SlideShare a Scribd company logo
1 of 62
Download to read offline
Quicker Ways to a Scalable Process Based on
Sound-Science Based Methodologies
Christoph Herwig
February 11th 2015
18/04/16 Ch. Herwig
Our Mission in
Bioprocess Technology
2
18/04/16 Ch. Herwig
Status quo of bioprocess design
The Scaling Tasks
Investigate! Redo! Hope!Stomach decision !
Process
Development
Piloting ManufacturingScreening
Scale-up Scale-up Scale-up
Productivity
Waste
Process Development Time
Revenue
Period
3
18/04/16 Ch. Herwig
Challenges that can be solved by
faster process
development and
higher titers
prevent and
identify scale-up
effects
prevent failed
batches
4
18/04/16 Ch. Herwig
How can these challenges be
addressed?
โ€ขโ€ฏ Clear and proven workflows for data
analysis
โ€ขโ€ฏ Tools to process data and ensure data
quality
โ€ขโ€ฏ Efficient use of chemometric and
mechanistic data science tools
โ€ขโ€ฏ10
18/04/16 Ch. Herwig
Presentation Workflow
โ€ขโ€ฏ Goal: Quicker Ways to a Scalable Process Based on Sound-Science
Based Methodologies
โ€ขโ€ฏ Processing Strategies to Understand the Production Platform and to
Allow Transferability from Scale to Scale and from Product to
Product โ€œ
6
Conclusions
Model
Building
Tutorial
Linking
MVDA
results to
metabolic
models
Information
extraction
and
Statistical
analysis
Big Data
Processing
18/04/16 Ch. Herwig
GET A GRAB ON YOUR DATA
Big Data Processing
7
18/04/16 Ch. Herwig
Typical industrial process data
8
0 0.2 0.4 0.6 0.8 1
0
500
1000
LEISTUNG MEAS (HK)
0 0.2 0.4 0.6 0.8 1
0
0.5
1
F Druck
0 0.2 0.4 0.6 0.8 1
0
50
100
Substrat 3 Menge
0 0.2 0.4 0.6 0.8 1
0
1
2
Dosierung 2
0 0.2 0.4 0.6 0.8 1
0
1
2
3
Summe Substrat
0 0.2 0.4 0.6 0.8 1
0
500
1000
biol. Wรคrmeleistung
20
30
Substrat 2
40
60
Product
18/04/16 Ch. Herwig
Data import, data alignment and
contextualization
โ€ขโ€ฏ USP & DSP automatic data import
โ€ขโ€ฏ Excel spreadsheet, text documents, LIMS,
PIMS
โ€ขโ€ฏ Data contextualization
โ€ขโ€ฏ measurement units
โ€ขโ€ฏ campaign, phase definition
โ€ขโ€ฏ operators
โ€ขโ€ฏ Data survey & overview
โ€ขโ€ฏ overview plots
โ€ขโ€ฏ data density plots
ร โ€ฏ All data in one format that can easily be analyzed and explored
Exputec Software
Excel
LIMS
PIMS
9
18/04/16 Ch. Herwig
Principal Component Analysis:
Raw Data
โ€ขโ€ฏ Principal component analysis on individual runs to quantify
variations and detect relationships among variables.
10
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
Energieeintrag (HK)
Druck
S3 Menge
Dosierung 2
Summe Substrat
Bio Wรคrmeleistung
S2
Product
S1
Nebenprodukt
Component 1
Component2
B169012
1 2 3
0
10
20
30
40
50
60
70
80
90
100
Principal Component
VarianceExplained(%)
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
18/04/16 Ch. Herwig
GET A HINT
Information extraction and statistical analysis
11
18/04/16 Ch. Herwig
Information extraction โ€“
Completion of data sets
โ€ขโ€ฏ Tools to derive meaningful descriptors
โ€ขโ€ฏ Control quality tools
โ€ขโ€ฏ Descriptors that describe the control quality of
process parameters, such as pH, pO2
โ€ขโ€ฏ RMSE, outlier detection
โ€ขโ€ฏ Bioprocess suite deriving scalable descriptors
โ€ขโ€ฏ ยต, qs, CER, OUR,
โ€ขโ€ฏ Yields
โ€ขโ€ฏ kinetic constants
โ€ขโ€ฏ Calculation of missing entities via combination of
dvariables and sound science first principles
ร โ€ฏ Automatic extraction of meaninful descriptors for different
process phases, USP & DSP processes
0 5 10 15 20 25
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
feed time (h)
myreccalc(1/h)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Yxsreccalc(c-mol/-cmol)
12
18/04/16 Ch. Herwig
PCA on scalable parameters for
individual runs
โ€ขโ€ฏ Principal component
analysis on individual
runs to
โ€ขโ€ฏ build mechanistic
hypothesis and
โ€ขโ€ฏ detect number of
independent mechanisms
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
qX
qP
qS3
qNP
qSsum
Component 1Component2
B162254
1 2
0
10
20
30
40
50
60
70
80
90
100
Principal Component
VarianceExplained(%)
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
qX
qP
qS3
qNP
qSsum
Component 1
Component2 B163552
1 2
0
10
20
30
40
50
60
70
80
90
100
Principal Component
VarianceExplained(%)
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
13
18/04/16 Ch. Herwig
Gathered data to statistical
information
14
โ€ขโ€ฏ Raw data from DoE experiments transferred into information
โ€ขโ€ฏ Influence of pH, pCO2 and pO2 on specific rates and yields
VCD
Glucose
SPECIFICRATEYIELD
18/04/16 Ch. Herwig
Hypothesis Generation using
MVIA Results
โ€ขโ€ฏ Processing of data (concentrations, flows) into
specific rates and yield coefficients (ยต, qs)
โ€ขโ€ฏ Tools
โ€ขโ€ฏ Principal Component Analysis
โ€ขโ€ฏ MLR
โ€ขโ€ฏ PCR
โ€ขโ€ฏ Factor Analysis
โ€ขโ€ฏ Multi-way methods
โ€ขโ€ฏ โ€ฆ
High Performer Low Performer
ร โ€ฏIdentify and understand trends and correlations
ร โ€ฏIdentify interactions across unit operations
18/04/16 Ch. Herwig
NEEDING A SEGREGATED VIEW
OF YOUR CATALYST?
Cell-based Analytics
16
18/04/16 Ch. Herwig
Analytical methods
ยงโ€ฏ Flow Cytometer
ยงโ€ฏ Producers / Non โ€“ producers
ยงโ€ฏ Apoptotic cells
ยงโ€ฏ Dead cells: viability staining
(Cedex)
ยงโ€ฏ Lysed cells (DNA, protein, LDH)
ยงโ€ฏ Product analytics (HPLC)
ยงโ€ฏ Product quality
800msec
25%
18/04/16 Ch. Herwig
Segregation of Biomass
-Lysis-
18
Bio ma ss
l y sis
ph y sio l o g y
m a mm a l ia
0 500 1000 1500 2000 2500
-10
-8
-6
-4
-2
0
2
rdLDH(mU/(mL*h))
Initial LDH (mU/mL)
0 2000 4000 6000 8000 10000
-70
-60
-50
-40
-30
-20
-10
0
10
rdDNA(ng/(ml*h))
Initial DNA (ng/mL)
a) b)
0
10000
20000
30000
40000
50000
rpLDH(ยตU(mL*h))
rmeasLDH
rcorrLDH
d)
0 50 100 150 200 250
time (h)
0
50000
100000
150000
200000
250000
rpDNA(pg/(mL*h))
rmeasDNA
rcorrDNA
c)
0 50 100 150 200 250
time (h)
Degradation rates of a) DNA and b) LDH in fermentation supernatants with respect to initially detected extracellular concentrations of DNA or
LDH. Volumetric rates of c) DNA release into culture supernatants and d) LDH release into culture supernatants from direct measurements of
the respective marker (rmeas) and corrected for marker degradation (rcorr).
18/04/16 Ch. Herwig
Segregation of Biomass
-Lysis-
19
Bio ma ss
l y sis
ph y sio l o g y
m a mm a l ia
b)
0 25 50 75 100 125 150 175
0.00
2.50E6
5.00E6
7.50E6
1.00E7
1.25E7
1.50E7
1.75E7
Cells/mL
time (h)
VCC
TCC
LCC
d)
0 50 100 150 200 250
0.00
2.50E6
5.00E6
7.50E6
1.00E7
1.25E7
1.50E7
Cells/mL
time (h)
VCC
TCC
LCC
c)
0 50 100 150 200 250
0.0
5.0E6
1.0E7
1.5E7
2.0E7
2.5E7
Cells/mL
time (h)
VCC
TCC
LCC
a)
0 50 100 150 200 250
0
2
4
6
8
10
12
Glc(g/L)
time (h)
0
1
2
3
Gln,Lac(g/L)
Glucose
Lactate
Glutamine
4
pH, 1
pH, 2 pH, 3
pH, 1
18/04/16 Ch. Herwig
Segregation of Biomass
-Lysis-
20
Bio ma ss
l y sislysis โ€“ results
Lysis has a influence on the physiological interpretation!
lysis should be considered
ph y sio l o g y
m a mm a l ia
b)
0 50 100 150 200 250
-0.02
0.00
0.02
0.04
ยต(1/h)
time (h)
ยตVCC
ยตLCC
18/04/16 Ch. Herwig
LINK THE HINT TO
MECHANISTICS
Linking Cluster Analysis to Metabolic Models
21
18/04/16 Ch. Herwig
3 4 5 6 7 8 9
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Process Time [h]
Variables
Data Analysis to understand lactate production
and consumption in Cell Culture
Prediction of qLac days by a
PLS-R model
Prediction itself not very useful,
since it is very time consuming
to measure all 66 variables
However, the weights of the
PLS-R model can be used to
find mechanistic links
11 Batches from a DoE
66 variables (Specific rates, MFA-results etc.)
8 Samples each
-2 0 2 4 6 8 10
-2
-1
0
1
2
3
4
5
6
7
8
Actual
Predicted
1 2 3 4
0
10
20
30
40
50
60
70
80
90
100
Number of PLS components
PercentVarianceExplainediny
22
18/04/16 Ch. Herwig
0 2 4 6 8 10
0
1
2
3
4
Process Time [d]
0 2 4 6 8 10
0
1
2
3
4
Process Time [d]
0 2 4 6 8 10
0
1
2
3
4
Process Time [d]
Cluster 1
Cluster 2
Cluster 3
Cluster 4
PLS-R variable importance (VIP)
for qLac
Cluster detection (k-means cluster analysis) based
on PLS-R VIP to detect main correlations with
response (e.g.: qLac) ร  identify mechanistics
VIP > 1 variable is significant
VIP < 1 variable is insignificant
Phase detection by k-means cluster analysis (blues
lines)
Average VIPs
23
18/04/16 Ch. Herwig
Use simplified metabolic flux
models
โ€ขโ€ฏ Only the Central Carbon
Metabolism is considered
โ€ขโ€ฏ Redox and energy metabolism
โ€ขโ€ฏ Amino acid metabolism
โ€ขโ€ฏ But which measurements are now
really omportantn in which phase?
24
18/04/16 Ch. Herwig
Glc GPI ald GAPDH pgk eno pepkin g6Pdh prodh
1
2
3.1
4.1
5.2
6.2
7.3
8.3
Variables
ProcessTime[d]
0
0.5
1
1.5
2
Ala Arg Asp Asn Glu Gln Gly His Ile Leu Lys Phe Pro Trp Tyr Val mu qp Formate NH4 Lip Anap PPP_nox gpt asp-got aspg gls leu cat ile cat shmt phe deg serc3 mehf sink
1
2
3.1
4.1
5.2
6.2
7.3
8.3
Variables
ProcessTime[d]
Met Ser Thr Cit Pyr Suc pdh cisac icdh akgdh succdh fum maldh val cat thr deg Resp
1
2
3.1
4.1
5.2
6.2
7.3
8.3
Variables
ProcessTime[d]
0
0.5
1
1.5
2
arg cat glud his deg lys deg met deg Trp deg Tyr cat NH3 sink
1
2
3.1
4.1
5.2
6.2
7.3
8.3
Variables
ProcessTime[d]
0
0.5
1
1.5
2
Clusters variable importance(VIP) for
Lactate production/consumption
Cluster 1: Important variables for qLac for all time points; mainly related to glycolysis ร  Overflow / Lactate
Cluster 3: Important variables for qLac at the early phase (plus late phase); mainly related to TCA cyle activity
Cluster 4: Important variables for qLac at the late time points; probably related to nutrient limitation / stationary phase
Red: important to predict qLac; a value > 1 means the variable is significant
Blue: not important to predict qLac; a value < 1 means the variable is insignificant
Cluster 2: Less important variables for qLac
25
18/04/16 Ch. Herwig
Mechanistics insights by target
oriented use of statistical tools
โ€ขโ€ฏ Highly target-oriented analysis of large data sets by combination of
different data driven methods
โ€ขโ€ฏ Do not get lost in the woods!
โ€ขโ€ฏ Automated clustering of process
variables in to physiologically
meaningful groups with regard
to the response variable
(e.g.: qLac)
โ€ขโ€ฏ Mechanistic insight can be
acquired from data driven
methods if the tools are
applied appropriately
26
18/04/16 Ch. Herwig
GET IT UNDERSTOOD AND
OPTIMIZED
Mechanistic Model Building Tutorial
27
18/04/16 Ch. Herwig
The Modelling Work Flow
Structure	
Identification
Parameter	
Estimation
Model	Validation
Model	
Refinement
Model	Use
YES
NO
Experimental	
Data
Priori	
Knowledge
28
18/04/16 Ch. Herwig
Mechanistic Model for
Glucose Uptake Kinetics
29
ยงโ€ฏ Propose hypothesis:
โ€‹ ๐‘žโ†“๐บ๐‘™๐‘โŸ= ๐‘“( ๐บ๐‘™๐‘)
ยงโ€ฏ Formulate equation:
โ€‹ ๐‘žโ†“๐บ๐‘™๐‘โŸ=โ€‹ ๐’’โ†“๐‘ฎ๐’๐’„, ๐’Ž๐’‚๐’™โŸโˆ™โ€‹[ ๐บ๐‘™๐‘]/
[๐บ๐‘™๐‘]+โ€‹ ๐‘ฒโ†“๐‘ฎ๐’๐’„โŸโŸ
ยงโ€ฏ Estimate parameters
individually by minimizing cost
function โˆ‘โ†‘โ–’(โ€‹
๐‘ฆโ†“๐‘–, ๐‘š๐‘’๐‘Ž๐‘ ๐‘ข๐‘Ÿ๐‘’๐‘‘โŸโˆ’โ€‹
๐‘ฆโ†“๐‘–, ๐‘š๐‘œ๐‘‘๐‘’๐‘™โŸ)ยฒโŸ
ยงโ€ฏ Compare with literature
18/04/16 Ch. Herwig
Toolset for model calibration
โ€ขโ€ฏ Model calibration:
โ€ขโ€ฏ finding suitable estimates for model
parameters
โ€ขโ€ฏ Sensitivity and identifiability analysis:
โ€ขโ€ฏ Link to your measurements and
processing platform
30
18/04/16 Ch. Herwig
Mechanistic optimization
โ€ขโ€ฏ Use a kinetic model for model-based
optimization
โ€ขโ€ฏ Development of mechanistic process
model
โ€ขโ€ฏ In-silico optimization using optimization
algorithms
โ€ขโ€ฏ Identification of optimal operating
conditions
โ€ขโ€ฏ Control Implementation
ร  higher productivity using less experiments
ร  Knowledge on mechanistic relationships can
be transferred to the next product
31
18/04/16 Ch. Herwig
CONCLUSIONS
32
18/04/16 Ch. Herwig
Our approach for bioprocess design
33
18/04/16 Ch. Herwig
Process		
Parameters	
Process	
Variables	
Vfeed	
cfeed	
Vgasin	
cgasin	
rpm	
โ€ฆ	
.
.
QAs	
cproduct	
cBDW	
cO2out	
cCO2out	
โ€ฆ	!	
Predic?ve	
Processing	
Inverse	
Analysis	
Predic?ve	
Processing	
Structured	
	Process	Development	 From good data via understanding
to prediction
34
CONSISTENT
DATA SET
INFORMATION &
EXPERIMENTAL DESIGN
KNOWLEDGE &
MODELLING
OPTIMIZED & PREDICTIVE
CONTROL
18/04/16 Ch. Herwig
Monitoring	
Process			
Parameters	
(Inputs)	
Process		
Variables	
(Outputs)	
Vfeed	
cfeed	
Vgasin	
cgasin	
rpm	
โ€ฆ	
.
.
QAs	
cproduct	
cXL	
xO2out	
xCO2out	
โ€ฆ	
Data	Quality	and	Consistency	
Physiological	Process	Control	
Physiological	Experimental	Design		
!	
					Mul?variate		Control	along	
Design	Space	(MIMO)	Mechanis?c	Modeling	
Real-?me	Implementa?on	
CELL	
Plenty of tools available!
Need to be transferred for industrial use!
35
Physiological	Informa?on	Extrac?on	
Experimental	Automa?on	
&	Parallel	Approaches	
Model	Predic?ve	Control	
Op?mal	Control	
Model	Based	Op?miza?on	Predic?ve	
Processing	
														Mechanis?c									
Hypotheses	Genera?on	
Mul?variate	Informa?on	Processing	SoR	Sensors	 Inverse	
Analysis
18/04/16 Ch. Herwig
Take Home
Workflow
36
โ€ขโ€ฏ Bioprocess development and manufacturing challenges can be
solved by process data science
โ€ขโ€ฏ Proven workflows and a tailored toolset for bioprocess data
analysis and process optimization is necessary
Tranfer
knowledge to
other
process /
product / site
Optimize the
process by
mechanistic
models
Link your hint
to
mechanistic
hypotheses
Get a hint
using
information
extraction and
statiscial tools
Get a grab on
your data by
tailored
workflows
18/04/16 Ch. Herwig
Investigate! Redo! Hope!Stomach decision !
Process
Development
Piloting ManufacturingScreening
Scale-up Scale-up Scale-up
Productivity
Waste
Process Development Time
Revenue
Period
Benefits through
shown Approach
37
Process	
Development	
Pilo?ng	 Manufacturing	Screening	
Scale-up	
Increase	produc1vity		
	by	sustained	op1miza1on,	scalability	and	
	elimina1on	of	fail	batches	
Cut	Process	Development	Time	by	50%	 Revenue	Period	
Inves?gate!	 Verify!	 Control	&	predict!	Explore!	
Scale-up	 Scale-up
18/04/16 Ch. Herwig
Process	
-	undisclosed	
	
