SlideShare a Scribd company logo
1 of 18
C-VALUE,
C-VALUE PARADOX,
COT CURVE
PRESENTED BY:
MURUGAVENI B
I MSC BIOCHEMISTRY
GENOME:
• Genome is the some total of all genetic material
of an organism.
• Haploid set of genome present in the cell of an
organism.
• Human beings have 3 billion base pairs in their
haploid cells and 6 billion base pairs in their
diploid cells
• An organisms may have either DNA or RNA as
their genetic material.
C- VALUE:
• C-VALUE is the total amount of DNA present in the genome which is
expressed in terms of base pairs or picogram(bp or Mbp or pg)[106
bp= 1Mbp =10_3 pg DNA.
• Term coined by Hewson swift in 1950.
• Genome is chromosomes present within the haploid cell.
• Few examples of C-value;
• It was said that “ as complexity increases, the c-value ( amount of
DNA) increases from simpler to complex forms.”
• For e.g; human beings are the high complex organisms and
bacteria,viruses,mycoplasma,algae,fungi are lower organisms which
are simpler forms.
• This means that the amount of DNA increases from simpler to
complex forms.
• There is a linear relationship between genome size and organism
complexity.
WHAT IS THE C VALUE PARADOX?
• This term is given by C. A. Thomas in 1971, when repeated sequences
of DNA were discovered, explaining in every case no relationship
between genome size and complexity of organisms.
• The DNA content of an organism’s genome is related to the
morphological complexity of eukaryotes but it is observed that it is
different in higher eukaryotes.
• In higher eukaryotes there is no correlation between complexity and
genomic size; this is called the C value paradox. Genome size is the
total amount of DNA contained within the copy of a single genome.
• It is measured in terms of picograms and base pairs.
• Morphologically similar organisms appear to have different amounts
of DNA in their genome.
• Living organisms are classified into two categories: eukaryotes, which
are complex organisms with organized nuclei, and prokaryotes, which
are simpler organisms without organized nuclei.
• It was commonly believed that the complexity of an organism was
reflected in its DNA content, with eukaryotes having a higher
percentage of DNA than prokaryotes.
• However, recent findings have shown that this is not always the case,
and there are many exceptions to this rule. Therefore, it is incorrect
to assume that the amount of DNA in an organism is always
proportional to its complexity.
• In other words, we can say simpler the organism smaller the genome,
complex the organism larger the genome.
• The complexity of an organism can be predicted by knowing the size
of the genome and the size of the genome can be predicted by the
complexity of an organism.
• The eukaryotic genome consists of two parts, coding DNA and non
Coding DNA. Coding DNA is a protein synthesizing DNA and non-
coding DNA is present in multiple copies.
• The human genome consists of 2% of Coding DNA and 98% non
Coding DNA.
EXAMPLE;
• 1. Salamanders have 40 times more DNA in comparison to humans,
whereas humans are more complex organisms compared to
salamanders.
• 2. Housefly and Drosophila both are in the same group but the
housefly C value is higher than Drosophila.
REASON FOR C VALUE PARADOX;
• The reason for this is the presence of repetitive DNA, which means
the sequence of DNA which repeats in the genome many times.
C VALUE ENIGMA:
• C value enigma represents an updated term of the C value paradox, It
was given by Dr. T. Ryan Gregory in 2001.
• C value enigma relates to variation in the amount of non Coding DNA
found within the genomes of different eukaryotes.
• The variation of non-coding DNA varies from species to species.
• C Value enigma explains properly the reason for the C value paradox
and defines what types of non-coding DNA are found in the
eukaryotic genome and its function and what proportions they are
present.
COT CURVE ANALYSIS:
• It is a technique for measuring the complexity (size) of DNA or genome.
• The technique was developed by Roy Britten and Eric Davidson in 1960.
• The technique is based on the principle of DNA renaturation kinetics.
Principle: The rate of renaturation is directly proportional to the number of
times the sequences are present in the genome.
Given enough time all DNA that is denatured will reassociate or reanneal in
a given DNA sample.
The more the repetitive sequence the less will be the time taken for
renaturation.
PROCEDURE:
• The process involves denaturation of DNA
by heating and allowed to reanneal by
cooling.
• The renaturation of DNA is assessed
stereoscopically.
• Large DNA molecules take longer time to
reanneal.
WHAT IS COT VALUE?
• The renaturation depends on the following factors DNA concentration,
reassociation temperature, cation concentration and viscosity.
• Cot=DNA Concentration (moles/L) X renaturation time in seconds X buffer
factor (that accounts for the effects of cations on the speed of
renaturation).
• Cot:Co=Concentration of DNA and t= time taken for renaturation Low cot
value indicates more number of repetitive sequences
• High cot value indicates more number of unique sequences or less number
of repetitive sequences.
• For example: Bacteria- 99.7% Single Copy
• Mouse - 60% Single Copy +25% Middle Repetitive+ 10% Highly Repetitive
HOW TO CALCULATE COT VALUE?
• Cot=DNA Concentration (moles/L) X renaturation time in seconds X
buffer factor (that accounts for the effects of cations on the speed of
renaturation).
• Nucleotide concentration = 0.050 M
• Renaturation time = 344 sec
• Buffer factor, 0.5 M SPB = 5.820
• Cot value = 0.050X 344 X 5.820=100.000
APPLICATION OF COT CURVE ANALYSIS:
• Understanding genome size and
complexity.
• Understanding complexity of
sequences.
• Understanding relative proportion of
single copy and repetitive sequences.
REFERENCES:
• 1. 4th edition biochemistry Donald Voet &
Judith G. Voet.
• 2. Lehninger, 4th edition, Principal of
biochemistry, David L. Nelson & Michael.
THANK YOU…

