite phase both chemically (ion-exchange) and mechanically (interlocking effect).www.indiandentalacademy.com
  • 31. Lithia Based Glass-Ceramic Developed by Uryu; and commercially available as -Olympus Castable Ceramic (OCC) Composition: It contains mica crystals of NaMg3 (Si3AlO10) F2 and Beta Spodumene crystals of LiO.AI2O3.4SiO2 after heat treatment. www.indiandentalacademy.com
  • 32. Calcium Phosphate Glass-Ceramic Reported by Kihara and others, for fabrication of all- ceramic crowns by the lost wax technique. It is a combination of calcium phosphate and phosphorus pentoxide plus trace elements. The glass ceramic is cast at 1050°C in gypsum investment mold. The clear cast crown is converted to a crystalline ceramic by heat treating at 645°C for 12 hours. Reported Flexural strength (116 Mpa); Hardness close to tooth structure. Disadvantages  Weaker than other castable ceramics;  Opacity reduces the indication for use in anterior teeth.www.indiandentalacademy.com
  • 33. Advantages of castable glass ceramics  High strength because of controlled particle size reinforcement.  Excellent esthetics resulting from light transmission similar to that of natural teeth .and convenient procedures for imparting the required colour.  Accurate form for occlusion, proximal contacts, and marginal adaptation.  Uniformity and purity of the material.  Favorable soft tissue response.  X-ray density allowing examination by radiograph www.indiandentalacademy.com
  • 34.  Hardness and wear properties closely matched to those of natural enamel  Similar thermal conductivity and thermal expansion to natural enamel  Dimensional stability regardless of any porcelain corrective procedure and subsequent firings www.indiandentalacademy.com
  • 35. Advantage of cast glass-ceramics over metal-ceramics  The component chemical compounds are standardized, eliminating any inaccuracies, The forming procedures can be quality controlled.  Superior compressive strength because of its semi- crystalline form and is also a machinable material, Crack propagation's are interrupted by the crystalline structure.  Utilized conventional lost-wax technique similar to casting alloys. Hence, casting and finishing can be easily done.  Colour control, optical effects allow predictable and esthetic results.  Cast glass ceramics are thermal resistant.  Bacterial plaque adherence on the surface is inhibited, thus maintaining the tissues surrounding the restoration.www.indiandentalacademy.com
  • 36.  Radiolucency allows for a dimension of depth in the observation of marginal integrity.  Wear rate values are similar to that of human enamel. www.indiandentalacademy.com
  • 38. Regardless of the advanced state of the 300-year old technique of casting, each of its steps could induce error in the final casting. Until 1988, indirect ceramic dental restorations were fabricated by conventional methods (sintering, casting and pressing) and neither were pore-free. Pore-free restorations can be alternately produced by machining blocks of pore-free industrial quality ceramic. The tremendous advances in computers and robotics could also be applied to revolutionize dentistry and provide both precision and reduce time consumption. With the combination of optoelectronics, computer techniques and sinter-technology, the morphologic shape of crowns can be sculpted in an automated way. Registration of the mandibular jaw movements or of the functionally generated path in the mouth provides the necessary data for an interference-free escape of cusps from their fossae. www.indiandentalacademy.com
  • 39. CAD/CAM is an acronym for Computer Aided Design / Computer Aided Manufacturing (or Milling). History of machining systems: 1971 - CAD/CAM technologies were introduced to the dental profession. 1979 - Heitlinger and Rodder followed by, 1980 -Moermann &Brandestini began to share this approach. 1983 -First dental CAD/CAM prototype was presented at the Garanciere conference in France. 1985 -The first CAD/CAM crown was publicly milled and installed in a mouth without any laboratory involvement. 1986 -The first generation Cerec 1 (Siemens Corp) was introduced. 1994 -The second generation Cerec 2 (Siemens Corp) was presented.www.indiandentalacademy.com
  • 40. Application of CAD/CAM techniques was actively pursued by three groups of researches :  Group supported by Henson International of France.  Combined group effort between the University of Zurich and Brains, Brandestini Instruments of Switzerland.  University of Minnesota, supported by the U.S. National Institute of Dental Research. www.indiandentalacademy.com
  • 41. Although each group had a slightly different philosophy and approach, they worked towards a common goal of integrating engineering applications of automation in the creation of dental restorations.  French system: Optical impression -Laser scanner, Data processed by : Shape recognition software. It has a library (memory) describing theoretical teeth. The system uses • 3-D probe system based on electro-optical method • Surface modelling and screen display  Automatic milling by a numerically controlled 4-axis machine www.indiandentalacademy.com
  • 42.  Swiss system: Optical impression - Optical topographic scanning using a 3-D oral camera; Data processed by an interactive CAD unit. The system uses: • A desk top model computer • Display monitor permitting visual verification of quality of data being acquired • Electronically controlled 3-axis N/C milling machine  Minnesota system: Optical impression -Photographic based system using a 35-mm camera with magnifying lens. Data obtained in the dental office is sent to another location for processing and machining. 3-D Reconstruction uses : • Direct line transformation and an alternative technique proposed by Grimson  Milling with a 5-axis N/C machine. www.indiandentalacademy.com
  • 43. Triad of fabrication: Fabrication of a restoration whether with traditional lost-wax casting technique or a highly sophisticated- technology such as a CAD/CAM system has three functional components:  Data acquisition  Restoration design  Restoration fabrication SUBTRACTIVE METHODS Grinding of porcelain restorations out of a preformed block either by means of CAD/CAM or by using a copy milling unit can be done by the so-called subtractive methods. www.indiandentalacademy.com
  • 44. Machinable Ceramic system (MCS) for dental restorations:       Digital Systems (CAD/CAM): •Direct   •Indirect   Three steps :          3-dimensional surface scanning          CAD -Modelling of the restoration          Fabrication of restoration. www.indiandentalacademy.com
  • 45.       Analogous systems (Copying methods) •Copy Milling / Copy Grinding or Pantography Systems Two steps :           Fabrication of prototype for scanning;          Copying and reproducing by milling •Erosive techniques         Sono Erosion         Spark Erosion www.indiandentalacademy.com
  • 46. MACHINING SYSTEMS CAD/CAM (Digital) COPYING SYSTEMS (Analogous) Direct Indirect Copy Milling Erosion Cerec 1 & Cerec 2 Automill, DCS- President, Cicero, Denta, Denti CAD, Sopha – Bioconcept Manual Automatic Sono- erosion Spark – erosion Celay Ceramatic II DCP DFE Eroson ic DFE Procer a www.indiandentalacademy.com
  • 47. Traditional technique High technology Data acquisition or information by impressions and translated into articulated stone casts Data acquisition or information is captured electronically, either by a specialized camera, laser system, or a miniature contact digitizer. Restoration design is the process of creating the wax pattern Restoration design is done by the computer – either with interactive help from the user or automatically. Restoration fabrication includes all the procedures from dewaxing upto the final casting (lost wax technique) Restoration fabrication includes machining with computer controlled milling machines, electrical discharge machining and sintering www.indiandentalacademy.com
  • 48. IMPRESSION CAMERA LASER CONTACT DIGITIZER CASTS & DIE COMPUTERIZED DESIGN WAX PATTERN INVEST CAST MACHINE ELECTRICAL DISCHARGE MACHINE SINTER Data acquisition  Restoration Design  Restoration  fabrication  www.indiandentalacademy.com