	
	
	
Design	&	CQAs	
-	Freedom	during	design	
-	Proof	of	Concept	for		
controlling	QTPP	
	
	
	
	
	
Proven	Pa?ent	Bene๏ฌt	
-	QTPP	
-	E๏ฌƒcacy,	Safety	
-	Clinical	Phase	I,	II	&	III	
Process	
-	complete	disclosure	
New	Product	Biosimilar	
Proof	of	Concept	
Mechanis?cal	Models	via	Physiology	
โ€ฏ First	Principles	
โ€ฏ Metabolic	Founda?ons	
โ€ฏ PlaZorm	Knowledge	
โ€ฏ Risk	Management	
โ€ฏ Veri๏ฌed	Scale	Down	Models	
Design	Methodology	
Relevance for
new products & biosimilars
Design	&	CQAs	
-	Fixed	CQA	limits	from	
ini?al	approval	
	
	
Proof	of	Similarity	
38
18/04/16 Ch. Herwig
Thank you
for your attention!
Univ.Prof. Dr. Christoph Herwig
Vienna University of Technology
Institute of Chemical Engineering
Research Division Biochemical Engineering
Gumpendorferstrasse 1a/ 166 - 4
A-1060 Wien
Austria
emailto: christoph.herwig@tuwien.ac.at
Tel (Office): +43 1 58801 166400
Tel (Mobile): +43 676 47 37 217
Fax: +43 1 58801 166980
URL : http://institute.tuwien.ac.at/chemical_engineering/bioprocess_engineering/EN/
https://www.facebook.com/BioVTatTUWien
39
18/04/16 Ch. Herwig
BACK UP SLIDES
40
18/04/16 Ch. Herwig
IMPLEMENTATION FOR PROCESS
CONTROL
Get it ON-LINE!
41
18/04/16 Ch. Herwig
Computational environment for real-
time implementation and control
โ€ขโ€ฏ Object oriented design of
different data storage and
processing components.
โ€ขโ€ฏ Classes are able to store
data, perform specific
functions, and communicate
with each other
42
Process Information
Management System
OPC server
Calculations:
feeding rates
offgas analysis
volume calculation
outlier detection
โ€ฆ
Observer
Bioprocess object
yu(t0)
y
Model-predictive
controller & PID
u(t0)
xpred
u(t1)
y: measurements/outputs (e.g. offgas)
u: system inputs (e.g. feeding rates)
x: system states (e.g. concentrations)
18/04/16 Ch. Herwig
Calculation of respiratory rates and
outlier detection
43
Bioprocess
Calculator offgas
Calculator outlier
Observer
FAIR,FO2,O2_offgas,CO2_offgas
OUR, CER, RQ
OUR, CER outliers removed
7.3565 7.3566 7.3566
x 10
5
0
0.1
0.2
0.3
0.4
Original signal
New signal 7.3565 7.3566 7.3566
x 10
5
0
0.5
1
G
Grubbs distance
7.3565 7.3566 7.3566
x 10
5
0
0.02
0.04
0.06
stdandard deviation
7.3565 7.3566 7.3566
x 10
5
0
0.1
0.2
0.3
0.4 New signal
18/04/16 Ch. Herwig
Real-time implementation via particle
filter estimations
0 50 100 150
0
5
10
15
20
25
Time [h]
[g/l]
Biomass
0 50 100 150
0
5
10
15
20
A0 and A1 (soft-sensor)
[g/l]
Time [h]
0 50 100 150
0
0.05
0.1
0.15
0.2
Time [h]
[C-mol/h]
Biomass conversion rate (soft-sensor)
0 50 100 150
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Time [h]
[g/l]
Glucose (measured)
0 50 100 150
-2
0
2
4
6
8
10
Time [h]
[g/l]
Gluconate (measured)
0 50 100 150
0
1
2
3
4
5
6
Time [h]
[g/l]
Penicillin (measured)
0 50 100 150
-0.12
-0.1
-0.08
-0.06
-0.04
-0.02
0
0.02
Time [h]
[mol/h]
OUR (measured)
0 50 100 150
-0.02
0
0.02
0.04
0.06
0.08
0.1
0.12
Time [h]
[C-mol/h]
CER (measured)
measured
soft-sensor
A0
A1 measured
soft-sensor
measured
soft-sensor
measured
soft-sensor
measured
soft-sensor
measured
soft-sensor
measured
soft-sensor
44
18/04/16 Ch. Herwig
LIFE CYCLE SOLUTION
GET IT DONE YOURSELF
45
18/04/16 Ch. Herwig
CMLCM: Computational model
life-cycle management
46
18/04/16 Ch. Herwig
Enabling Method
Implementation
Customiza?on	&	
Implementa?on	
of		
Tools	&		Solu?ons	
	