More Related Content

What's hot

Chromatin structure
Chromatin structureChromatin structure
Chromatin structureNOMI KhanS
 
Dna content,c value paradox, euchromatin heterochromatin, banding pattern
Dna content,c value paradox, euchromatin heterochromatin, banding patternDna content,c value paradox, euchromatin heterochromatin, banding pattern
Dna content,c value paradox, euchromatin heterochromatin, banding patternArchanaSoni3
 
Heterochromatin and euchromatin mains
Heterochromatin and euchromatin mainsHeterochromatin and euchromatin mains
Heterochromatin and euchromatin mainshithesh ck
 
Dna supercoiling and role of topoisomerases
Dna supercoiling and role of topoisomerasesDna supercoiling and role of topoisomerases
Dna supercoiling and role of topoisomerasesYashwanth B S
 
Role of Histone in DNA packaging
Role of Histone in DNA packagingRole of Histone in DNA packaging
Role of Histone in DNA packagingJannat Iftikhar
 
Mitochondrial genome and its manipulation
Mitochondrial genome and its manipulationMitochondrial genome and its manipulation
Mitochondrial genome and its manipulationAvinash Gowda H
 
DNA organization in Eukaryotic cells
DNA organization in Eukaryotic cellsDNA organization in Eukaryotic cells
DNA organization in Eukaryotic cellsSubhradeep sarkar
 
Human multi gene families
Human multi gene familiesHuman multi gene families
Human multi gene familiesSehRish Ali
 
chloroplast genome ppt.
chloroplast genome ppt.chloroplast genome ppt.
chloroplast genome ppt.dbskkv
 
Chloroplast dna
Chloroplast dnaChloroplast dna
Chloroplast dnanj1992
 
Chloroplast Genetics
Chloroplast GeneticsChloroplast Genetics
Chloroplast Geneticsvibhakhanna1
 
Gene families and clusters
Gene families and clusters Gene families and clusters
Gene families and clusters vidyadeepala
 
Mapping the bacteriophage genome
Mapping the bacteriophage genomeMapping the bacteriophage genome
Mapping the bacteriophage genomevibhakhanna1
 
RNA editing
RNA editingRNA editing
RNA editingTenzin t
 
Second genetic code overlapping and split genes
Second genetic code overlapping and split genesSecond genetic code overlapping and split genes
Second genetic code overlapping and split genesgohil sanjay bhagvanji
 
Various model of DNA replication
Various model of DNA replicationVarious model of DNA replication
Various model of DNA replicationEmaSushan
 

What's hot (20)

Chromatin structure
Chromatin structureChromatin structure
Chromatin structure
 
Dna content,c value paradox, euchromatin heterochromatin, banding pattern
Dna content,c value paradox, euchromatin heterochromatin, banding patternDna content,c value paradox, euchromatin heterochromatin, banding pattern
Dna content,c value paradox, euchromatin heterochromatin, banding pattern
 
Heterochromatin and euchromatin mains
Heterochromatin and euchromatin mainsHeterochromatin and euchromatin mains
Heterochromatin and euchromatin mains
 
Dna supercoiling and role of topoisomerases
Dna supercoiling and role of topoisomerasesDna supercoiling and role of topoisomerases
Dna supercoiling and role of topoisomerases
 
Linkage mapping
Linkage mappingLinkage mapping
Linkage mapping
 
Role of Histone in DNA packaging
Role of Histone in DNA packagingRole of Histone in DNA packaging
Role of Histone in DNA packaging
 