  • 49. DIGITAL SYSTEMS Computer  aided  design  and  computer  aided  manufacturing  (CAD/ CAM) technologies have been integrated into systems  to  automate  the  fabrication  of  the  equivalent  of  cast  restorations.  CAD/CAM milling  uses  digital  information  about  the  tooth  preparation  or  a  pattern  of  the  restoration  to  provide  a  computer-aided  design  (CAD)  on  the  video  monitor  for  inspection  and  modification.  The  image  is  the  reference  for  designing  a  restoration  on  the  video  monitor.  Once  the  3-D  image  for  the  restoration  design  is  accepted,  the  computer  translates  the  image  into  a  set  of  instructions  to  guide  a  milling  tool  (computer-assisted  manufacturing  [CAM])  in  cutting the restoration from a block of material.  www.indiandentalacademy.com
  • 50. Stages of fabrication: Although  numerous  approaches  to  CAD/CAM for restorative dentistry have evolved, all systems  ideally involve 5 basic stages:         Computerized surface digitization       Computer - aided design       Computer - assisted manufacturing       Computer - aided esthetics       Computer - aided finishing (The  last  two  stages  are  more  complex  and  are  still  being  developed for including in commercial systems).  www.indiandentalacademy.com
  • 51. Computerized surface digitization: 3D-surface digitizing  or scanning methods are separated into :  •     Direct (at the tooth) •          Indirect  methods(via  impression  making  &  model  fabrication or via pro-inlay) •     Mechanical •     Optical sensors  www.indiandentalacademy.com
  • 53. Mechanical  scannings  conducted  by  a  profilometer  or  pinpoint  sensor  are  very  precise,  but  have  several  shortcomings.  Among  the  various  methods  of  optical  surface scanning, the active (laser) triangulation has been  proven  the  most  suitable,  however  it  requires  non- reflective surfaces for scanning (contact powder coating).  Laser  technique  and  contact  digitization  are  the  most  promising approaches from the point of view of cost and  accuracy. www.indiandentalacademy.com
  • 54. FLOW CHART SHOWING SEQUENTIAL EVENTS OCCURING DURING CAD – CAM TECHNIQE OF FABRICATING A CERAMIC RESTORATION : The cavity preparation is scanned stereo-photogrammetrically, using a three- dimensional miniature video camera The small microprocessor unit stores the three dimensional pattern depicted on the screen The video display serves as a format for the necessary manual construction via an electric signal The microprocessor develops the final three-dimensional restoration from the two dimensional construction The processing unit automatically deletes data beyond the margins of the preparation The electronic information is transferred numerically to the miniature three-axis milling device Driven by a water turbine unit, the milling device generates a precision fitting restoration from a standard ceramic block www.indiandentalacademy.com
  • 55. CEREC SYSTEM The CEREC (Ceramic Reconstruction) system ( Siemen/sirna corp) was originally developed by Brains AG in Switzerland  and  first  demonstrated  in  1986,  but  had  been  repeatedly  described since 1980. Identified as CEREC CAD/CAM system,  it  was  manufactured  in  West  Germany  and  marketed  by  the  Siemens group. Cerec System consists of :       A 3-D video camera (scan head)    An  electronic  image  processor  (video  processor)  with  memory unit (contour memory)       A digital processor (computer) connected to,       A miniature milling machine (3-axis machine)www.indiandentalacademy.com
  • 56. The Optical impression: A small hand held video camera  with  a  1-cm  wide  lens  (scanner)  when  placed  over  the  occlusal  surface  of  the  prepared  tooth,  emits  infrared  light  which passes through an internal grid containing a series of  parallel  lines.  The  pattern  of  light  and  dark  stripes  which  falls  on  the  prepared  tooth  surface  is  reflected  back  to  the  scanning head and onto a photoreceptor, where its intensity  is recorded as a measure of voltage and transmitted as digital  data to the CAD unit.  www.indiandentalacademy.com
  • 57. Procedure: •        The prepared and surrounding tooth surfaces are coated  with CEREC powder (L.D. caulk -Ti02 and talc) to eliminate  light  reflections  and  to  obtain  an  opaque  reflective  surface  (few µm thick only). •        The hand - held camera is positioned over the prepared  tooth, and an image of the preparation is then simultaneously  projected onto the screen. •         The  camera  is  adjusted  until  the  image  is  clear  and  properly angulated for all aspects of the prepared tooth to be  visible in complete focus. www.indiandentalacademy.com
  • 58. •        The video search mode enables assessment whether  the camera viewing axis is compatible with the inlay/ onlay  path  of  insertion.  If  viewing  is  acceptable  the  three  dimensional  scanning  is  triggered  by  release  of  the  foot  pedal. •         The  operator  now  checks  the  preparation  and  its  three-dimensional  representation  for  corrections  or  modifications  to  be  made,  if  necessary.  Once  the  appropriate optical orientation is generated, the operator can  'freeze-frame' the preparation into a static image. www.indiandentalacademy.com
  • 59.  Designing the Restoration:  The  proposed  restoration  is  designed  by  tracing  frame  lines  on  the  optical  impression  (fixed  image)  which  is  projected  onto  the  screen.  A  cursor  controlled  by  reverse  'mouse'  located  on  top  of  the  unit  is  used  to  define  the  limits/boundaries,  starting  from  the  gingival margin and moved along the internal line angles at  intermediate positions commands the computer which draws  a continuos line, through all placed points and displays it on  the  screen.  The  operator  can  carefully  examine,  edit  and  if  necessary,  even  modify  the  pattern  at  any  moment  in  the  procedure.  After  the  margins,  walls,  proximal  contour  and  contact  as  well  as  the  location  of  marginal  ridges  are  established, the electronically designed proposed restoration  can be viewed as a 3-dimensional model on the monitor, and  stored automatically on the program disk (floppy).  www.indiandentalacademy.com
  • 60. Milling of the Ceramic restoration:  The  restoration  is  milled  (4  –  7minutes)  with  a  diamond  wheel  from  a  pre- manufactured and standardized ceramic block in the milling  chamber of the CAM unit. Factory standardized, preformed  dental porcelain blocks are homogenous and almost pore- free (Vita Cerec blocks; Dicor-Cerec blocks).  www.indiandentalacademy.com
  • 61. The CAM unit:  A pump system with an attached water reservoir located at  the  base  of  the  mobile  cart  maintains  the  water  pressure  required for the hydraulic driven water turbine in the milling  chamber.  During  milling  about  5  litres  of  water  is  cycled  internally  which  eliminates  the  need  for  external  water  supply  and  drainage.  The  water  reservoir  system  also  contains a microporous filter that traps any of the loosened  diamond  particles  separated  from  the  wheel  for  future  retrieval.  www.indiandentalacademy.com
  • 62.  Procedure:        The  appropriate  ceramic  block  is  selected  from  a  series  consisting of different sizes and shades.        The  ceramic  block  is  mounted  on  a  metal  stub  (retainer),  inserted into the milling unit and grinding operation is initiated.        Grinding  of  the  ceramic  restoration  is  done  by  a  diamond- coated disk/ wheel in conjunction with a high velocity water-spray,  which  simultaneously  cools  and  cleans  the  milling  disk.  The  restoration is milled from the mesial to the distal proximal surfaces  with  the  block  rotating  along  its  central  axis  and  being  steadily  advanced  forward  during  the  milling  process.  In  addition,  the  diamond wheel not only rotates but also translates up and down over  the porcelain block being milled. A series of steps (200-400) or cuts  are required for milling a ceramic restoration.     At the end of the milling operation, the completed restoration  falls  to  the  bottom  of  the  chamber  from  where  it  can  be  readily www.indiandentalacademy.com
  • 63.  The computer program associated with the milling process has additional interesting features such as:        Before  the  milling  process,  the  screen  displays  the  dimensions  of  the  restoration  from  one  proximal  surface  to  the other in 1/900th   of a mm.        During  the  milling  operation,  the  screen  continuously  informs the operator of the percentage of the completion. A  continuous  readout  is  displayed  concerning  the  cutting  efficiency  of  the  diamond  wheel,  thereby  indicating  the  probable need for replacement.  www.indiandentalacademy.com