Quan?๏ฌca?on	
Data	
Informa?on	
Knowledge	
Scale-Up	
Op?miza?on	
Risk	Reduc?on	
Quality	
47
Manufacturers	
CMOs
Get There Faster.
Exputecโ€˜s Software Solutions by INCYGHT
ยงโ€ฏ Ef๏ฌcient implementation of our solutions at your site using
Exputec INCYGHT software
Batch 1 Batch 2 Batch N
Campaign analysis
. . .
MVIA
(Multivariate
Information
Analysis) for
extraction of
mechanistic
information out of
procee data
M-DoE
(Mechanistic
Design of
Experiments) for
reduced number
of experiments.
Multivariate
statistical methods
for exploratory
data analysis:
hypothesis
generation and
testing
Proven workflows
for identification of
sources of
variability,
increasing process
robustness, and
optimization.
48
18/04/16 Ch. Herwig
a)	Tradi?onal	feed	pro๏ฌle	design	 b)	Physiological	feed	pro๏ฌle	design	
Accelerate!
Wechselberger	et.	al.	2012	
Speed up by using
physiological information in DoEs!
ร˜โ€ฏ Careful selection of physiological factors for the DoE
significantly reduces number of experiments
49
18/04/16 Ch. Herwig
ร˜โ€ฏ Dynamic experiments increase information & throughput
Accelerate!
a)	Quick	iden?๏ฌca?on	of	scalable	
rela?onships	
b)	Dynamic	feeding	pro๏ฌles	based	
on	speci๏ฌc	substrate	uptake	rate	
Zalai	et.	al.	2012	
Speed up by using physiological
information & dynamics!
50
18/04/16 Ch. Herwig
NECESSARY TO LOOK MORE
DETAILED INTO BIOMASS?
51
Bio ma ss
18/04/16 Ch. Herwig
Segregation of Biomass
-Lysis-
52
Bio ma ss
l y sisCell Lysis
deIinition:
โ€œloss of integrity of a cell (destruction of the cell membrane)โ€
motivation:
lysed cells were once "produced" and can be included in the description of
the growth kinetics
lysed cells could serve as a nutrient source
an inIluence on the product quality can not be excluded
measurement methods:
classiIication over intracellular substances in the supernatant
mammalians:
โ€ขโ€ฏ LDH measurements in the supernatant
โ€ขโ€ฏ DNA measurements in the supernatant
microbials
โ€ขโ€ฏ C-balance
ph y sio l o g y
m a mm a l iaM ic r o bia l s
18/04/16 Ch. Herwig
Quality by Design
Process Parameters
Temperature
Stirrer Speed
Dissolved Oxygen
pH
Air Flow
Pressure
Feedrate
Nutrient concentrations
Inducer concentration
Biomass concentration
Induction Time
Conductivity
Redox level
Strain
Expression cassette
โ€ฆ
Product quality attributes
Enzyme activity
Titer
Purity
Stability
Batch-to-batch variability
Efficiency
Cost of product
Space-time-yield
Protein folding
Glycosylation pattern
Viability
Ease of further processing
(downstream)
Potential risks for end-user
โ€ฆ
???
18/04/16 53
18/04/16 Ch. Herwig
Process Parameters
Temperature
Stirrer Speed
Dissolved Oxygen
pH
Air Flow
Pressure
Feedrate
Nutrient concentrations
Inducer concentration
Biomass concentration
Induction Time
Conductivity
Redox level
Strain
Expression cassette
โ€ฆ
Product quality attributes
Enzyme activity
Titer
Purity
Stability
Batch-to-batch variability
Efficiency
Cost of product
Space-time-yield
Protein folding
Glycosylation pattern
Viability
Ease of further processing
(downstream)
Potential risks for end-user
โ€ฆ
Quality by Design
???
54
18/04/16 Ch. Herwig
Current interpretation of QbD:
Cooking Recipe: DoE
Speci๏ฌc	Ac?vity	
[kU/gbiomass]
Induc?on	Phase	
Temperature	
[ยฐC]
Induc?on	Phase	
Feeding	
Exponent	k
โ€œDesign Spaceโ€
Data
CPPs
CQA
CQA
55
CPPs
18/04/16 Ch. Herwig
DOE: Insignificant factors-
all for nothing?
โ€ขโ€ฏ Factors turn out to be insignificant
โ€ขโ€ฏ Variance cannot be explained by the
original factors
โ€ขโ€ฏ Possible reasons:
โ€ขโ€ฏ 1) wrong factors were chosen for
investigation
โ€ขโ€ฏ 2) noise on experiment higher than effects
of factors
โ€ขโ€ฏ How to proceed?
ร  Go beyond MLR analysis for the efficient
exploitation of DoEs!
-0,10
-0,05
-0,00
0,05
x_EFB
ยต_FB
maxspectitersupg/g
N=9 R2=0,604 RSD=0,002799
DF=6 Q2=-0,347 Conf. lev.=0,95
-0,10
0,00
0,10
x_EFB
maxspectiterpelletg/g
N=9 R2=0,0
DF=6 Q2=-1,
Factor
Transformation
MVDA
Knowledge
56
18/04/16 Ch. Herwig
-0,10
-0,05
-0,00
0,05
x_EFB
ยต_FB
maxspectitersupg/g
N=9 R2=0,604 RSD=0,002799
DF=6 Q2=-0,347 Conf. lev.=0,95
-0,10
0,00
0,10
maxspectiterpelletg/g
Run DoE
MLR analysis on
original factors
Data Processing,
Analyze more
descriptors of the
process
MVDA
Exploratory analysis
Hypythesis generation:
New factors
Sort out co-linear
factors (e.g.variance
inflation factor)
MLR analysis on
transformed factors
Recycling of DoE Results
57
-1,5
-1,0
-0,5
0,0 ยต
maxspectitersupg/g
N=9 R2=0,510 RSD=0,002881
DF=7 Q2=0,313 Conf. lev.=0,95
-1,5
-1,0
-0,5
0,0
ยต
maxspectiterpelletg/g
N=9 R2=0,335 RSD=0,003226
DF=7 Q2=0,047 Conf. lev.=0,95
18/04/16 Ch. Herwig
Linking metabolite production and
substrate uptake
58
Hypothesis:
overflow metabolism is
coupled to high glucose
consumption rate
a) Threshold
๐‘‡โ„Ž๐‘Ÿ๐‘’๐‘ โ„Ž๐‘œ๐‘™๐‘‘โ‰ˆโˆ’0.11 [โ€‹ ๐‘š ๐‘š๐‘œ๐‘™/โ€‹
10โ†‘9โŸ๐‘๐‘’๐‘™๐‘™๐‘  โˆ—โ„ŽโŸ]
b) Linear equation
๐‘“๐‘œ๐‘Ÿ โ€‹ ๐‘žโ†“๐‘”๐‘™๐‘โŸ< ๐‘‡โ„Ž๐‘Ÿ๐‘’๐‘ โ„Ž๐‘œ๐‘™๐‘‘
โ€‹ ๐‘žโ†“๐‘™๐‘Ž๐‘โŸ=โˆ’0.25โˆ’2.21โˆ™โ€‹ ๐‘žโ†“๐‘”๐‘™๐‘โŸ
๐‘…๐‘€๐‘†๐ธ = 0.028 [โ€‹ ๐‘š ๐‘š๐‘œ๐‘™/โ€‹10โ†‘9โŸ
โˆ— ๐‘๐‘’๐‘™๐‘™๐‘ โˆ—โ„ŽโŸ]
18/04/16 Ch. Herwig
Vom Labor in den Prozess
2x
@50%
Toolset Integration
Data- Knowledge
Management
Process
Understanding
59
18/04/16 Ch. Herwig
Sensitivity of model outputs to
variations in one model parameter
40 datasets were simulated by applying ยฑ2% variations on a process value
60
0 100 200
0
10
20
30
40
cXLtot
Time [h]
0 100 200
0
0.5
1
cS1
Time [h]
0 100 200
0
5
10
cPEN
Time [h]
0 100 200
0
2
4
6
cPOX
Time [h]
0 100 200
-0.2
-0.15
-0.1
-0.05
0
OUR
Time [h]
0 100 200
0
1
2
3
4
5
cA0
Time [h]
0 100 200
0
10
20
30
40
cA1
Time [h]
0 100 200
0
2
4
6
8
10
cS2
Time [h]
0 100 200
0
0.05
0.1
0.15
0.2
CER
Time [h]
0 100 200
0
0.05
0.1
0.15
0.2
rX
Time [h]
0 100 200
-0.25
-0.2
-0.15
-0.1
-0.05
rS1
Time [h]
0 100 200
-0.3
-0.2
-0.1
0
0.1
0.2
rS2
Time [h]
18/04/16 Ch. Herwig
Identifiability of parameter
subsets
โ€ขโ€ฏ The colinearity index measures the degree of linear
dependence of model parameters.
โ€ขโ€ฏ It equals unity if the columns are linearly dependent.
โ€ขโ€ฏ If it exceeds 10-15, then the corresponding parameter
subset is poorly identifiable.
61
0 1 2 3 4 5 6 7
0
5
10
15
20
25
30
35
40
45
50
minimumofcollinearityindex
size of a parameter sets
Parameter Unit
Optimized
Value
Literature
Value Reference
๐’€ ๐‘ณ๐’‚๐’„
๐‘ฎ๐’๐’„
๐‘š๐‘š๐‘œ๐‘™/๐‘š๐‘š๐‘œ๐‘™ โˆ’1,11 โˆ’1,10 (Lee et al., 2003)
๐’’ ๐‘ฎ๐’๐’,๐’‚๐’—๐’“.๐’‘๐’†๐’“ ๐’Ž๐‘ด ๐‘ฎ๐’๐’ ๐‘š๐‘š๐‘œ๐‘™/(๐‘š๐‘€ โ‹… ๐‘๐‘’๐‘™๐‘™ โ‹… โ„Ž) โˆ’1,99 โ‹… 10โˆ’11
โˆ’4 โ‹… 10โˆ’11 (Lee et al., 2003)
๐‘ฒ ๐‘ฎ๐’๐’„ ๐‘š๐‘€ 8,75 2,25 (Aehle et al., 2012)
๐’’ ๐‘ณ๐’‚๐’„,๐‘ช๐’๐’๐’”๐’–๐’Ž๐’‘๐’•๐’Š๐’๐’ ๐‘š๐‘š๐‘œ๐‘™/(๐‘๐‘’๐‘™๐‘™ โ‹… โ„Ž) โˆ’1,80 โ‹… 10โˆ’10
๐’’ ๐‘ฎ๐’๐’„,๐’Ž๐’‚๐’™ ๐‘š๐‘š๐‘œ๐‘™/(๐‘๐‘’๐‘™๐‘™ โ‹… โ„Ž) โˆ’3,37 โ‹… 10โˆ’10
โˆ’1,8 โˆ— 10โˆ’10 (Aehle et al., 2012)
ยต ๐’Ž๐’‚๐’™ โ„Žโˆ’1 0,024 0,035 (Craven et al., 2013)
๐‘ฒยต,๐‘ฎ๐’๐’„ ๐‘š๐‘€ 3,81 4,8 (Dhir et al., 2000)
ยต ๐’…๐’†๐’‚๐’•๐’‰,๐’Ž๐’‚๐’™ โ„Žโˆ’1 0,015 0,019 (Dhir et al., 2000)
๐‘ฒ๐’Š,๐‘ฎ๐’๐’„ ๐‘š๐‘€ 1,58
ยต ๐’…๐’†๐’‚๐’•๐’‰,๐’„๐’๐’๐’”๐’• โ„Žโˆ’1 0,0015 0,00266 (Borchers et al., 2013)
๐‘ฒ๐’๐’š๐’”๐’Š๐’” โ„Žโˆ’1 0,004 0,04 (Craven et al., 2013)
๐’€ ๐‘ต๐‘ฏ ๐Ÿ’
+
/๐‘ฎ๐’๐’ ๐‘š๐‘š๐‘œ๐‘™/๐‘š๐‘š๐‘œ๐‘™ โˆ’0,54 โˆ’0,68 (Craven et al., 2013)
18/04/16 Ch. Herwig
Validation of parameter estimation via
independent experiments
62