Mitochondrial genome and its manipulation
Mitochondrial genome and its manipulationMitochondrial genome and its manipulation
Mitochondrial genome and its manipulation
 
DNA organization in Eukaryotic cells
DNA organization in Eukaryotic cellsDNA organization in Eukaryotic cells
DNA organization in Eukaryotic cells
 
LAMPBRUSH CHROMOSOMES
LAMPBRUSH CHROMOSOMESLAMPBRUSH CHROMOSOMES
LAMPBRUSH CHROMOSOMES
 
Human multi gene families
Human multi gene familiesHuman multi gene families
Human multi gene families
 
chloroplast genome ppt.
chloroplast genome ppt.chloroplast genome ppt.
chloroplast genome ppt.
 
Chloroplast dna
Chloroplast dnaChloroplast dna
Chloroplast dna
 
Chloroplast Genetics
Chloroplast GeneticsChloroplast Genetics
Chloroplast Genetics
 
Gene families and clusters
Gene families and clusters Gene families and clusters
Gene families and clusters
 
Mapping the bacteriophage genome
Mapping the bacteriophage genomeMapping the bacteriophage genome
Mapping the bacteriophage genome
 
chloroplast DNA
chloroplast DNAchloroplast DNA
chloroplast DNA
 
RNA editing
RNA editingRNA editing
RNA editing
 
Chloroplast genome organisation
Chloroplast genome organisationChloroplast genome organisation
Chloroplast genome organisation
 
Second genetic code overlapping and split genes
Second genetic code overlapping and split genesSecond genetic code overlapping and split genes
Second genetic code overlapping and split genes
 
Various model of DNA replication
Various model of DNA replicationVarious model of DNA replication
Various model of DNA replication
 

Similar to C VALUE, C VALUE PARADOX , COT CURVE ANALYSIS.pptx

Cot curve analysis for gene and genome complexity
Cot curve analysis for gene and genome complexityCot curve analysis for gene and genome complexity
Cot curve analysis for gene and genome complexityDr. GURPREET SINGH
 
Eukaryotic Genome Organization
Eukaryotic Genome OrganizationEukaryotic Genome Organization
Eukaryotic Genome OrganizationNirajKumarpal
 
DNA organization or Genetic makeup in Prokaryotic and Eukaryotic Systems
DNA organization or Genetic makeup in Prokaryotic and Eukaryotic SystemsDNA organization or Genetic makeup in Prokaryotic and Eukaryotic Systems
DNA organization or Genetic makeup in Prokaryotic and Eukaryotic SystemsBir Bahadur Thapa
 
Prokaryote genome
Prokaryote genomeProkaryote genome
Prokaryote genomemonanarayan
 
Content of the genome
Content of the genomeContent of the genome
Content of the genomeKiran Modi
 
Genome organization of prokaryotes and eukaryotes
Genome organization of prokaryotes and eukaryotesGenome organization of prokaryotes and eukaryotes
Genome organization of prokaryotes and eukaryotesSuganyaPaulraj
 
UNIQUE AND REPETITIVE DNA.a derailed presentation
UNIQUE AND REPETITIVE DNA.a derailed presentationUNIQUE AND REPETITIVE DNA.a derailed presentation
UNIQUE AND REPETITIVE DNA.a derailed presentationkingmaxton8
 
Molecular genetics
Molecular genetics Molecular genetics
Molecular genetics Afra Fathima
 
Organization of mammalian genome
Organization of mammalian genomeOrganization of mammalian genome
Organization of mammalian genomejagan vana
 
genome structure and repetitive sequence.pdf
genome structure and repetitive sequence.pdfgenome structure and repetitive sequence.pdf
genome structure and repetitive sequence.pdfNetHelix
 
nucleic acid sequencing methods(DNA finger printing,nucleic acid hybridizatio...
nucleic acid sequencing methods(DNA finger printing,nucleic acid hybridizatio...nucleic acid sequencing methods(DNA finger printing,nucleic acid hybridizatio...
nucleic acid sequencing methods(DNA finger printing,nucleic acid hybridizatio...Shiva Kumar
 
Genome concept, types, and function
Genome  concept, types, and functionGenome  concept, types, and function
Genome concept, types, and functionPraveen Garg
 
Cot Curve_Dr. Sonia.pdf
Cot Curve_Dr. Sonia.pdfCot Curve_Dr. Sonia.pdf
Cot Curve_Dr. Sonia.pdfsoniaangeline
 

Similar to C VALUE, C VALUE PARADOX , COT CURVE ANALYSIS.pptx (20)