  • 64. Clinical shortcoming of Cerec 1 system:            Although the CEREC system generated all internal  and external aspects of the restoration, the occlusal anatomy  had  to be developed by the  clinician using  a flame-shaped,  fine-particle diamond instrument and conventional porcelain  polishing procedures were required to finalize the restoration.              Inaccuracy of fit or large interfacial gaps.       Clinical  fracture  related  to  insufficient  depth  of  preparation.             Relatively poor esthetics due to the uniform colour  and lack of characterization in the materials used.  www.indiandentalacademy.com
  • 65. Cerec 2 system The  Cerec  2  unit  (Siemen/Sirona),  based  on  the  process  developed  by  Morman  &  Brandestini  was  introduced  in  September 1994, and is the result of constant further development  via different generations of Cerec units to eliminate the previous  limitations.  The maior changes include :          Enlargement of the grinding unit from 3 axis to 6 axis.    Upgrading of the software with more sophisticated technology  which allows machining of the occlusal surfaces for the occlusion  and the complex machining of the floor parts. Other technical innovations of Cerec 2 compared to Cerec 1:        The improved Cerec 2 camera : new design, easy to handle,  a  detachable  cover  (asepsis/sterilization),  reduction  in  the  pixel  size/picture element to improve accuracy and reduce errors. www.indiandentalacademy.com
  • 66.       Data representation in the image memory and processing  increased by 8 times, while the computing capacity is 6 times  more efficient.        Magnification  factor  increased  from  x8  to  x12  for  improved accuracy during measurements.       Monitor can be swiveled and tilted, thus facilitating visual  control of the video image. Other changes include modification  of foot control, keys and their positions on the keyboard.       Simultaneous grinding using cylindrical diamonds (2mm  diameter,  particle  #64um,  77,000rpm  and  cutting  speed  8m/s)  and radial infeed grinding of the grinding disk (6um particle #,  18000rpm and cutting speed 38m/s). www.indiandentalacademy.com
  • 67.        Extended  matching  options  facilitate  grounding  of  complex  floor  shapes  in  inlays/  onlays.    Provides  three  different  programs  for  Extrapolation,  Correlation  and  Veneer.        Cerec  2  software  (cos  4.20)  permits  custom  veneer  preparation  and  class  IV  preparations  with  incisal  edge  coverage.        Improved  in  rigidity  and  grinding  precision  by  24  times.          Improved accuracy of fit (reduction in inter-facial  gap from 84+38um/ Cerec 1 to 56+27um/ Cerec 2). www.indiandentalacademy.com
  • 68. Machinable ceramics ( Ceramics used in machining systems) are  pre-fired  blocks  of  feldspathic  or  glass  -  ceramics.   Composition : Modified  feldspathic  porcelain  or  special  fluoro-alumino-silicate  composition  are  used  for  machining  restorations. Properties       Excellent fracture and wear resistance       Pore-free       Possess both crystalline and non-crystalline phase (a 2- phase composition permits differential etching of the internal  surface for bonding). www.indiandentalacademy.com
  • 69.  Ceramic CAD/ CAM restorations are bonded to tooth structure by :        Etching for a bond to enamel       Conditioning, priming and bonding (when appropriate)       Etching (by HF acid) and priming (silanating)       Cementing with luting resin.   CAD/CAM  restorations  (inlay/onlays)  are  fabricated  primarily  from  ceramic  materials,  while  subtractive  fabrication  of  metal  alloys  or  titanium  have  only  been  investigated for crowns, copings and bridges.  www.indiandentalacademy.com
  • 70. Machinable Ceramics The industrially prefabricated ceramic ingots/ blank used are  practically  pore-free  which  do  not  require  high  temperature  processing and glazing, hence have a consistently high quality.  The  blanks  measure  approximately  9  x  9  x  13  mm  and  are  industrially  fabricated  using  conventional  dental  porcelain  techniques.  Eg:  Vitadur  353N  (Vita  Zahnfabrik,  Bad  Sackingen, West Germany) frit powder is mixed with distilled  water, condensed into a 10 x 10 x l5 mm steel die and fired  under  vacuum  (the  temperature  is  increased  at  a  rate  of  60O C/min to 950o C and held for one minute). Two classes of machinable ceramics available are:       Fine-scale feldspathic porcelain       Glass-ceramics  www.indiandentalacademy.com
  • 71.  Cerec Vitabloc Mark I : This feldspathic porcelain was the first  composition  used  with  the  Cerec  system  (Siemens)  with  a  large  particle size (10 - 50µm). It is similar in composition, strength, and  wear  properties  to  feldspathic  porcelain  used  for  metal-ceramic  restorations. Cerac Vitabloc Mark II  :  This  is  also  a  feldspathic  porcelain  reinforced with aluminum oxide (20-30%) for increased strength and  has a finer grain size (4µm) than the Mark I composition to reduce  abrasive wear of opposing tooth. Dicor MGC (Dentsply, L.D. Caulk Division)  : This  is  a  machinable glass-ceramic composed of fluorosilica mica crystals in  a glass matrix. The micaplates are smaller (average diameter 2 um)  than  in  conventional  Dicor  (available  as  Dicor  MGC  -  light  and  Dicor  MGC  -  dark).  Greater  textural  strength  than  castable  Dicor  and  the  Cerec  compositions.  Softer  than  conventional  feldspathic  porcelain. Less abrasive to opposing tooth than Cerec Mark I, and  more than Cerec Mark II (invitro study results).  www.indiandentalacademy.com
  • 72. MGC -F (Corning Inc.) : Machinable glass ceramic developed to  overcome the deficiencies of the Vita Mark II and Dicor MGC. It is  a  tetrasilicic  mica  glass  -  ceramic  with  minor  compositional  and  microstructural  changes  from  Dicor  MGC  to  enhance  its  fluorescence and machinability.  Pro CAD (Ivoclar AG, Liechtenstein) :  The  Pro  CAD  line  (Professional  Computer  Assisted  Design)  is  a  product  package  suitable for all Cerec 2 applications. It is a high-strength optimized,  leucite-reinforced  glass  ceramic  material,  available  as  blocks  in  different sizes and in the chromascop shades. Celay :  This  material  can  be  used  in  both  copy  milling  and  CAD/CAM techniques. According to the manufacturer, it is a fine- grained  feldspathic  porcelain  used  to  reduce  abrasiveness  with  a  composition  identical  to  that  of  Cerec  Vitablocs  Mark  II.  In  addition,  both  In-Ceram  and  Spinell  (Vita)  are  available  for  processing in the green state in conjunction with Celay.  www.indiandentalacademy.com
  • 73. Other machinable ceramics being developed include:        Bioglass (Alldent Corp., Rugell, Liechtenstein)        DFE  -Keramik/Krupp  Medizintechnir  GmbH,  Essen,  Germany; Bioverit / Mikrodenta Corp       Empress / Vivadent –lvoclar Corp, Schaan, Liectenstein.  www.indiandentalacademy.com
  • 74. Clinical procedures for Cerec CAD/CAM:  Tooth  preparation  &  Optical  registration  :    Simple,  box  shaped  preparations  suffice  for  the  Cerec  three-dimensional  scanning  and  fabrication  process.  The  procedure  is  not  dependent  on  any  cavity  preparation  size.  Simple  and  complex  proximal  preparations  for  both  inlays  and  onlays  are  readily  and  correctly  milled.  Undercuts  in  cavity  walls do not affect the optical scanning and are tilled in with composite  resin  during  the  cementation.  Straight  walls  with  right  angles  are  recommended The 4 to 6 degree divergence required for cast inlays is not  necessary  using  Cerec  system;  parallel  walls  suffice,  thereby  ensuring  maximal  preservation  of  hard  dental  tissues.  The  occlusal  and  proximal  cavity margins are not beveled. Instead, the cavity walls and enamel edges  are finished using diamond coated finishing stones. The gingival floor is  horizontal  or  declines  between  5  and  15  degrees  towards  the  gingival  margin. The optical scanning is facilitated by having clearly defined walls  and  cavity  margins  and  by  the  use  of  rubber  dam  during  the  optical  scanning  and  cementation  stages.  Gingival  margins  of  the  preparation  must be made clearly visible by placement of retraction cord, or by use of  electrosurgery incision surgery. www.indiandentalacademy.com