More Related Content

Similar to BILS 2015 Christoph Herwig

High-throughput and Automated Process Development for Accelerated Biotherapeu...
High-throughput and Automated Process Development for Accelerated Biotherapeu...High-throughput and Automated Process Development for Accelerated Biotherapeu...
High-throughput and Automated Process Development for Accelerated Biotherapeu...KBI Biopharma
ย 
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...Chromatography & Mass Spectrometry Solutions
ย 
The importance of data curation on QSAR Modeling: PHYSPROP open data as a cas...
The importance of data curation on QSAR Modeling: PHYSPROP open data as a cas...The importance of data curation on QSAR Modeling: PHYSPROP open data as a cas...
The importance of data curation on QSAR Modeling: PHYSPROP open data as a cas...Kamel Mansouri
ย 
Host Cell Protein Analysis by Mass Spectrometry | KBI Biopharma
Host Cell Protein Analysis by Mass Spectrometry | KBI BiopharmaHost Cell Protein Analysis by Mass Spectrometry | KBI Biopharma
Host Cell Protein Analysis by Mass Spectrometry | KBI BiopharmaKBI Biopharma
ย 
Webinar - Pharmacopeial Modernization: How Will Your Chromatography Workflow ...
Webinar - Pharmacopeial Modernization: How Will Your Chromatography Workflow ...Webinar - Pharmacopeial Modernization: How Will Your Chromatography Workflow ...
Webinar - Pharmacopeial Modernization: How Will Your Chromatography Workflow ...Waters Corporation
ย 
Tools to Detect sub-1ppm Host Cell Proteins in Biological Products at Every D...
Tools to Detect sub-1ppm Host Cell Proteins in Biological Products at Every D...Tools to Detect sub-1ppm Host Cell Proteins in Biological Products at Every D...
Tools to Detect sub-1ppm Host Cell Proteins in Biological Products at Every D...SCIEX
ย 
Webinar: How to Develop a Regulatory-compliant Continued Process Verificatio...
Webinar: 	How to Develop a Regulatory-compliant Continued Process Verificatio...Webinar: 	How to Develop a Regulatory-compliant Continued Process Verificatio...
Webinar: How to Develop a Regulatory-compliant Continued Process Verificatio...MilliporeSigma
ย 
Webinar: How to Develop a Regulatory-compliant Continued Process Verification...
Webinar: How to Develop a Regulatory-compliant Continued Process Verification...Webinar: How to Develop a Regulatory-compliant Continued Process Verification...
Webinar: How to Develop a Regulatory-compliant Continued Process Verification...Merck Life Sciences
ย 
Biopharmaceutical Formulation Development CM3 Implementation and Initial Testing
Biopharmaceutical Formulation Development CM3 Implementation and Initial TestingBiopharmaceutical Formulation Development CM3 Implementation and Initial Testing
Biopharmaceutical Formulation Development CM3 Implementation and Initial TestingKBI Biopharma
ย 
Seth Rodgers - High Throughput Cell Culture Platform for Bioprocess Optimizat...
Seth Rodgers - High Throughput Cell Culture Platform for Bioprocess Optimizat...Seth Rodgers - High Throughput Cell Culture Platform for Bioprocess Optimizat...
Seth Rodgers - High Throughput Cell Culture Platform for Bioprocess Optimizat...AliElmehdawi2
ย 
SLAS_2014 Tianxiao Merck (1)
SLAS_2014 Tianxiao Merck (1)SLAS_2014 Tianxiao Merck (1)
SLAS_2014 Tianxiao Merck (1)Andrew Hashkes
ย 
Easy One-Click Access to Powerful and Complete Workflows for Liquid Chromatog...
Easy One-Click Access to Powerful and Complete Workflows for Liquid Chromatog...Easy One-Click Access to Powerful and Complete Workflows for Liquid Chromatog...
Easy One-Click Access to Powerful and Complete Workflows for Liquid Chromatog...Chromatography & Mass Spectrometry Solutions
ย 
Liquid-Liquid Extraction: Generating Equilibrium Data
Liquid-Liquid Extraction: Generating Equilibrium DataLiquid-Liquid Extraction: Generating Equilibrium Data
Liquid-Liquid Extraction: Generating Equilibrium DataKoch Modular Process Systems, LLC.
ย 
Basic skills training guide hplc method development and validation- an over...
Basic skills training guide   hplc method development and validation- an over...Basic skills training guide   hplc method development and validation- an over...
Basic skills training guide hplc method development and validation- an over...bmarkandeya
ย 
Automate Express to Streamline Differential Extraction process
Automate Express to Streamline Differential Extraction processAutomate Express to Streamline Differential Extraction process
Automate Express to Streamline Differential Extraction processThermo Fisher Scientific
ย 
Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)Bibhuti Prasad Nanda
ย 
OPERA, AN OPEN SOURCE AND OPEN DATA SUITE OF QSAR MODELS
OPERA, AN OPEN SOURCE AND OPEN DATA SUITE OF QSAR MODELSOPERA, AN OPEN SOURCE AND OPEN DATA SUITE OF QSAR MODELS
OPERA, AN OPEN SOURCE AND OPEN DATA SUITE OF QSAR MODELSKamel Mansouri
ย 

Similar to BILS 2015 Christoph Herwig (20)

High-throughput and Automated Process Development for Accelerated Biotherapeu...
High-throughput and Automated Process Development for Accelerated Biotherapeu...High-throughput and Automated Process Development for Accelerated Biotherapeu...
High-throughput and Automated Process Development for Accelerated Biotherapeu...
ย 
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
Pesticide Residue Analysis Webinar Series: Tips and Tricks for the Whole Work...
ย 
The importance of data curation on QSAR Modeling: PHYSPROP open data as a cas...
The importance of data curation on QSAR Modeling: PHYSPROP open data as a cas...The importance of data curation on QSAR Modeling: PHYSPROP open data as a cas...
The importance of data curation on QSAR Modeling: PHYSPROP open data as a cas...
ย 
Host Cell Protein Analysis by Mass Spectrometry | KBI Biopharma
Host Cell Protein Analysis by Mass Spectrometry | KBI BiopharmaHost Cell Protein Analysis by Mass Spectrometry | KBI Biopharma
Host Cell Protein Analysis by Mass Spectrometry | KBI Biopharma
ย 
Thireault_Presentation_17Jul2008_ver 1
Thireault_Presentation_17Jul2008_ver 1Thireault_Presentation_17Jul2008_ver 1
Thireault_Presentation_17Jul2008_ver 1
ย 
Delivering The Benefits of Chemical-Biological Integration in Computational T...
Delivering The Benefits of Chemical-Biological Integration in Computational T...Delivering The Benefits of Chemical-Biological Integration in Computational T...
Delivering The Benefits of Chemical-Biological Integration in Computational T...
ย 
Webinar - Pharmacopeial Modernization: How Will Your Chromatography Workflow ...
Webinar - Pharmacopeial Modernization: How Will Your Chromatography Workflow ...Webinar - Pharmacopeial Modernization: How Will Your Chromatography Workflow ...
Webinar - Pharmacopeial Modernization: How Will Your Chromatography Workflow ...
ย 
Aqbd seminar DOE
Aqbd seminar DOEAqbd seminar DOE
Aqbd seminar DOE
ย 
Tools to Detect sub-1ppm Host Cell Proteins in Biological Products at Every D...
Tools to Detect sub-1ppm Host Cell Proteins in Biological Products at Every D...Tools to Detect sub-1ppm Host Cell Proteins in Biological Products at Every D...
Tools to Detect sub-1ppm Host Cell Proteins in Biological Products at Every D...
ย 
Webinar: How to Develop a Regulatory-compliant Continued Process Verificatio...
Webinar: 	How to Develop a Regulatory-compliant Continued Process Verificatio...Webinar: 	How to Develop a Regulatory-compliant Continued Process Verificatio...
Webinar: How to Develop a Regulatory-compliant Continued Process Verificatio...
ย 
Webinar: How to Develop a Regulatory-compliant Continued Process Verification...
Webinar: How to Develop a Regulatory-compliant Continued Process Verification...Webinar: How to Develop a Regulatory-compliant Continued Process Verification...
Webinar: How to Develop a Regulatory-compliant Continued Process Verification...
ย 
Biopharmaceutical Formulation Development CM3 Implementation and Initial Testing
Biopharmaceutical Formulation Development CM3 Implementation and Initial TestingBiopharmaceutical Formulation Development CM3 Implementation and Initial Testing
Biopharmaceutical Formulation Development CM3 Implementation and Initial Testing
ย 
Seth Rodgers - High Throughput Cell Culture Platform for Bioprocess Optimizat...
Seth Rodgers - High Throughput Cell Culture Platform for Bioprocess Optimizat...Seth Rodgers - High Throughput Cell Culture Platform for Bioprocess Optimizat...
Seth Rodgers - High Throughput Cell Culture Platform for Bioprocess Optimizat...
ย 
SLAS_2014 Tianxiao Merck (1)
SLAS_2014 Tianxiao Merck (1)SLAS_2014 Tianxiao Merck (1)
SLAS_2014 Tianxiao Merck (1)
ย 
Easy One-Click Access to Powerful and Complete Workflows for Liquid Chromatog...
Easy One-Click Access to Powerful and Complete Workflows for Liquid Chromatog...Easy One-Click Access to Powerful and Complete Workflows for Liquid Chromatog...
Easy One-Click Access to Powerful and Complete Workflows for Liquid Chromatog...
ย 
Liquid-Liquid Extraction: Generating Equilibrium Data
Liquid-Liquid Extraction: Generating Equilibrium DataLiquid-Liquid Extraction: Generating Equilibrium Data
Liquid-Liquid Extraction: Generating Equilibrium Data
ย 
Basic skills training guide hplc method development and validation- an over...
Basic skills training guide   hplc method development and validation- an over...Basic skills training guide   hplc method development and validation- an over...
Basic skills training guide hplc method development and validation- an over...
ย 
Automate Express to Streamline Differential Extraction process
Automate Express to Streamline Differential Extraction processAutomate Express to Streamline Differential Extraction process
Automate Express to Streamline Differential Extraction process
ย 
Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
Six sigma-in-measurement-systems-evaluating-the-hidden-factory (2)
ย 
OPERA, AN OPEN SOURCE AND OPEN DATA SUITE OF QSAR MODELS
OPERA, AN OPEN SOURCE AND OPEN DATA SUITE OF QSAR MODELSOPERA, AN OPEN SOURCE AND OPEN DATA SUITE OF QSAR MODELS
OPERA, AN OPEN SOURCE AND OPEN DATA SUITE OF QSAR MODELS
ย 