Cot curve analysis for gene and genome complexity
Cot curve analysis for gene and genome complexityCot curve analysis for gene and genome complexity
Cot curve analysis for gene and genome complexity
 
Gene cloning
Gene cloningGene cloning
Gene cloning
 
Eukaryotic Genome Organization
Eukaryotic Genome OrganizationEukaryotic Genome Organization
Eukaryotic Genome Organization
 
DNA organization or Genetic makeup in Prokaryotic and Eukaryotic Systems
DNA organization or Genetic makeup in Prokaryotic and Eukaryotic SystemsDNA organization or Genetic makeup in Prokaryotic and Eukaryotic Systems
DNA organization or Genetic makeup in Prokaryotic and Eukaryotic Systems
 
Prokaryote genome
Prokaryote genomeProkaryote genome
Prokaryote genome
 
Genome
GenomeGenome
Genome
 
Content of the genome
Content of the genomeContent of the genome
Content of the genome
 
Biotechnology
BiotechnologyBiotechnology
Biotechnology
 
Genome organization of prokaryotes and eukaryotes
Genome organization of prokaryotes and eukaryotesGenome organization of prokaryotes and eukaryotes
Genome organization of prokaryotes and eukaryotes
 
UNIQUE AND REPETITIVE DNA.a derailed presentation
UNIQUE AND REPETITIVE DNA.a derailed presentationUNIQUE AND REPETITIVE DNA.a derailed presentation
UNIQUE AND REPETITIVE DNA.a derailed presentation
 
Power of MBT.ppt
Power of MBT.pptPower of MBT.ppt
Power of MBT.ppt
 
Molecular genetics
Molecular genetics Molecular genetics
Molecular genetics
 
Organization of mammalian genome
Organization of mammalian genomeOrganization of mammalian genome
Organization of mammalian genome
 
genome structure and repetitive sequence.pdf
genome structure and repetitive sequence.pdfgenome structure and repetitive sequence.pdf
genome structure and repetitive sequence.pdf
 
nucleic acid sequencing methods(DNA finger printing,nucleic acid hybridizatio...
nucleic acid sequencing methods(DNA finger printing,nucleic acid hybridizatio...nucleic acid sequencing methods(DNA finger printing,nucleic acid hybridizatio...
nucleic acid sequencing methods(DNA finger printing,nucleic acid hybridizatio...
 
PCR PRINCIPLES
PCR PRINCIPLESPCR PRINCIPLES
PCR PRINCIPLES
 
Genetic Engineering
Genetic Engineering Genetic Engineering
Genetic Engineering
 
Genome concept, types, and function
Genome  concept, types, and functionGenome  concept, types, and function
Genome concept, types, and function
 
Introduction to Gene Cloning and DNA Analysis
Introduction to Gene Cloning and DNA AnalysisIntroduction to Gene Cloning and DNA Analysis
Introduction to Gene Cloning and DNA Analysis
 
Cot Curve_Dr. Sonia.pdf
Cot Curve_Dr. Sonia.pdfCot Curve_Dr. Sonia.pdf
Cot Curve_Dr. Sonia.pdf
 

Recently uploaded

CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...ssifa0344
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxgindu3009
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisDiwakar Mishra
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 

Recently uploaded (20)

CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
TEST BANK For Radiologic Science for Technologists, 12th Edition by Stewart C...
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Presentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptxPresentation Vikram Lander by Vedansh Gupta.pptx
Presentation Vikram Lander by Vedansh Gupta.pptx
 
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral AnalysisRaman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
Raman spectroscopy.pptx M Pharm, M Sc, Advanced Spectral Analysis
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 