  • 75. The optical scanning is facilitated by having clearly defined  walls  and  cavity  margins  and  by  the  use  of  rubber  dam  during  the  optical  scanning  and  cementation  stages.  Gingival margins of the preparation must be made clearly  visible  by  placement  of  retraction  cord,  or  by  use  of  electrosurgery incision surgery. Cementation:  The  small  quantities  of  composite  resin  cement  required  for  cementation  ensures  a  thin  layer  between  the  ceramic  and  the  enamel.  This  thin  layer,  together  with  the  microretentive  bond  within  the  ceramic  and  enamel  apparently  minimizes  the  negative  aspects  of  the  polymerization  shrinkage  and  the  high  thermal  expansion  of  the  cement.  Composite  resin  cements  blend  esthetically with porcelain and enamel. www.indiandentalacademy.com
  • 76.  The clinical advantages of the Cerec system:       The restorations made from prefabricated and optimized,  quality-controlled ceramic porcelain can be placed in one visit.        Transluency  and  color  of  porcelain  very  closely  approximate the natural hard dental tissues.        Further,  the  quality  of  the  ceramic  porcelain  is  not  changed by the variations that may occur during processing in  dental laboratories.        The  prefabricated  ceramic  is  wear  resistant.  The  optimized structure of the ceramic enables optimal polishability  of  the  material  and  low  abrasion  of  the  cusp  enamel  of  thCICERO System    www.indiandentalacademy.com
  • 77. •         Porcelain  ceramic  etching  (HF  5%  for  60  seconds):  microrentive  adhesive  bond  between  porcelain/ceramic  and  the bonding agent/composite resin cement.                       Enamel-etching  technique  (H3PO4  35%  for  30  seconds):  microretentive  adhesive  bond  between  composite  resin cement/bonding agent and enamel.  www.indiandentalacademy.com
  • 78. CICERO System    Computer  Integrated  Crown  Reconstruction  (Elephant  industries).  This  Dutch  system  was  marketed  with  the  Duret  (French)  system,  Sopha  Bioconcept  and  the  Minnesota system (Denti CAD) as the only three systems  capable  of  producing  complete  crowns  and  FPD's.  The  Cicero CAD/CAM system developed for the production of  ceramic-fused-to-metal restorations, makes use of :       Optical scanning       Nearly net -shaped metal and ceramic sintering   Computer-aided  crown  fabrication  techniques.  Alloy  sintering eliminates casting and therewith many processing  steps in the fabrication of metal-ceramic restorations.www.indiandentalacademy.com
  • 79. The  unique  feature  of  the  Cicero  system  is  that  it  produces Crowns, FPD's and inlays with different layers  such  as  metal  and  dentin  and  incisal  porcelains,  for  maximum strength and esthetics. www.indiandentalacademy.com
  • 80. COMET System (Coordinate M Easuri ng Technique, Steinbichler Optotechnik,  GmbH,  Neubeurn,  Germany)    This  system  allows  the  generation  of  a  3-dimensional  data  record  for  each  superstructure  with  or  without  the  use  of  a  wax-pattern.  For  imaging,  2  -  dimensional  line  grids  are  projected  onto  an  object,  which  allows  mathematical  reproduction  of  the  tooth  surfaces.  It  uses  a  pattern  digitization  and  surface  feedback  technique, which accelerates and simplifies the 3-dimensional  representation  of  tooth  shapes  while  allowing,  individual  customization and correction in the visualized monitor image.  www.indiandentalacademy.com
  • 81. Other Digital Systems:   The Duret System (Hanson International):  The Duret CAD-CAM system was developed by Francois Duret and produced by Sopha (Lyon, France). It was made  of 3 discrete units :       A camera module       A CAD module  The milling module.  www.indiandentalacademy.com
  • 82. Optical impression was made using Electro-optical method (a  laser  scanner)  combining  Holography  and  Moire.  The  digitized  data  from  the  CAD  unit  is  combined  with  data  relating to the dynamic movements of jaw which is provided  by  a  proprietary  articulator.  called  the  Access Articulator  linked  to  the  CAD  unit.  This  original  Duret  system  using  highly  sophisticated  and  complex  imaging/  designing  procedure  was  designed  primarily  to  fabricate  full  crowns.  However, since its introduction, both the original system and  the derivative version The SOPHA system have had limited  commercial success.  www.indiandentalacademy.com
  • 83. The SOPHA System (Sopha Bioconcept, Inc Los Angeles, CA) was commercially introduced in 1990/91 in France, but  is apparently no longer available.   The REKOW Svstem (Digital Dental System)  was  developed  by  Dr. Diane Rekow  at  the  University  of      Minnesota.  This  system  initially  used  a  photogrammetric  method  for  intraoral  surface  digitization  of  the  preparation  using  a  pen  digitizer,  but  later  used  mechanical  -  manual  scanning  and  was  marketed  for  dental  laboratory  use  in  Europe by Bego (Bremen, Germany).  www.indiandentalacademy.com
  • 84. The Denti CAD svstem:  Used  a  miniature  mechanical  linkage  designed  by  Foster  Miller  Inc  (Wallham,  Mass  USA)  (unique  robotic  arm  digitizer)  which  can  be  used  both  intraoral1y  or  an  traditional  models  and  dies  for  tracing the image. The Denti CAD system is capable of  producing  restorations  from  alloys,  composites  and  ceramics.  It  uses  a  unique  robotic  arm  digitizer  (a  miniature mechanical linkage), designed by Foster Miller  Inc  (Waltham,  Mass,  U.S.A.)  that  can  be  used  both  intraorally or  traditional  models and  dies  for tracing the  image.  www.indiandentalacademy.com
  • 85. The DUX s stem/The Titan System (DCS groups Dental, Allschwill, Switzerland)  was  introduced  in  1991  by  DCS/GIM -Alldent. It consists of ; A miniature contact digitizer (pantograph) A central computer A milling unit.  The  digitizer  consists  of  a  table  that  shifts  a  die  or  model  beneath ~ contact stylus. This system is currently distributed  under the brand name DCS -President (DCS/ Girrbach).  www.indiandentalacademy.com
  • 86. Advantage of CAD/CAM (Cerec system)over other systems        Eliminates impression model making and fabrication of  temporary prosthesis.        Dentist  controls  the  manufacturing  of  the  restoration  entirely without laboratory assistance.       Single visit restoration and good patient acceptance.       Alternative materials can be used, since milling is not  limited to castable materials.       The use of CAD/ CAM system has helped provide void  free porcelain restorations, without firing shrinkage and with  better adaptation. www.indiandentalacademy.com
  • 87.        It  can  construct  various  types  of  ceramic  restorations.  Hence,  can  be  used  as  an  alternative  to  metallic  restorations  allowing  placement  of  esthetic  inlays/onlays  in  stress  bearing  areas  of  posterior  teeth  (because  of  its  high  resistance  to  abrasion, good marginal adaptation and also as an alternative to  complete  or  full  coverage  crowns  that  require  extensive  tooth  reduction).  Half  and  three-quarter  crowns  and  Cerec  veneer  laminates can also be directly placed as easily.        CAD  -  CAM  device  can  fabricate  a  ceramic  restoration  such as inlay/ onlay at the chair-side.       Eliminates the asepsis link between the patient, the dentist,  operational field and ceramist.         The shapes created in the CAD unit are well defined, and  thus a factor such as correct dimensions can be evaluated and  corrections/modifications  can  be  carried  out  on  the  display  screen itself .  www.indiandentalacademy.com
  • 88.       Using industrially prefabricated ceramic blanks compared  to that fabricated by the dental technician is the maintenance of  consistently  optimally  high  quality  of  the  material  under  industrial conditions controlled by the manufacturer.       Glazing is not required and Cerec inlay onlays can easily  be polished.       Minimal abrasion of opposing tooth structure because of  homogeneity of the material (abrasion does not exceed that of  conventional and hybrid posterior composite resins).        The mobile character of the entire system enables easy  transport from one dental laboratory to another.  www.indiandentalacademy.com