More from GBX Events

BILS 2015 University of Birmingham Roy Jefferis
BILS 2015 University of Birmingham Roy JefferisBILS 2015 University of Birmingham Roy Jefferis
BILS 2015 University of Birmingham Roy JefferisGBX Events
ย 
BILS 2015 Umetrics Stefan Raennar
BILS 2015 Umetrics Stefan RaennarBILS 2015 Umetrics Stefan Raennar
BILS 2015 Umetrics Stefan RaennarGBX Events
ย 
BILS 2015 Bayer Pharma AG Markus Eser
BILS 2015 Bayer Pharma AG Markus EserBILS 2015 Bayer Pharma AG Markus Eser
BILS 2015 Bayer Pharma AG Markus EserGBX Events
ย 
BILS 2015 Genethon M. Hebben
BILS 2015 Genethon M. HebbenBILS 2015 Genethon M. Hebben
BILS 2015 Genethon M. HebbenGBX Events
ย 
BILS 2015 Tosoh Bioscience
BILS 2015 Tosoh BioscienceBILS 2015 Tosoh Bioscience
BILS 2015 Tosoh BioscienceGBX Events
ย 
BILS 2015 OctoPlus and Dr. Reddy's
BILS 2015 OctoPlus and Dr. Reddy'sBILS 2015 OctoPlus and Dr. Reddy's
BILS 2015 OctoPlus and Dr. Reddy'sGBX Events
ย 
New Hollow Fiber Membranes for AEX and CEX in Flow-Through Mode
New Hollow Fiber Membranes for AEX and CEX in Flow-Through ModeNew Hollow Fiber Membranes for AEX and CEX in Flow-Through Mode
New Hollow Fiber Membranes for AEX and CEX in Flow-Through ModeGBX Events
ย 
BILS 2015, F. Wolpers Hamilton Bonaduz AG
BILS 2015, F. Wolpers Hamilton Bonaduz AGBILS 2015, F. Wolpers Hamilton Bonaduz AG
BILS 2015, F. Wolpers Hamilton Bonaduz AGGBX Events
ย 
Asahi Kasei Bioprocess Europe 2016 02 1
Asahi Kasei Bioprocess Europe 2016 02 1Asahi Kasei Bioprocess Europe 2016 02 1
Asahi Kasei Bioprocess Europe 2016 02 1GBX Events
ย 
Ingenza BILS 2016
Ingenza BILS 2016Ingenza BILS 2016
Ingenza BILS 2016GBX Events
ย 
Novartis BILS 2016
Novartis BILS 2016Novartis BILS 2016
Novartis BILS 2016GBX Events
ย 
Newcastle BILS 2016
Newcastle BILS 2016Newcastle BILS 2016
Newcastle BILS 2016GBX Events
ย 
Filtrox BILS 2016
Filtrox BILS 2016Filtrox BILS 2016
Filtrox BILS 2016GBX Events
ย 
Soligenix BILS 2016
Soligenix BILS 2016Soligenix BILS 2016
Soligenix BILS 2016GBX Events
ย 
BOKU BILS 2016
BOKU BILS 2016BOKU BILS 2016
BOKU BILS 2016GBX Events
ย 
Boedeker Bayer BILS 2016
Boedeker Bayer BILS 2016Boedeker Bayer BILS 2016
Boedeker Bayer BILS 2016GBX Events
ย 
Tosoh BILS 2016
Tosoh BILS 2016Tosoh BILS 2016
Tosoh BILS 2016GBX Events
ย 
Contemporary Clinical Trials 2015
Contemporary Clinical Trials 2015Contemporary Clinical Trials 2015
Contemporary Clinical Trials 2015GBX Events
ย 
DEC 3 2015 Mats Sundgren
DEC 3 2015 Mats SundgrenDEC 3 2015 Mats Sundgren
DEC 3 2015 Mats SundgrenGBX Events
ย 
Press release
Press releasePress release
Press releaseGBX Events
ย 

More from GBX Events (20)

BILS 2015 University of Birmingham Roy Jefferis
BILS 2015 University of Birmingham Roy JefferisBILS 2015 University of Birmingham Roy Jefferis
BILS 2015 University of Birmingham Roy Jefferis
ย 
BILS 2015 Umetrics Stefan Raennar
BILS 2015 Umetrics Stefan RaennarBILS 2015 Umetrics Stefan Raennar
BILS 2015 Umetrics Stefan Raennar
ย 
BILS 2015 Bayer Pharma AG Markus Eser
BILS 2015 Bayer Pharma AG Markus EserBILS 2015 Bayer Pharma AG Markus Eser
BILS 2015 Bayer Pharma AG Markus Eser
ย 
BILS 2015 Genethon M. Hebben
BILS 2015 Genethon M. HebbenBILS 2015 Genethon M. Hebben
BILS 2015 Genethon M. Hebben
ย 
BILS 2015 Tosoh Bioscience
BILS 2015 Tosoh BioscienceBILS 2015 Tosoh Bioscience
BILS 2015 Tosoh Bioscience
ย 
BILS 2015 OctoPlus and Dr. Reddy's
BILS 2015 OctoPlus and Dr. Reddy'sBILS 2015 OctoPlus and Dr. Reddy's
BILS 2015 OctoPlus and Dr. Reddy's
ย 
New Hollow Fiber Membranes for AEX and CEX in Flow-Through Mode
New Hollow Fiber Membranes for AEX and CEX in Flow-Through ModeNew Hollow Fiber Membranes for AEX and CEX in Flow-Through Mode
New Hollow Fiber Membranes for AEX and CEX in Flow-Through Mode
ย 
BILS 2015, F. Wolpers Hamilton Bonaduz AG
BILS 2015, F. Wolpers Hamilton Bonaduz AGBILS 2015, F. Wolpers Hamilton Bonaduz AG
BILS 2015, F. Wolpers Hamilton Bonaduz AG
ย 
Asahi Kasei Bioprocess Europe 2016 02 1
Asahi Kasei Bioprocess Europe 2016 02 1Asahi Kasei Bioprocess Europe 2016 02 1
Asahi Kasei Bioprocess Europe 2016 02 1
ย 
Ingenza BILS 2016
Ingenza BILS 2016Ingenza BILS 2016
Ingenza BILS 2016
ย 
Novartis BILS 2016
Novartis BILS 2016Novartis BILS 2016
Novartis BILS 2016
ย 
Newcastle BILS 2016
Newcastle BILS 2016Newcastle BILS 2016
Newcastle BILS 2016
ย 
Filtrox BILS 2016
Filtrox BILS 2016Filtrox BILS 2016
Filtrox BILS 2016
ย 
Soligenix BILS 2016
Soligenix BILS 2016Soligenix BILS 2016
Soligenix BILS 2016
ย 
BOKU BILS 2016
BOKU BILS 2016BOKU BILS 2016
BOKU BILS 2016
ย 
Boedeker Bayer BILS 2016
Boedeker Bayer BILS 2016Boedeker Bayer BILS 2016
Boedeker Bayer BILS 2016
ย 
Tosoh BILS 2016
Tosoh BILS 2016Tosoh BILS 2016
Tosoh BILS 2016
ย 
Contemporary Clinical Trials 2015
Contemporary Clinical Trials 2015Contemporary Clinical Trials 2015
Contemporary Clinical Trials 2015
ย 
DEC 3 2015 Mats Sundgren
DEC 3 2015 Mats SundgrenDEC 3 2015 Mats Sundgren
DEC 3 2015 Mats Sundgren
ย 
Press release
Press releasePress release
Press release
ย 

Recently uploaded

Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
ย 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
ย 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
ย 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
ย 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
ย 
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.aasikanpl
ย 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
ย 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PPRINCE C P
ย 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sรฉrgio Sacani
ย 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSรฉrgio Sacani
ย 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
ย 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
ย 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
ย 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
ย 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: โ€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: โ€œEg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: โ€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: โ€œEg...Sรฉrgio Sacani
ย 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
ย 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
ย 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
ย 

Recently uploaded (20)

Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
ย 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
ย 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
ย 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
ย 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
ย 
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
ย 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
ย 
VIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C PVIRUSES structure and classification ppt by Dr.Prince C P
VIRUSES structure and classification ppt by Dr.Prince C P
ย 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
ย 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
ย 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
ย 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
ย 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
ย 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
ย 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
ย 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: โ€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: โ€œEg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: โ€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: โ€œEg...
ย 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
ย 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
ย 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
ย 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
ย 