C VALUE, C VALUE PARADOX , COT CURVE ANALYSIS.pptx

  • 1. C-VALUE, C-VALUE PARADOX, COT CURVE PRESENTED BY: MURUGAVENI B I MSC BIOCHEMISTRY
  • 2. GENOME: • Genome is the some total of all genetic material of an organism. • Haploid set of genome present in the cell of an organism. • Human beings have 3 billion base pairs in their haploid cells and 6 billion base pairs in their diploid cells • An organisms may have either DNA or RNA as their genetic material.
  • 3. C- VALUE: • C-VALUE is the total amount of DNA present in the genome which is expressed in terms of base pairs or picogram(bp or Mbp or pg)[106 bp= 1Mbp =10_3 pg DNA. • Term coined by Hewson swift in 1950. • Genome is chromosomes present within the haploid cell. • Few examples of C-value;
  • 4. • It was said that “ as complexity increases, the c-value ( amount of DNA) increases from simpler to complex forms.” • For e.g; human beings are the high complex organisms and bacteria,viruses,mycoplasma,algae,fungi are lower organisms which are simpler forms. • This means that the amount of DNA increases from simpler to complex forms. • There is a linear relationship between genome size and organism complexity.
  • 5. WHAT IS THE C VALUE PARADOX? • This term is given by C. A. Thomas in 1971, when repeated sequences of DNA were discovered, explaining in every case no relationship between genome size and complexity of organisms. • The DNA content of an organism’s genome is related to the morphological complexity of eukaryotes but it is observed that it is different in higher eukaryotes. • In higher eukaryotes there is no correlation between complexity and genomic size; this is called the C value paradox. Genome size is the total amount of DNA contained within the copy of a single genome. • It is measured in terms of picograms and base pairs.
  • 6. • Morphologically similar organisms appear to have different amounts of DNA in their genome. • Living organisms are classified into two categories: eukaryotes, which are complex organisms with organized nuclei, and prokaryotes, which are simpler organisms without organized nuclei. • It was commonly believed that the complexity of an organism was reflected in its DNA content, with eukaryotes having a higher percentage of DNA than prokaryotes. • However, recent findings have shown that this is not always the case, and there are many exceptions to this rule. Therefore, it is incorrect to assume that the amount of DNA in an organism is always proportional to its complexity.
  • 7. • In other words, we can say simpler the organism smaller the genome, complex the organism larger the genome. • The complexity of an organism can be predicted by knowing the size of the genome and the size of the genome can be predicted by the complexity of an organism. • The eukaryotic genome consists of two parts, coding DNA and non Coding DNA. Coding DNA is a protein synthesizing DNA and non- coding DNA is present in multiple copies. • The human genome consists of 2% of Coding DNA and 98% non Coding DNA.
  • 8.
  • 9. EXAMPLE; • 1. Salamanders have 40 times more DNA in comparison to humans, whereas humans are more complex organisms compared to salamanders. • 2. Housefly and Drosophila both are in the same group but the housefly C value is higher than Drosophila. REASON FOR C VALUE PARADOX; • The reason for this is the presence of repetitive DNA, which means the sequence of DNA which repeats in the genome many times.
  • 10. C VALUE ENIGMA: • C value enigma represents an updated term of the C value paradox, It was given by Dr. T. Ryan Gregory in 2001. • C value enigma relates to variation in the amount of non Coding DNA found within the genomes of different eukaryotes. • The variation of non-coding DNA varies from species to species. • C Value enigma explains properly the reason for the C value paradox and defines what types of non-coding DNA are found in the eukaryotic genome and its function and what proportions they are present.
  • 11. COT CURVE ANALYSIS: • It is a technique for measuring the complexity (size) of DNA or genome. • The technique was developed by Roy Britten and Eric Davidson in 1960. • The technique is based on the principle of DNA renaturation kinetics. Principle: The rate of renaturation is directly proportional to the number of times the sequences are present in the genome. Given enough time all DNA that is denatured will reassociate or reanneal in a given DNA sample. The more the repetitive sequence the less will be the time taken for renaturation.
  • 12. PROCEDURE: • The process involves denaturation of DNA by heating and allowed to reanneal by cooling. • The renaturation of DNA is assessed stereoscopically. • Large DNA molecules take longer time to reanneal.
  • 13. WHAT IS COT VALUE? • The renaturation depends on the following factors DNA concentration, reassociation temperature, cation concentration and viscosity. • Cot=DNA Concentration (moles/L) X renaturation time in seconds X buffer factor (that accounts for the effects of cations on the speed of renaturation). • Cot:Co=Concentration of DNA and t= time taken for renaturation Low cot value indicates more number of repetitive sequences • High cot value indicates more number of unique sequences or less number of repetitive sequences. • For example: Bacteria- 99.7% Single Copy • Mouse - 60% Single Copy +25% Middle Repetitive+ 10% Highly Repetitive
  • 14. HOW TO CALCULATE COT VALUE? • Cot=DNA Concentration (moles/L) X renaturation time in seconds X buffer factor (that accounts for the effects of cations on the speed of renaturation). • Nucleotide concentration = 0.050 M • Renaturation time = 344 sec • Buffer factor, 0.5 M SPB = 5.820 • Cot value = 0.050X 344 X 5.820=100.000
  • 15.
  • 16. APPLICATION OF COT CURVE ANALYSIS: • Understanding genome size and complexity. • Understanding complexity of sequences. • Understanding relative proportion of single copy and repetitive sequences.
  • 17. REFERENCES: • 1. 4th edition biochemistry Donald Voet & Judith G. Voet. • 2. Lehninger, 4th edition, Principal of biochemistry, David L. Nelson & Michael.