  • 89. Disadvantages:        Limitations in the fabrication of multiple units.       Inability to characterize shades and translucency.       Inability to image in a wet environment (incapable of  obtaining  an  accurate  image  in  the  presence  of  excessive  saliva, water ore blood).       Incompatibility with other imaging system.       Extremely expensive and limited availability.       Still  in  early  introductory  stage  with  few  long-term  studies on the durability of the restorations. www.indiandentalacademy.com
  • 90.        Lack  of  computer-controlled  processing  support  for  occlusal adjustment.       Technique sensitive nature of surface imaging that is  required for the prepared teeth.             Time and cost must be invested for mastering the  technique  and  the  fabrication  of  several  restorations,  to  develop proficiency in the operator.  www.indiandentalacademy.com
  • 91. ANALOGOUS SYSTEMS (COPYING / PANTOGRAPHY METHODS ) Copy milling It  is  the  mechanical  shaping  of  an  industrially  prefabricated  ceramic  material,  which  is  consistent  in  quality  and  its  mechanical  properties  (an  improvement  over  conventional  ceramics).  Copy  milling  includes  fabrication  of  a  prototype  (pro-inlay or crown) usually via impression making and model  preparation. Based on the model, a replica of inlay / crown is  made and fixed in the copying device and transferred 1: 1 into  the chosen material such as ceramic.  www.indiandentalacademy.com
  • 92. Materials used -The choice of material depends in mostly on  the type of margin required for the restoration. Virtually any  geometry  and  size  can  be  copy  milled  as  long  as  there  is  direct  access  of  the  finger  guide  and  cutting  tool  to  the  surfaces involved. Because titanium has a very high melting  temperature,  it  is  difficult  to  conveniently  cast;  however  it  can be copy milled easily and inexpensively. Composite and  ceramic materials are most commonly used for copy milling  dental restorations.  www.indiandentalacademy.com
  • 93. Sono erosion -is based on ultrasonic methods. First, metallic  negative moulds (so-called sonotrodes) are produced of the  desired  restoration,  both  from  the  occlusal  as well  as  from  the basal direction. Both sonotrodes fitting exactly together  in the equational plane of the intended restoration are guided  onto  a  ceramic  blank  after  connecting  to  an  ultrasonic  generator,  under  slight  pressure.  The  ceramic  blank  is  surrounded by an abrasive suspension of hard particles, such  as boron carbide, which are accelerated by ultrasonics, and  thus erode the restoration out of the ceramic blank.  www.indiandentalacademy.com
  • 94. Spark Erosion refers to 'Electrical Discharge Machining'  (EDM) which was used by the tool and die industry during  the 1940's and was adapted into dentistry in 1982. It may  be defined as a metal removal process using a series of sparks to erode material from a workpiece in a liquid medium under carefully controlled conditions.  The liquid  medium usually, is a light oil called the dielectric fluid. It  functions  as  an  insulator,  a  conductor  and  a  coolant  and  flushes  away  the  particles  of  metal  generated  by  the  sparks. www.indiandentalacademy.com
  • 96. Spark Erosion (SAE) unit (Dental Arts Laboratories, Inc, Illinois). A graphite or copper electrode acts as a tool that invades the  piece of base metal and erodes a negative form in the shape of  the  electrode.  The  process  is  accomplished  by  lightning  like  sparks generated between the electrode and the restoration. The  sparks  melt  the  alloy  by  heating  it  to  between  3000°C  and  5000°C.  These  sparks  remove  small  amounts  of  the  metal  substrate within microseconds. The entire process takes place  in a dielectric liquid bath that prevents the alloy from burning.  Stress characteristics can be eliminated through the application  of  spark  erosion  before  or  after  the  ceramic  or  acrylic  resin  surface is added. The spark erosion method can be applied to  any type of conductible metal/ alloy such as gold, base metal  and titanium. This method of erosion has been named as SAE Secotec.  www.indiandentalacademy.com
  • 97. CELAY System The Celay System (Mikrona AG, Spreintenbach, Switzerland)  became  first  commercially  available  in  1992.  It  is  a  high  precision,  manually  operated  copy  milling  machine  and  the  fabrication principle is the same as for 'Key' duplication. This  system  was  originally.  designed  and  intended  for  use  in  the  dental  laboratory;  however.,  it  may  also  be  used  at  the  chairside. Method:         An  impression  (silicone)  of  the  prepared  tooth  is  made  and poured in die stone.        A  prototype  resin  coping  of  the  restoration  (prototype)  called 'pro-inlay' (a provisional inlay) is fabricated on the die  using  a  blue  light-cured  resin  (Celay-Tech,  Mikrona  Technologies, AG, Switzerland). www.indiandentalacademy.com
  • 98.       The cured resin prototype is removed from the die and  fixed on the left side of the relay unit using a special retaining  device (rod shaped).        A  prefabricated  ceramic  blank  (eg-aluminous  core  ceramic'In- Ceram') is fixed in the carving chamber on the right  side of the relay unit.       The reference disk (tracing tool) mechanically traces or  scans the surface of the prototype (pro-inlay). www.indiandentalacademy.com
  • 99.         Duplicating the movements of the reference disk, the  rough milling disk (a coarse diamond instrument with a grit  size  of  126  µm)  and  a  high  speed  turbine  driven  by  air  pressure,  machines  the  rough  contour  of  the  ceramic  restoration  by  synchronized  grinding  over  8-axes  for  effective bulk reduction. For milling a coping, the lumen of  the coping is scanned and milled with coarse ball and round  tipped diamonds. Both sides of the relay unit are connected  by  a  geometric  transfer  mechanism  to  link  the  three- dimensional  movement  of  the  tracing  device  with  the  milling  device.  During  the  milling  process,  the  milling  chamber is protected with a clear cover and a cooling liquid  (Celcool, Mikrona AG) is sprayed on the blank and on the  instrument.  www.indiandentalacademy.com
  • 100.        Since  the  rough  milling  disk  is  slightly  smaller  than  the  scanning disk, it produces a slightly oversized restoration. The final  contour  of  the  restoration  is  developed  with  64µm  grit  finishing  diamond instruments.        To  ensure  a  complete  and  accurate  tracing,  the  pattern  is  coated with contact or indicating powder (Celtouch, Mikrona AG).  This powder is removed on contact with the tracing instruments so  that  areas  already  scanned  can  be  differentiated  from  un  scanned  areas.       The external surfaces are finished with -disks and the internal  surfaces with round-tipped and sharp/ fine-tipped diamond stones.        Final  fit  of  the  machined  inlay/  coping  is  examined,  and  internal discrepancies marked and reworked with repeated scanning       The internal surface is either acid etched or air-abraded before  silanization and cementation. www.indiandentalacademy.com
  • 101. By combining the Celay system, with elements of In-Ceram  technology,  copy  milled  glass-infiltrated  aluminous  core  restorations can be fabricated. In-Ceram or In-Ceram Spinell  materials are machined by Celay and then infiltrated with a  sodium-lanthanum  glass  in  a  manner  similar  to  that  of  conventional In-Ceram restorations, and finally veneered with  Vitadur  Alpha  porcelain.  The  fabrication  of  copy-milled  In- Ceram crown substructures with the Celay system combines  the  positive  mechanical  properties  of  glass-infiltrated  aluminous core materials with the advantages of industrially  prefabricated ceramics.  www.indiandentalacademy.com
  • 102. Advantages over conventional In-Ceram technology:        The  processing  time  is  considerably  shorter  because  die duplication and 10 hour sintering are not necessary.       Glass infiltration can be performed in a conventional  ceramic  furnace  in  40  minutes,  because  of  the  higher  capillary  effect  of  the  industrially  sintered  alumina  blank  (homogenous structure, even particle distribution).          The industrially prefabricated material also has a  higher  flexural  strength  than  the  conventional  In-Ceram  material.  www.indiandentalacademy.com