BILS 2015 Christoph Herwig

  • 1. Quicker Ways to a Scalable Process Based on Sound-Science Based Methodologies Christoph Herwig February 11th 2015
  • 2. 18/04/16 Ch. Herwig Our Mission in Bioprocess Technology 2
  • 3. 18/04/16 Ch. Herwig Status quo of bioprocess design The Scaling Tasks Investigate! Redo! Hope!Stomach decision ! Process Development Piloting ManufacturingScreening Scale-up Scale-up Scale-up Productivity Waste Process Development Time Revenue Period 3
  • 4. 18/04/16 Ch. Herwig Challenges that can be solved by faster process development and higher titers prevent and identify scale-up effects prevent failed batches 4
  • 5. 18/04/16 Ch. Herwig How can these challenges be addressed? โ€ขโ€ฏ Clear and proven workflows for data analysis โ€ขโ€ฏ Tools to process data and ensure data quality โ€ขโ€ฏ Efficient use of chemometric and mechanistic data science tools โ€ขโ€ฏ10
  • 6. 18/04/16 Ch. Herwig Presentation Workflow โ€ขโ€ฏ Goal: Quicker Ways to a Scalable Process Based on Sound-Science Based Methodologies โ€ขโ€ฏ Processing Strategies to Understand the Production Platform and to Allow Transferability from Scale to Scale and from Product to Product โ€œ 6 Conclusions Model Building Tutorial Linking MVDA results to metabolic models Information extraction and Statistical analysis Big Data Processing
  • 7. 18/04/16 Ch. Herwig GET A GRAB ON YOUR DATA Big Data Processing 7
  • 8. 18/04/16 Ch. Herwig Typical industrial process data 8 0 0.2 0.4 0.6 0.8 1 0 500 1000 LEISTUNG MEAS (HK) 0 0.2 0.4 0.6 0.8 1 0 0.5 1 F Druck 0 0.2 0.4 0.6 0.8 1 0 50 100 Substrat 3 Menge 0 0.2 0.4 0.6 0.8 1 0 1 2 Dosierung 2 0 0.2 0.4 0.6 0.8 1 0 1 2 3 Summe Substrat 0 0.2 0.4 0.6 0.8 1 0 500 1000 biol. Wรคrmeleistung 20 30 Substrat 2 40 60 Product
  • 9. 18/04/16 Ch. Herwig Data import, data alignment and contextualization โ€ขโ€ฏ USP & DSP automatic data import โ€ขโ€ฏ Excel spreadsheet, text documents, LIMS, PIMS โ€ขโ€ฏ Data contextualization โ€ขโ€ฏ measurement units โ€ขโ€ฏ campaign, phase definition โ€ขโ€ฏ operators โ€ขโ€ฏ Data survey & overview โ€ขโ€ฏ overview plots โ€ขโ€ฏ data density plots ร โ€ฏ All data in one format that can easily be analyzed and explored Exputec Software Excel LIMS PIMS 9
  • 10. 18/04/16 Ch. Herwig Principal Component Analysis: Raw Data โ€ขโ€ฏ Principal component analysis on individual runs to quantify variations and detect relationships among variables. 10 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 Energieeintrag (HK) Druck S3 Menge Dosierung 2 Summe Substrat Bio Wรคrmeleistung S2 Product S1 Nebenprodukt Component 1 Component2 B169012 1 2 3 0 10 20 30 40 50 60 70 80 90 100 Principal Component VarianceExplained(%) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
  • 11. 18/04/16 Ch. Herwig GET A HINT Information extraction and statistical analysis 11
  • 12. 18/04/16 Ch. Herwig Information extraction โ€“ Completion of data sets โ€ขโ€ฏ Tools to derive meaningful descriptors โ€ขโ€ฏ Control quality tools โ€ขโ€ฏ Descriptors that describe the control quality of process parameters, such as pH, pO2 โ€ขโ€ฏ RMSE, outlier detection โ€ขโ€ฏ Bioprocess suite deriving scalable descriptors โ€ขโ€ฏ ยต, qs, CER, OUR, โ€ขโ€ฏ Yields โ€ขโ€ฏ kinetic constants โ€ขโ€ฏ Calculation of missing entities via combination of dvariables and sound science first principles ร โ€ฏ Automatic extraction of meaninful descriptors for different process phases, USP & DSP processes 0 5 10 15 20 25 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 feed time (h) myreccalc(1/h) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Yxsreccalc(c-mol/-cmol) 12
  • 13. 18/04/16 Ch. Herwig PCA on scalable parameters for individual runs โ€ขโ€ฏ Principal component analysis on individual runs to โ€ขโ€ฏ build mechanistic hypothesis and โ€ขโ€ฏ detect number of independent mechanisms -1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 qX qP qS3 qNP qSsum Component 1Component2 B162254 1 2 0 10 20 30 40 50 60 70 80 90 100 Principal Component VarianceExplained(%) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% -1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 qX qP qS3 qNP qSsum Component 1 Component2 B163552 1 2 0 10 20 30 40 50 60 70 80 90 100 Principal Component VarianceExplained(%) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 13
  • 14. 18/04/16 Ch. Herwig Gathered data to statistical information 14 โ€ขโ€ฏ Raw data from DoE experiments transferred into information โ€ขโ€ฏ Influence of pH, pCO2 and pO2 on specific rates and yields VCD Glucose SPECIFICRATEYIELD
  • 15. 18/04/16 Ch. Herwig Hypothesis Generation using MVIA Results โ€ขโ€ฏ Processing of data (concentrations, flows) into specific rates and yield coefficients (ยต, qs) โ€ขโ€ฏ Tools โ€ขโ€ฏ Principal Component Analysis โ€ขโ€ฏ MLR โ€ขโ€ฏ PCR โ€ขโ€ฏ Factor Analysis โ€ขโ€ฏ Multi-way methods โ€ขโ€ฏ โ€ฆ High Performer Low Performer ร โ€ฏIdentify and understand trends and correlations ร โ€ฏIdentify interactions across unit operations
  • 16. 18/04/16 Ch. Herwig NEEDING A SEGREGATED VIEW OF YOUR CATALYST? Cell-based Analytics 16
  • 17. 18/04/16 Ch. Herwig Analytical methods ยงโ€ฏ Flow Cytometer ยงโ€ฏ Producers / Non โ€“ producers ยงโ€ฏ Apoptotic cells ยงโ€ฏ Dead cells: viability staining (Cedex) ยงโ€ฏ Lysed cells (DNA, protein, LDH) ยงโ€ฏ Product analytics (HPLC) ยงโ€ฏ Product quality 800msec 25%
  • 18. 18/04/16 Ch. Herwig Segregation of Biomass -Lysis- 18 Bio ma ss l y sis ph y sio l o g y m a mm a l ia 0 500 1000 1500 2000 2500 -10 -8 -6 -4 -2 0 2 rdLDH(mU/(mL*h)) Initial LDH (mU/mL) 0 2000 4000 6000 8000 10000 -70 -60 -50 -40 -30 -20 -10 0 10 rdDNA(ng/(ml*h)) Initial DNA (ng/mL) a) b) 0 10000 20000 30000 40000 50000 rpLDH(ยตU(mL*h)) rmeasLDH rcorrLDH d) 0 50 100 150 200 250 time (h) 0 50000 100000 150000 200000 250000 rpDNA(pg/(mL*h)) rmeasDNA rcorrDNA c) 0 50 100 150 200 250 time (h) Degradation rates of a) DNA and b) LDH in fermentation supernatants with respect to initially detected extracellular concentrations of DNA or LDH. Volumetric rates of c) DNA release into culture supernatants and d) LDH release into culture supernatants from direct measurements of the respective marker (rmeas) and corrected for marker degradation (rcorr).
  • 19. 18/04/16 Ch. Herwig Segregation of Biomass -Lysis- 19 Bio ma ss l y sis ph y sio l o g y m a mm a l ia b) 0 25 50 75 100 125 150 175 0.00 2.50E6 5.00E6 7.50E6 1.00E7 1.25E7 1.50E7 1.75E7 Cells/mL time (h) VCC TCC LCC d) 0 50 100 150 200 250 0.00 2.50E6 5.00E6 7.50E6 1.00E7 1.25E7 1.50E7 Cells/mL time (h) VCC TCC LCC c) 0 50 100 150 200 250 0.0 5.0E6 1.0E7 1.5E7 2.0E7 2.5E7 Cells/mL time (h) VCC TCC LCC a) 0 50 100 150 200 250 0 2 4 6 8 10 12 Glc(g/L) time (h) 0 1 2 3 Gln,Lac(g/L) Glucose Lactate Glutamine 4 pH, 1 pH, 2 pH, 3 pH, 1
  • 20. 18/04/16 Ch. Herwig Segregation of Biomass -Lysis- 20 Bio ma ss l y sislysis โ€“ results Lysis has a influence on the physiological interpretation! lysis should be considered ph y sio l o g y m a mm a l ia b) 0 50 100 150 200 250 -0.02 0.00 0.02 0.04 ยต(1/h) time (h) ยตVCC ยตLCC
  • 21. 18/04/16 Ch. Herwig LINK THE HINT TO MECHANISTICS Linking Cluster Analysis to Metabolic Models 21
  • 22. 18/04/16 Ch. Herwig 3 4 5 6 7 8 9 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Process Time [h] Variables Data Analysis to understand lactate production and consumption in Cell Culture Prediction of qLac days by a PLS-R model Prediction itself not very useful, since it is very time consuming to measure all 66 variables However, the weights of the PLS-R model can be used to find mechanistic links 11 Batches from a DoE 66 variables (Specific rates, MFA-results etc.) 8 Samples each -2 0 2 4 6 8 10 -2 -1 0 1 2 3 4 5 6 7 8 Actual Predicted 1 2 3 4 0 10 20 30 40 50 60 70 80 90 100 Number of PLS components PercentVarianceExplainediny 22
  • 23. 18/04/16 Ch. Herwig 0 2 4 6 8 10 0 1 2 3 4 Process Time [d] 0 2 4 6 8 10 0 1 2 3 4 Process Time [d] 0 2 4 6 8 10 0 1 2 3 4 Process Time [d] Cluster 1 Cluster 2 Cluster 3 Cluster 4 PLS-R variable importance (VIP) for qLac Cluster detection (k-means cluster analysis) based on PLS-R VIP to detect main correlations with response (e.g.: qLac) ร  identify mechanistics VIP > 1 variable is significant VIP < 1 variable is insignificant Phase detection by k-means cluster analysis (blues lines) Average VIPs 23