  • 103. PROCERA System :  The  Procera  System  (Nobel  Biocare,  Gioteborg,  Sweden)  embraces  the  concept  of  CAD/CAM  to  fabricate  dental  restorations. It was developed by Andersson .M & Oden .A in  1993,  through  a  co-operative  effort  between  Nobel  Biocare  AB  (Sweden)  and  Sandvik  Hard  Materials  AB  (Stockholm,  Sweden). It consists  of  a  computer  controlled  design  station  in  the  dental  laboratory  that  is  joined  through  a    modern  communication  link  to  Procera  Sandvik  AB  in  Stockholm,  Sweden,  where  the  coping  is  manufactured  with  advanced  powder technology and CAD/CAM technique.  www.indiandentalacademy.com
  • 105.             Veneering : The sintered alumina coping is returned  to  the  dental  laboratory  for  veneering  thermally  compatible  low  fusing  porcelains  (All  Ceram  veneering  porcelain)  to  create  the  appropriate  anatomic  form  and  esthetic  qualities.  All Ceram veneering porcelain (Ducera) has a coefficient of  thermal expansion adjusted to match that of aluminium oxide  (7x10-6  /°C). It also has the fluorescent properties similar to  that of natural teeth and the veneering procedures require no  special  considerations.  The  reported  flexural  strength  of  the  Procera All Ceram crown (687 Mpa) is relatively the highest  amongst  all  the  all-ceramic  restorations  used  in  dentistry  (attributed to the 99.9% alumina content).  www.indiandentalacademy.com
  • 106. This  system  can  be  used  to  fabricate  two  types  of  dental  restorations :        A  Porcelain-fused-to-metal  restoration  made  of  titanium substructure with a compatible veneering porcelain  using  a  combination  of  machine  duplication  and  spark- erosion (The Procera Method, Noble Biocare).           An  all-ceramic  restoration  using  a  densely  sintered  high-purity  (99.9%)  alumina  coping  combined  with  a  compatible veneering porcelain.  www.indiandentalacademy.com
  • 107. Porcelain-fused-to-metal restoration :  The  Procera  System was initially used to fabricate veneered crowns and  fixed partial dentures by combining a titanium substructure  with compatible low-fusing veneering porcelain such as Ti- Ceram.   Components used: Rods of pre-fabricated cold-worked bars  or solid cylindrical blanks of Commercially pure Titanium  (CpTi) and a low fusing veneering porcelain Ti-Ceram fired  at 750°C.  www.indiandentalacademy.com
  • 108. Procedure: The working time required to fabricate the titanium  coping is about 35 minutes. It requires two procedures : •Mechanical  milling  process  -external  surface  of  titanium  coping  is  milled  from  the  cylindrical  titanium  blank  in  5-6  minutes. •Spark  erosion  process  -The  internal  configuration  of  the  titanium  coping  is  developed  in  about  8  to  10  minutes.  The  internal surface of the titanium coping is air abraded (120µm  particles  of  Al2 O3 )  to  remove  the  surface  oxide  layer  accumulated  during  the  spark  erosion  process.  The  external  surface is also air abraded and then veneered with a low-fusing  veneering porcelain compatible with titanium such as Ti-Ceram  in the conventional manner and fired at 750°C.  •This  method  can  also  be  used  for  milling  implant  system  restorations.  www.indiandentalacademy.com
  • 109. Advantages (mainly related to use of titanium) : •Biocompatibility of titanium - suitable for use mainly in  metal sensitive patients. •Low-cost of titanium relative to noble metal alternatives. •Standardization  of  procedure  for  fabricating  titanium  coping with consistent results. •Accuracy of fit •Ti-Ceram is less abrasive than conventional porcelain.  www.indiandentalacademy.com
  • 110. All-ceramic restoration: The Procera system has also been used to  produce an all-ceramic crown known as Procera All Ceram Crown  which  is  composed  of  a  densely  sintered,  high-purity  (99.9%)  alumina coping combined with a compatible veneering low fusing  porcelain such as All Ceram Porcelain (Ducera).   Other copying systems       Ceramatic II Svstem (Askim Corp. Sweden): In this system  scanning  is  performed  automatically,  and  this  applies  to  the  DCP  system as well.  The DFE -system and Erosonic (ESPE Dental Medizin Corp., Seefeld Germany) both make use of ultrasonic erosion for  the machining of ceramic. For this purpose sonotrodes must be made  in advance as negative forms of the inner and outer contours of the  restoration.  www.indiandentalacademy.com
  • 111. Advantage of milling methods :  •Reducing the labour time needed. •Single  appointment  restorations  (in  a  period  of  3  to  13  minutes). •Can be used for both direct and indirect fabrications.   Advantages of Celay system over the Cerec system : •Celay  could  recreate  all  surfaces  of  a  restoration  whereas  Cerec I could not make the occlusal surface. •Celay  has  the  potential  to  fabricate  crowns  and  short-span  bridges with In-Ceram system (Vita, Germany).  www.indiandentalacademy.com
  • 113. PRESSABLE CERAMICS Shrink-free Ceramics  Leucite-reinforced Glass-ceramics Cerestore           IPSEmpress                                                                                                                       Al-Ceram          Optec          Pressable Ceramic (OPC) www.indiandentalacademy.com
  • 114. SHRINK FREE ALUMINA CERAMICS  The shortcomings of the traditional ceramic material and techniques;  like failures related to poor functional strength and firing shrinkage  limited the use of "all-ceramic" jacket crowns. The development of  non-shrinking ceramics such as the Cere.store systen'l was directed  towards providing an alternate treatment.  Brief History : 1983  - Sozio & Riley  described  the  use  of  shrink-free  ceramic  coping. 1987 - Hullah & Williams described the formulation of shrink free  ceramics Shrink-free ceramics were marketed as two generation of materials  under the commercial names :       Cerestore (Johnson & Johnson. NJ, USA)       Al-Ceram (Innotek Dental Corp, USA)  www.indiandentalacademy.com
  • 115. CERESTORE Non-Shrink Alumina Ceramic (Coors Biomedical Co., Lakewood, Colo.) is a shrink-free ceramic  with crystallized magnesium alumina spinel fabricated by the  injection molded technique to form a dispersion strengthened  core.  Composition Of Shrink Free Ceramic Unfired Composition Fired Composition (Core) A12 O3 (small particles) 43% A12 O3 (large particle) 17% MgO 9% Glass frit 13% Kaolin Clay 4% Silicon resin (Binder) 12% Calcium Stearate 1% Sterylamide 1% A12 O3 (Corundum) 60% MgA12 O4 (Spinel) 22% BaMg2 A13 (Barium Osomilite) 10% www.indiandentalacademy.com
  • 116. Chemistry:  The  shrink-free  ceramic  material  essentially  consists of Al2 O3  and MgO mixed with a Barium glass frits.  On  firing  a  combination  of  chemical  and  crystalline  transformation produces Magnesium aluminate spinel, which  occupies  a  greater  volume  than  the  original  mixed  oxides  (raw ingredients), and thus compensates for the conventional  firing shrinkage of ceramic.       Chemical transformation: During firing from 160 °C to  800°C, the silicone resin (binder) converts from SiO to SiO2  which  in  turn  combines  with  alumina  to  form  aluminosilicate.             Crystalline  transformation:  The  primary  inorganic  reaction  involves  MgO,  Al2 O3   and  the  glass  frit.  The  aluminosilicate  formed  reacts  with  the  incorporated  magnesia to form spinel, which is also one of the strongest  ceramic oxides.  www.indiandentalacademy.com
  • 117. Alumina (AI2 O3 ) + Magnesia (MgO)  Magnesium Aluminate Spinel (MgAl2 O4 )          Al2 O3   +   MgO                  MgAI2 O4 Density (g/cm3 )         3.9   +    3.58                      3.60 Mol wt(g)         101.96  +  40.31                   142.27 Volume cm3          25.72  +  11.26 (36.98)        39.52   (Net Volume Increase - 2.54 cm3 )  Net % volume expansion - 6.87%  Net % linear expansion - 2.35%  www.indiandentalacademy.com
  • 118. During firing from 900 to 1300°C, the glass frit takes MgO &  Al2 O3   into  solution  and  subsequently  precipitates  the  spinel  phase which in conjunction with the coarser alumina particles  acts as strengthener in the fired core. The final microstructure  of  the  core  material  consists  of  a  multiphased  mixed  oxide  system of aluminates. Flexural strength is similar to that of the  traditional alumina core.  Fabrication: By Transfer Molding process which is identical to  injection moulding of acrylic resin denture bases. Copings are  formed  by  transfer-molding  the  ceramic  directly  onto  non- shrinking heat stable epoxy master dies       The wax pattern on the epoxy die is sprued, invested and  burned out. www.indiandentalacademy.com