  • 24. 18/04/16 Ch. Herwig Use simplified metabolic flux models โ€ขโ€ฏ Only the Central Carbon Metabolism is considered โ€ขโ€ฏ Redox and energy metabolism โ€ขโ€ฏ Amino acid metabolism โ€ขโ€ฏ But which measurements are now really omportantn in which phase? 24
  • 25. 18/04/16 Ch. Herwig Glc GPI ald GAPDH pgk eno pepkin g6Pdh prodh 1 2 3.1 4.1 5.2 6.2 7.3 8.3 Variables ProcessTime[d] 0 0.5 1 1.5 2 Ala Arg Asp Asn Glu Gln Gly His Ile Leu Lys Phe Pro Trp Tyr Val mu qp Formate NH4 Lip Anap PPP_nox gpt asp-got aspg gls leu cat ile cat shmt phe deg serc3 mehf sink 1 2 3.1 4.1 5.2 6.2 7.3 8.3 Variables ProcessTime[d] Met Ser Thr Cit Pyr Suc pdh cisac icdh akgdh succdh fum maldh val cat thr deg Resp 1 2 3.1 4.1 5.2 6.2 7.3 8.3 Variables ProcessTime[d] 0 0.5 1 1.5 2 arg cat glud his deg lys deg met deg Trp deg Tyr cat NH3 sink 1 2 3.1 4.1 5.2 6.2 7.3 8.3 Variables ProcessTime[d] 0 0.5 1 1.5 2 Clusters variable importance(VIP) for Lactate production/consumption Cluster 1: Important variables for qLac for all time points; mainly related to glycolysis ร  Overflow / Lactate Cluster 3: Important variables for qLac at the early phase (plus late phase); mainly related to TCA cyle activity Cluster 4: Important variables for qLac at the late time points; probably related to nutrient limitation / stationary phase Red: important to predict qLac; a value > 1 means the variable is significant Blue: not important to predict qLac; a value < 1 means the variable is insignificant Cluster 2: Less important variables for qLac 25
  • 26. 18/04/16 Ch. Herwig Mechanistics insights by target oriented use of statistical tools โ€ขโ€ฏ Highly target-oriented analysis of large data sets by combination of different data driven methods โ€ขโ€ฏ Do not get lost in the woods! โ€ขโ€ฏ Automated clustering of process variables in to physiologically meaningful groups with regard to the response variable (e.g.: qLac) โ€ขโ€ฏ Mechanistic insight can be acquired from data driven methods if the tools are applied appropriately 26
  • 27. 18/04/16 Ch. Herwig GET IT UNDERSTOOD AND OPTIMIZED Mechanistic Model Building Tutorial 27
  • 28. 18/04/16 Ch. Herwig The Modelling Work Flow Structure Identification Parameter Estimation Model Validation Model Refinement Model Use YES NO Experimental Data Priori Knowledge 28
  • 29. 18/04/16 Ch. Herwig Mechanistic Model for Glucose Uptake Kinetics 29 ยงโ€ฏ Propose hypothesis: โ€‹ ๐‘žโ†“๐บ๐‘™๐‘โŸ= ๐‘“( ๐บ๐‘™๐‘) ยงโ€ฏ Formulate equation: โ€‹ ๐‘žโ†“๐บ๐‘™๐‘โŸ=โ€‹ ๐’’โ†“๐‘ฎ๐’๐’„, ๐’Ž๐’‚๐’™โŸโˆ™โ€‹[ ๐บ๐‘™๐‘]/ [๐บ๐‘™๐‘]+โ€‹ ๐‘ฒโ†“๐‘ฎ๐’๐’„โŸโŸ ยงโ€ฏ Estimate parameters individually by minimizing cost function โˆ‘โ†‘โ–’(โ€‹ ๐‘ฆโ†“๐‘–, ๐‘š๐‘’๐‘Ž๐‘ ๐‘ข๐‘Ÿ๐‘’๐‘‘โŸโˆ’โ€‹ ๐‘ฆโ†“๐‘–, ๐‘š๐‘œ๐‘‘๐‘’๐‘™โŸ)ยฒโŸ ยงโ€ฏ Compare with literature
  • 30. 18/04/16 Ch. Herwig Toolset for model calibration โ€ขโ€ฏ Model calibration: โ€ขโ€ฏ finding suitable estimates for model parameters โ€ขโ€ฏ Sensitivity and identifiability analysis: โ€ขโ€ฏ Link to your measurements and processing platform 30
  • 31. 18/04/16 Ch. Herwig Mechanistic optimization โ€ขโ€ฏ Use a kinetic model for model-based optimization โ€ขโ€ฏ Development of mechanistic process model โ€ขโ€ฏ In-silico optimization using optimization algorithms โ€ขโ€ฏ Identification of optimal operating conditions โ€ขโ€ฏ Control Implementation ร  higher productivity using less experiments ร  Knowledge on mechanistic relationships can be transferred to the next product 31
  • 33. 18/04/16 Ch. Herwig Our approach for bioprocess design 33
  • 34. 18/04/16 Ch. Herwig Process Parameters Process Variables Vfeed cfeed Vgasin cgasin rpm โ€ฆ . . QAs cproduct cBDW cO2out cCO2out โ€ฆ ! Predic?ve Processing Inverse Analysis Predic?ve Processing Structured Process Development From good data via understanding to prediction 34 CONSISTENT DATA SET INFORMATION & EXPERIMENTAL DESIGN KNOWLEDGE & MODELLING OPTIMIZED & PREDICTIVE CONTROL
  • 35. 18/04/16 Ch. Herwig Monitoring Process Parameters (Inputs) Process Variables (Outputs) Vfeed cfeed Vgasin cgasin rpm โ€ฆ . . QAs cproduct cXL xO2out xCO2out โ€ฆ Data Quality and Consistency Physiological Process Control Physiological Experimental Design ! Mul?variate Control along Design Space (MIMO) Mechanis?c Modeling Real-?me Implementa?on CELL Plenty of tools available! Need to be transferred for industrial use! 35 Physiological Informa?on Extrac?on Experimental Automa?on & Parallel Approaches Model Predic?ve Control Op?mal Control Model Based Op?miza?on Predic?ve Processing Mechanis?c Hypotheses Genera?on Mul?variate Informa?on Processing SoR Sensors Inverse Analysis
  • 36. 18/04/16 Ch. Herwig Take Home Workflow 36 โ€ขโ€ฏ Bioprocess development and manufacturing challenges can be solved by process data science โ€ขโ€ฏ Proven workflows and a tailored toolset for bioprocess data analysis and process optimization is necessary Tranfer knowledge to other process / product / site Optimize the process by mechanistic models Link your hint to mechanistic hypotheses Get a hint using information extraction and statiscial tools Get a grab on your data by tailored workflows
  • 37. 18/04/16 Ch. Herwig Investigate! Redo! Hope!Stomach decision ! Process Development Piloting ManufacturingScreening Scale-up Scale-up Scale-up Productivity Waste Process Development Time Revenue Period Benefits through shown Approach 37 Process Development Pilo?ng Manufacturing Screening Scale-up Increase produc1vity by sustained op1miza1on, scalability and elimina1on of fail batches Cut Process Development Time by 50% Revenue Period Inves?gate! Verify! Control & predict! Explore! Scale-up Scale-up
  • 38. 18/04/16 Ch. Herwig Process - undisclosed Design & CQAs - Freedom during design - Proof of Concept for controlling QTPP Proven Pa?ent Bene๏ฌt - QTPP - E๏ฌƒcacy, Safety - Clinical Phase I, II & III Process - complete disclosure New Product Biosimilar Proof of Concept Mechanis?cal Models via Physiology โ€ฏ First Principles โ€ฏ Metabolic Founda?ons โ€ฏ PlaZorm Knowledge โ€ฏ Risk Management โ€ฏ Veri๏ฌed Scale Down Models Design Methodology Relevance for new products & biosimilars Design & CQAs - Fixed CQA limits from ini?al approval Proof of Similarity 38
  • 39. 18/04/16 Ch. Herwig Thank you for your attention! Univ.Prof. Dr. Christoph Herwig Vienna University of Technology Institute of Chemical Engineering Research Division Biochemical Engineering Gumpendorferstrasse 1a/ 166 - 4 A-1060 Wien Austria emailto: christoph.herwig@tuwien.ac.at Tel (Office): +43 1 58801 166400 Tel (Mobile): +43 676 47 37 217 Fax: +43 1 58801 166980 URL : http://institute.tuwien.ac.at/chemical_engineering/bioprocess_engineering/EN/ https://www.facebook.com/BioVTatTUWien 39
  • 40. 18/04/16 Ch. Herwig BACK UP SLIDES 40
  • 41. 18/04/16 Ch. Herwig IMPLEMENTATION FOR PROCESS CONTROL Get it ON-LINE! 41
  • 42. 18/04/16 Ch. Herwig Computational environment for real- time implementation and control โ€ขโ€ฏ Object oriented design of different data storage and processing components. โ€ขโ€ฏ Classes are able to store data, perform specific functions, and communicate with each other 42 Process Information Management System OPC server Calculations: feeding rates offgas analysis volume calculation outlier detection โ€ฆ Observer Bioprocess object yu(t0) y Model-predictive controller & PID u(t0) xpred u(t1) y: measurements/outputs (e.g. offgas) u: system inputs (e.g. feeding rates) x: system states (e.g. concentrations)
  • 43. 18/04/16 Ch. Herwig Calculation of respiratory rates and outlier detection 43 Bioprocess Calculator offgas Calculator outlier Observer FAIR,FO2,O2_offgas,CO2_offgas OUR, CER, RQ OUR, CER outliers removed 7.3565 7.3566 7.3566 x 10 5 0 0.1 0.2 0.3 0.4 Original signal New signal 7.3565 7.3566 7.3566 x 10 5 0 0.5 1 G Grubbs distance 7.3565 7.3566 7.3566 x 10 5 0 0.02 0.04 0.06 stdandard deviation 7.3565 7.3566 7.3566 x 10 5 0 0.1 0.2 0.3 0.4 New signal