  • 119.        The  flask  is  placed  on  a  heating  element  (oven)  and  removed after it reaches the molding temperature.       Shrink-free ceramic material supplied as dense pellets is  heated until the silicone resin binder is flowable (160°C) and  then transferred by pressure (under a plunger) directly on the  master  die.  The  silicone  resin  binder  is  thermoplastic  and  thermosetting, hence after injection into the mold and around  the master die, it automatically sets.       The flask is quenched and the ceramic coping is fired in a  micro-processor controlled furnace (1300°C) to achieve zero- shrinkage.       The sintered coping is replaced on the die and veneered  with conventional aluminous porcelain.  www.indiandentalacademy.com
  • 120. Physical  properties  of  First  Generation  Cerestore  Core  Material : Compressive Strength : 10.48 MN/m2 ;  Flexural Strength : 120 MN/m2 Modulus of elasticity : 1.23 x 105MN/m2 Density : 2.9 gm/cm3 Linear coefficient thermal expansion  : 5.6xl0-6 /°C Poison's ratio  : 0.23  www.indiandentalacademy.com
  • 121. Advantages :         Innovative  feature  is  the  dimensional  stability  of  the  core  material  in  the  molded  (unfired)  and  fired  states.  Hence,  failures  related to firing shrinkage are eliminated.       Better accuracy of fit and marginal integrity.        Esthetics enhanced due to depth of colour due to the lack of  metal coping.        Biocompatible  (inert)  and  resistant  to  plaque  formation  (glazed surface).        Radiodensity  similar to that  of  enamel  (presence  of Barium  osumilite phase in the fired core allows radiographic examination of  marginal adaptation and visualization under the crown).       Low thermal conductivity; thus reduced thermal sensitivity.       Low coefficient of thermal expansion and high modulus of  elasticity results in protection of cement seal.  www.indiandentalacademy.com
  • 122. Disadvantages :       Complexity of the fabrication process.        Need  for  specialized  laboratory  equipment  (Transfer  molding process) and high cost.       Inadequate flexural strength (89MPa) compared to the  metal-ceramic restorations.        Poor  abrasion  resistance,  hence  not  recommended  in  patients with heavy bruxism or inadequate clearance.                   Limitations  and  high  clinical  failure  rates  of  the  Cerestore  led  to  the  withdrawal  of  this  product  from  the  market.  The  material  underwent  further  improvement  and  developed  into  a  product  with  a  70  to  90%  higher  flexural  strength. This was marketed under the commercial name Al  Ceram (Innotek Dental, Lakewood, Colo.). www.indiandentalacademy.com
  • 123. Advantage second generation Cerestore Core Materials :       Recrystallization of residual glass - Flexural strength >  22.5 MN/m2  (32,000psi)        High  polycrystalline  content  -  static  fatigue  potential  comparable to high glass content systems.       Same relative thermal conductivity of core and veneer  porcelain  -  Interfacial  stress  comparable  to  ceramometal  systems.       Low coefficient of thermal expansion - Thermal shock  resistance, Interfacial stress.          High modulus of elasticity - Low stress on cement.  www.indiandentalacademy.com
  • 124. LEUCITE REINFORCED PORCELAINS ( Transfer-molded ) Leucite  reinforced  porcelains  can  be  broadly  divided  into  two  groups:       Pressed – •        IPS Empress & IPS Empress 2 (Ivoclar) •        Optec Pressable Ceramic / OPC (Jeneric/Pentron)       Non-Pressed  •        Optec HSP & Optec VP (Jeneric / Pentron) •        Fortress (Mirage)   www.indiandentalacademy.com
  • 125. Pressed Ceramic / Injection Molded Glass Ceramic are leucite- reinforced,  vacuum-pressed  glass-ceramic,  also  referred  to  as  Heat transfer-molded glass ceramics. Eg: IPS Empress (Ivoclar Williams); Optec (Jeneric Pentron) IPS EMPRESS (Ivoclar Williams)  is  a  pre-cerammed,  pre- coloured leucite reinforced glass-ceramic formed from the leucite  system  (SiO2 -AI2 O3 -K2 0)  by  controlled  surface  crystallization,  subsequent process stages and heat treatment. This technique was  first  described  by  Wohlwend & Scharer;  and  marketed  by  Ivoclar (Vivadent Schaan, Liechtensein). The glass contains latent  nucleating agents and controlled crystallization is used to produce  leucite crystals measuring a few microns in the glass matrix. The  partially  pre-cerammed  product  of  leucite-reinforced  ceramic  powder  available  in  different  shades  is  pressed  into  ingots  and  sintered.  The  ingots  are  heated  in  the  pressing  furnace  until  molten and then injected into the investment mold. www.indiandentalacademy.com
  • 127. It  is  a  type  of  feldspathic  porcelain  containing  a  higher  concentration  of  leucite  crystals,  which  increases  the  resistance to crack propagation. A special furnace Empress EP500 designed for this system is  capable of high temperatures. The pressing furnace contains  an  enlarged    heat  dome,  a  pneumatic  pressure  system,  a  reducing valve, and a monometer to control the pressure.  Leucite content Conventional Porcelain Dicor Glass- ceramic IPS Empress Pressable ceramic 30-35% 50-60% 80-85% www.indiandentalacademy.com
  • 128. Brief history of the evolution of pressable ceramics : 1936 - A patented heat-press technique was first described for  the construction of ceramic complete dentures. 1969  -  Droge  described  a  ceramic  press  technique  based  on  the  hot-press  resin  technique.  McPhee  improved  Droge's  technique  to  produce  complete  coverage  metal-ceramic  restorations that accurately duplicated occlusal surfaces. 1983  -  To  overcome  the  disadvantage  of  additional  ceramic  shrinkage during ceramming of castable glass-ceramic, a heat- pressed technique (Empress) was researched and developed by  Arnold Wohlwend  of  the  Dept.  of  Fixed  and  Removable  Prosthodontics  and  Dental  Materials  at  the  University  of  Zurich, Zurich, Switzerland. Since 1986, the development has  proceeded  in  conjunction  with  a  dental  company  Ivoclar  (Schaan Liechtensein). www.indiandentalacademy.com
  • 129. Fabrication:        Lost-wax  technique:  The  wax  pattern  of  the  proposed  restoration  is  invested  in  a  special  flask  (specially  designed  cylindrical crucible former) using IPS Empress special investment  material (phosphate bonded).               Pressing Procedure : Following burnout (at 850°C) the  crucible former is placed into the base of a specialized automated  furnace  (EP  500  Press  furnace)  that  has  an  alumina  plunger.  The  ceramic  ingot  of  the  selected  dentinal  shade  is  placed  under  the  plunger and the entire assembly is preheated to 1,1000 C (at which  temperature the ceramic plasticizes). When the temperature reaches  11500 C  after  a  20  minute  holding  time  the  plunger  presses  the  ceramic under vacuum (0.3-0.4 MPa) into the mold, in which it is  held  under  pneumatic  pressure  (for  a  45-minute  period)  to  allow  complete and accurate fill of the mold.  www.indiandentalacademy.com
  • 130.       Veneering: Shade reproduction may be carried out either by  the : •  Staining technique  :  In  the  staining  technique,  the  selected  dentinal  stain  is  applied  and  thinned  to  the  desired  consistency  with glazing stains before firing and repeated until the necessary  shade  is  achieved  Individual  characterization  can  be  achieved  with final stain firing. • Layering technique  :  In  the  layering  technique,  the  dentinal  core is cut back and wash fired. The latter provides an optimum  bond between the dentinal core and layering material. Appropriate  incisal and neutral materials are mixed with IPS Empress build-up  liquid  and  then  applied  in  thin  layers  before  drying.  This  is  repeated until the correct shape and shades are achieved. The final  restoration  is  glazed  and  fired  before  polishing  is  carried  out.  Internal crown surfaces can be roughened by etching;  silaned and  bonded to tooth using resin-based luting agents. www.indiandentalacademy.com