  • 44. 18/04/16 Ch. Herwig Real-time implementation via particle filter estimations 0 50 100 150 0 5 10 15 20 25 Time [h] [g/l] Biomass 0 50 100 150 0 5 10 15 20 A0 and A1 (soft-sensor) [g/l] Time [h] 0 50 100 150 0 0.05 0.1 0.15 0.2 Time [h] [C-mol/h] Biomass conversion rate (soft-sensor) 0 50 100 150 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Time [h] [g/l] Glucose (measured) 0 50 100 150 -2 0 2 4 6 8 10 Time [h] [g/l] Gluconate (measured) 0 50 100 150 0 1 2 3 4 5 6 Time [h] [g/l] Penicillin (measured) 0 50 100 150 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 Time [h] [mol/h] OUR (measured) 0 50 100 150 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 Time [h] [C-mol/h] CER (measured) measured soft-sensor A0 A1 measured soft-sensor measured soft-sensor measured soft-sensor measured soft-sensor measured soft-sensor measured soft-sensor 44
  • 45. 18/04/16 Ch. Herwig LIFE CYCLE SOLUTION GET IT DONE YOURSELF 45
  • 46. 18/04/16 Ch. Herwig CMLCM: Computational model life-cycle management 46
  • 47. 18/04/16 Ch. Herwig Enabling Method Implementation Customiza?on & Implementa?on of Tools & Solu?ons Quan?๏ฌca?on Data Informa?on Knowledge Scale-Up Op?miza?on Risk Reduc?on Quality 47 Manufacturers CMOs
  • 48. Get There Faster. Exputecโ€˜s Software Solutions by INCYGHT ยงโ€ฏ Ef๏ฌcient implementation of our solutions at your site using Exputec INCYGHT software Batch 1 Batch 2 Batch N Campaign analysis . . . MVIA (Multivariate Information Analysis) for extraction of mechanistic information out of procee data M-DoE (Mechanistic Design of Experiments) for reduced number of experiments. Multivariate statistical methods for exploratory data analysis: hypothesis generation and testing Proven workflows for identification of sources of variability, increasing process robustness, and optimization. 48
  • 49. 18/04/16 Ch. Herwig a) Tradi?onal feed pro๏ฌle design b) Physiological feed pro๏ฌle design Accelerate! Wechselberger et. al. 2012 Speed up by using physiological information in DoEs! ร˜โ€ฏ Careful selection of physiological factors for the DoE significantly reduces number of experiments 49
  • 50. 18/04/16 Ch. Herwig ร˜โ€ฏ Dynamic experiments increase information & throughput Accelerate! a) Quick iden?๏ฌca?on of scalable rela?onships b) Dynamic feeding pro๏ฌles based on speci๏ฌc substrate uptake rate Zalai et. al. 2012 Speed up by using physiological information & dynamics! 50
  • 51. 18/04/16 Ch. Herwig NECESSARY TO LOOK MORE DETAILED INTO BIOMASS? 51 Bio ma ss
  • 52. 18/04/16 Ch. Herwig Segregation of Biomass -Lysis- 52 Bio ma ss l y sisCell Lysis deIinition: โ€œloss of integrity of a cell (destruction of the cell membrane)โ€ motivation: lysed cells were once "produced" and can be included in the description of the growth kinetics lysed cells could serve as a nutrient source an inIluence on the product quality can not be excluded measurement methods: classiIication over intracellular substances in the supernatant mammalians: โ€ขโ€ฏ LDH measurements in the supernatant โ€ขโ€ฏ DNA measurements in the supernatant microbials โ€ขโ€ฏ C-balance ph y sio l o g y m a mm a l iaM ic r o bia l s
  • 53. 18/04/16 Ch. Herwig Quality by Design Process Parameters Temperature Stirrer Speed Dissolved Oxygen pH Air Flow Pressure Feedrate Nutrient concentrations Inducer concentration Biomass concentration Induction Time Conductivity Redox level Strain Expression cassette โ€ฆ Product quality attributes Enzyme activity Titer Purity Stability Batch-to-batch variability Efficiency Cost of product Space-time-yield Protein folding Glycosylation pattern Viability Ease of further processing (downstream) Potential risks for end-user โ€ฆ ??? 18/04/16 53
  • 54. 18/04/16 Ch. Herwig Process Parameters Temperature Stirrer Speed Dissolved Oxygen pH Air Flow Pressure Feedrate Nutrient concentrations Inducer concentration Biomass concentration Induction Time Conductivity Redox level Strain Expression cassette โ€ฆ Product quality attributes Enzyme activity Titer Purity Stability Batch-to-batch variability Efficiency Cost of product Space-time-yield Protein folding Glycosylation pattern Viability Ease of further processing (downstream) Potential risks for end-user โ€ฆ Quality by Design ??? 54
  • 55. 18/04/16 Ch. Herwig Current interpretation of QbD: Cooking Recipe: DoE Speci๏ฌc Ac?vity [kU/gbiomass] Induc?on Phase Temperature [ยฐC] Induc?on Phase Feeding Exponent k โ€œDesign Spaceโ€ Data CPPs CQA CQA 55 CPPs
  • 56. 18/04/16 Ch. Herwig DOE: Insignificant factors- all for nothing? โ€ขโ€ฏ Factors turn out to be insignificant โ€ขโ€ฏ Variance cannot be explained by the original factors โ€ขโ€ฏ Possible reasons: โ€ขโ€ฏ 1) wrong factors were chosen for investigation โ€ขโ€ฏ 2) noise on experiment higher than effects of factors โ€ขโ€ฏ How to proceed? ร  Go beyond MLR analysis for the efficient exploitation of DoEs! -0,10 -0,05 -0,00 0,05 x_EFB ยต_FB maxspectitersupg/g N=9 R2=0,604 RSD=0,002799 DF=6 Q2=-0,347 Conf. lev.=0,95 -0,10 0,00 0,10 x_EFB maxspectiterpelletg/g N=9 R2=0,0 DF=6 Q2=-1, Factor Transformation MVDA Knowledge 56
  • 57. 18/04/16 Ch. Herwig -0,10 -0,05 -0,00 0,05 x_EFB ยต_FB maxspectitersupg/g N=9 R2=0,604 RSD=0,002799 DF=6 Q2=-0,347 Conf. lev.=0,95 -0,10 0,00 0,10 maxspectiterpelletg/g Run DoE MLR analysis on original factors Data Processing, Analyze more descriptors of the process MVDA Exploratory analysis Hypythesis generation: New factors Sort out co-linear factors (e.g.variance inflation factor) MLR analysis on transformed factors Recycling of DoE Results 57 -1,5 -1,0 -0,5 0,0 ยต maxspectitersupg/g N=9 R2=0,510 RSD=0,002881 DF=7 Q2=0,313 Conf. lev.=0,95 -1,5 -1,0 -0,5 0,0 ยต maxspectiterpelletg/g N=9 R2=0,335 RSD=0,003226 DF=7 Q2=0,047 Conf. lev.=0,95
  • 58. 18/04/16 Ch. Herwig Linking metabolite production and substrate uptake 58 Hypothesis: overflow metabolism is coupled to high glucose consumption rate a) Threshold ๐‘‡โ„Ž๐‘Ÿ๐‘’๐‘ โ„Ž๐‘œ๐‘™๐‘‘โ‰ˆโˆ’0.11 [โ€‹ ๐‘š ๐‘š๐‘œ๐‘™/โ€‹ 10โ†‘9โŸ๐‘๐‘’๐‘™๐‘™๐‘  โˆ—โ„ŽโŸ] b) Linear equation ๐‘“๐‘œ๐‘Ÿ โ€‹ ๐‘žโ†“๐‘”๐‘™๐‘โŸ< ๐‘‡โ„Ž๐‘Ÿ๐‘’๐‘ โ„Ž๐‘œ๐‘™๐‘‘ โ€‹ ๐‘žโ†“๐‘™๐‘Ž๐‘โŸ=โˆ’0.25โˆ’2.21โˆ™โ€‹ ๐‘žโ†“๐‘”๐‘™๐‘โŸ ๐‘…๐‘€๐‘†๐ธ = 0.028 [โ€‹ ๐‘š ๐‘š๐‘œ๐‘™/โ€‹10โ†‘9โŸ โˆ— ๐‘๐‘’๐‘™๐‘™๐‘ โˆ—โ„ŽโŸ]
  • 59. 18/04/16 Ch. Herwig Vom Labor in den Prozess 2x @50% Toolset Integration Data- Knowledge Management Process Understanding 59
  • 60. 18/04/16 Ch. Herwig Sensitivity of model outputs to variations in one model parameter 40 datasets were simulated by applying ยฑ2% variations on a process value 60 0 100 200 0 10 20 30 40 cXLtot Time [h] 0 100 200 0 0.5 1 cS1 Time [h] 0 100 200 0 5 10 cPEN Time [h] 0 100 200 0 2 4 6 cPOX Time [h] 0 100 200 -0.2 -0.15 -0.1 -0.05 0 OUR Time [h] 0 100 200 0 1 2 3 4 5 cA0 Time [h] 0 100 200 0 10 20 30 40 cA1 Time [h] 0 100 200 0 2 4 6 8 10 cS2 Time [h] 0 100 200 0 0.05 0.1 0.15 0.2 CER Time [h] 0 100 200 0 0.05 0.1 0.15 0.2 rX Time [h] 0 100 200 -0.25 -0.2 -0.15 -0.1 -0.05 rS1 Time [h] 0 100 200 -0.3 -0.2 -0.1 0 0.1 0.2 rS2 Time [h]
  • 61. 18/04/16 Ch. Herwig Identifiability of parameter subsets โ€ขโ€ฏ The colinearity index measures the degree of linear dependence of model parameters. โ€ขโ€ฏ It equals unity if the columns are linearly dependent. โ€ขโ€ฏ If it exceeds 10-15, then the corresponding parameter subset is poorly identifiable. 61 0 1 2 3 4 5 6 7 0 5 10 15 20 25 30 35 40 45 50 minimumofcollinearityindex size of a parameter sets Parameter Unit Optimized Value Literature Value Reference ๐’€ ๐‘ณ๐’‚๐’„ ๐‘ฎ๐’๐’„ ๐‘š๐‘š๐‘œ๐‘™/๐‘š๐‘š๐‘œ๐‘™ โˆ’1,11 โˆ’1,10 (Lee et al., 2003) ๐’’ ๐‘ฎ๐’๐’,๐’‚๐’—๐’“.๐’‘๐’†๐’“ ๐’Ž๐‘ด ๐‘ฎ๐’๐’ ๐‘š๐‘š๐‘œ๐‘™/(๐‘š๐‘€ โ‹… ๐‘๐‘’๐‘™๐‘™ โ‹… โ„Ž) โˆ’1,99 โ‹… 10โˆ’11 โˆ’4 โ‹… 10โˆ’11 (Lee et al., 2003) ๐‘ฒ ๐‘ฎ๐’๐’„ ๐‘š๐‘€ 8,75 2,25 (Aehle et al., 2012) ๐’’ ๐‘ณ๐’‚๐’„,๐‘ช๐’๐’๐’”๐’–๐’Ž๐’‘๐’•๐’Š๐’๐’ ๐‘š๐‘š๐‘œ๐‘™/(๐‘๐‘’๐‘™๐‘™ โ‹… โ„Ž) โˆ’1,80 โ‹… 10โˆ’10 ๐’’ ๐‘ฎ๐’๐’„,๐’Ž๐’‚๐’™ ๐‘š๐‘š๐‘œ๐‘™/(๐‘๐‘’๐‘™๐‘™ โ‹… โ„Ž) โˆ’3,37 โ‹… 10โˆ’10 โˆ’1,8 โˆ— 10โˆ’10 (Aehle et al., 2012) ยต ๐’Ž๐’‚๐’™ โ„Žโˆ’1 0,024 0,035 (Craven et al., 2013) ๐‘ฒยต,๐‘ฎ๐’๐’„ ๐‘š๐‘€ 3,81 4,8 (Dhir et al., 2000) ยต ๐’…๐’†๐’‚๐’•๐’‰,๐’Ž๐’‚๐’™ โ„Žโˆ’1 0,015 0,019 (Dhir et al., 2000) ๐‘ฒ๐’Š,๐‘ฎ๐’๐’„ ๐‘š๐‘€ 1,58 ยต ๐’…๐’†๐’‚๐’•๐’‰,๐’„๐’๐’๐’”๐’• โ„Žโˆ’1 0,0015 0,00266 (Borchers et al., 2013) ๐‘ฒ๐’๐’š๐’”๐’Š๐’” โ„Žโˆ’1 0,004 0,04 (Craven et al., 2013) ๐’€ ๐‘ต๐‘ฏ ๐Ÿ’ + /๐‘ฎ๐’๐’ ๐‘š๐‘š๐‘œ๐‘™/๐‘š๐‘š๐‘œ๐‘™ โˆ’0,54 โˆ’0,68 (Craven et al., 2013)
  • 62. 18/04/16 Ch. Herwig Validation of parameter estimation via independent experiments 62