  • 131. Properties : Reported flexural strengths are in the range of 160  to I80MPa. The increase in strength has been attributed to :       The pressing step which increases the density of leucite  crystals.        Subsequent  heat  treatments  which  initiate  growth  of  additional leucite crystals.   Uses :        Laminate veneers and full crowns for anterior teeth       Inlays, Onlays and partial coverage crowns       Complete crowns on posterior teeth. www.indiandentalacademy.com
  • 133. Disadvantages :       Potential to fracture in posterior areas.       Need for special laboratory equipment such as pressing  oven and die material (expensive)        Inability  to  cover  the  colour  of  a  darkened  tooth  preparation  or  post  and  core,  since  the  crowns  are  relatively  translucent.       Difficulty in removing the crown and cementing medium  during replacement.       Compressive strength and flexural strength lesser than  metal-ceramic or glass-infiltrated (In-Ceram) crowns.  www.indiandentalacademy.com
  • 134. OPTEC (Optimal Pressable Ceramic/OPC):  Optec  stands  for Optimal Technology. It is a type of feldspathic porcelain  with  increased  Ieucite  content  designed  to  press  restorations  using  leucite-reinforced  ceramic  in  a  press  furnace  that  doubles as a conventional porcelain furnace. The manufacturer  claims  that  the  crystalline  leucite  particle  size  has  been  reduced  with  a  more  homogenous  distribution  without  reducing  the  crystalline  content  and  this  leucite  content  increase has resulted in an overall increase in flexural strength  of  OPC  (over  23,000  psi  and  compressive  strength  upto  187,320 psi). However, because of its high leucite content, it  can be expected that its abrasion against natural teeth will be  higher  than  that  of  conventional  feldspathic  porcelain.  Fabrication is similar to IPS Empress  www.indiandentalacademy.com
  • 135. Uses :        Full contour restorations (inlays, veneers full crowns)             Alternately  used  as  a  core  material,  veneered  with  conventional feldspathic porcelain (similar to Optec HSP).  www.indiandentalacademy.com
  • 137.  IPS EMPRESS 2 (Ivoclar) -Second generation of pressable  materials  for  all-ceramic  bridges.  It  is  made  from  a  lithium  disilicate  framework  with  an  apatite  layered  ceramic.  The  glass-ceramic  ingots  are  made  from  lithium  silicate  glass  crystals with crystal content of more than 60 volume%. The  apatite crystals incorporated are responsible for the improved  optical  properties  (translucency,  light  scattering)  which  contribute  to  the  unique  chameleon  effect  of  leucite  glass- ceramic materials.  IPS Empress 2 is used with special investment material, an  EP500 press furnace and a fully automatic high-tech furnace.  Other applications : Cosmopost and IPS Empress cosmoingot  -  core  build-up  system  with  the  pre-fabricated  zircon  oxide  root canal posts and the optimally coordinated ingot.  www.indiandentalacademy.com
  • 138. IPS Empress IPS Empress 2 (frame work) Flexural strength Upto 150 MPa > 400 Mpa www.indiandentalacademy.com
  • 141. In-Ceram Alumina In – Ceram In – Ceram Spinell In – Ceram Zirconia  www.indiandentalacademy.com
  • 142. In-Ceram:  Strengthening  of  porcelain  by  incorporation  of  crystalline material like alumina particles is limited due to the  resultant  porosity  in  the  final  product.  An  improved  high  aluminous  porcelain  system  termed  In-Ceram  (Vita  Zahnfabrik,  Bad  Sackingen,  Germany)  was  developed  by  a  French scientist and dentist Dr. Michael Sadoun (1980) and   first introduced in France in  1988.  The  In-Ceram  Crown  (Vident)  process  involves  three  basic  steps :       Making an intensely dense core by slip casting of fine  grained alumina particles and  sintering.       The sintered alumina core is infiltrated with molten glass  to yield a ceramic coping of high density and strength.                   The  infiltrated  core  is  veneered  with  feldspathic  porcelain and fired.  www.indiandentalacademy.com
  • 143. The densely packed alumina crystals limit crack propagation,  while  the  glass  infiltration  eliminated  residual  porosity  and  improves flexural strength upto 2-5 times that of glass-ceramic  and feldspathic porcelain.   Composition:  In-Ceram  ceramic  consists  of  two  three- dimensional interpenetrating phases :       Alumina/ Al2 03  crystalline (Volume fraction) 99.56 wt%  of with a particle size distribution averaging 3.8µm             An  Infiltration  glass  lanthanum  aluminosilicate  with  small  amounts  of  sodium  and  calcium  (Lanthanum-decreases  the viscosity of the glass to assist infiltration and increases its  refractive index to improve translucency). www.indiandentalacademy.com
  • 144. Fabrication stages :        Slip casting       Glass infiltration       Veneering of core Slip casting : A  slip  is  a  suspension  of  fine  insoluble  particles  in  a  liquid.  Slip casting is the art or science of preparing stable suspensions and forming ware by building up a solid layer on the surface of a porous mold that sucks up the liquid phase by means of capillary forces  (Kingery,  1958).  Slip  casting  is  an  ancient  process  used  to  make  common objects such as beer steins, where a much more watery slip  (a dispersion of alumina particles in water) is poured into a porous  split mold (usually Plaster Of Paris). Slip casting was also used for  the fabrication of ceramic tableware. Sadoun (1989) refined the slip  casting technique to produce In-Ceram. www.indiandentalacademy.com
  • 145. Slip casting for In-Ceram restorations :        A special ultrasonic device (In-Ceram Vitasonic II) is used  for  the  preparation  of  the  slip.  Liquid  (water),  fine  grained  (1- 5um) alumina powder and an additive are combined and stirred  under ultrasonic agitation until a homogenous mass with so-called  rheopex  properties  (when  a  liquid  mass  stiffens  under  sudden  pressure) is achieved.        The  slip  is  painted  on  a  special  plaster  model  made  of  porous  refractory  matrix  (In-Ceram  Special  Plaster,  Vita  Zahnfabrik) needed to compensate for the sintering shrinkage of  the  slip casting (The slip is applied with an acrylic brush in quick  strokes, so that previously applied masses do not dry).       As the liquid from the slip cast is absorbed into the die by  capillary action, additional layers are added (0.5 to 0.7mm thick)  causing the porcelain particles to aggregate and condense tightly  forming a dense layer. www.indiandentalacademy.com
  • 146.        The  mass  can  be  cut  with  a  scalpel,  so  that  the  framework is shaped roughly before the first firing.        The  alumina  layer  is  allowed  to  dry  (30  mins),  and  a  stabilizer is applied to the frame-work, followed by sintering  (10 hour firing cycle of upto 1120 0 C) in a special furnace (In- Ceramat,  Vita    Zahnfabrik)  to  produce  an  organized  microstructure  with  0.3%  sintering  shrinkage.  The  sintered  alumina  particles  in  the  coping  are  partially  fused  at  their  grain  boundaries,  hence  the  coping  is  fragile  and  porous  in  nature.       The plaster shrinks during sintering, so that the sintered  frameworks are easily removed from the die.  www.indiandentalacademy.com
  • 147. Glass – infiltration : A specially formulated low-fusing glass-infiltrate (lanthanum glass)  powder  of  appropriate  shade  and  matching  thermal  expansion  is  mixed with distilled water. The frameworks are set on a platinum-gold foil (Pt-95; Au-5) and  the  glass-water  slurry  is  amply  applied  (to  avoid  air  impactions)  over the external surface of the porous substructure.  The infiltration firing is performed for 4 to 6 hours at 11000  C (in  the  In-Ceramat  furnace),  depending  on  the  size  of  the  restoration  (number of units). The glass infiltrate melts at 800°C and at 1100°C  the molten glass infiltrates / diffuses through the interstitial spaces  of the porus alumina core by capillary action and encapsulates the  fine grain alumina particles. This infiltration firing with glass not  only  confers  the  selected  shade  to  the  core,  it  also  increases  the  strength  of  the  core  to  about  20  times  its  original  strength  and  flexural strength of upto 446 Mpa have been reported. www.indiandentalacademy.com