SlideShare a Scribd company logo
1 of 66
Download to read offline
Superconductive
Radiation Space
Shielding
for Exploration Missions
R. Battiston
INFN-TIFPA and University of Trento
Italian Space Agency
COSPAR 2014 Moscow
Friday 15 August 14
The Consortium
SPA 2012 2.2.02 Key technologies for in-space activities
Friday 15 August 14
3
FP7	
  SR2S	
  program	
  (2013-­‐15)
3
Friday 15 August 14
4
Radia7on	
  effects	
  on	
  biological	
  7ssues	
  
4
Friday 15 August 14
55
Friday 15 August 14
6
The	
  interplanetary	
  travel	
  case
6
• 	
  	
  	
  	
  	
  The	
  evidence	
  for	
  cancer	
  risks	
  from	
  humans	
  who	
  are	
  
exposed	
  to	
  low-­‐LET	
  radia:on	
  is	
  extensive	
  for	
  doses	
  above	
  100	
  
mSv	
  (10	
  rem).
• 	
  	
  	
  	
  	
  The	
  doses	
  that	
  are	
  to	
  be	
  expected	
  on	
  space	
  missions,	
  as	
  
well	
  as	
  	
  the	
  nuclear	
  type	
  and	
  energies,	
  are	
  quite	
  well	
  
understood.	
  
• 	
  	
  	
  	
  	
  The	
  main	
  contribu:on	
  	
  to	
  the	
  	
  ionizing	
  radia:on	
  
encountered	
  in	
  space	
  	
  are	
  
• Solar	
  Par:cle	
  Events	
  	
  (SPE)
• Galac:c	
  Cosmic	
  Rays	
  	
  (GCR)
• 	
  
Friday 15 August 14
Distribu=on	
  of	
  energies	
  of	
  GCR.	
  This	
  is	
  a	
  graph	
  of	
  the	
  more	
  
abundant	
  nuclear	
  species	
  	
  in	
  CR	
  as	
  measured	
  near	
  	
  Earth.	
  
Below	
  a	
  few	
  GeV/nucleon	
  these	
  spectra	
  are	
  strongly	
  
influenced	
  by	
  the	
  Sun.	
  The	
  different	
  curves	
  for	
  the	
  same	
  
species	
  represent	
  measurement	
  extremes	
  resul=ng	
  from	
  
varying	
  solar	
  ac=vity	
  (Physics	
  Today,	
  Oct.	
  1974,	
  p.	
  25)	
  
Par=cle	
  spectra	
  observed	
  in	
  SPE	
  compared	
  with	
  the	
  GCR	
  	
  
spectrum
Friday 15 August 14
8
Galac7c	
  cosmic	
  radia7on
8
Friday 15 August 14
9
%	
  of	
  death	
  due	
  to	
  cancer	
  -­‐	
  95%	
  CL
9
Durante	
  &	
  CucinoUa,	
  Nat.	
  2008
Friday 15 August 14
10
Doses	
  for	
  explora7on	
  missions.....
10
• FREE	
  SPACE:	
  	
  equivalent	
  	
  doses	
  in	
  excess	
  of	
  1.2	
  Sv	
  /yr	
  (∼120	
  rem/yr)	
  
• SPACECRAFT	
  (thin)	
  SHIELDING:	
  about	
  	
  700-­‐800	
  mSv/yr	
  (70-­‐80	
  rem/yr)
• ON	
  THE	
  	
  MARS	
  SURFACE:	
  between	
  100	
  and	
  200	
  mSv/yr	
  (10	
  and	
  20	
  	
  
rem/yr),	
  depending	
  on	
  the	
  loca:on	
  	
  
• ON	
  THE	
  	
  MOON	
  SURFACE	
  :	
  223	
  mSv/yr	
  (22,3	
  rem/yr)	
  	
  with	
  oscilla:ons	
  
of	
  ±	
  10	
  rem/yr	
  	
  as	
  a	
  func:on	
  of	
  solar	
  ac:vity	
  
–for	
  comparison:	
  	
  ISS	
  about	
  18	
  rem/yr	
  	
  	
  -­‐-­‐>	
  	
  6	
  month	
  
expedi7ons
• 	
  
Friday 15 August 14
11
Projec7on	
  of	
  risk	
  of	
  	
  radia7on	
  on	
  
11
95%	
  CL
Friday 15 August 14
12
3%	
  REID	
  limit	
  =>increase	
  of	
  P(cancer	
  death)	
  
12
Friday 15 August 14
13
Mars	
  Mission	
  1000	
  days	
  in	
  space	
  
13
Friday 15 August 14
14
SR2S	
  mission	
  scenarios	
  
14
Friday 15 August 14
14
SR2S	
  mission	
  scenarios	
  
14
Friday 15 August 14
15
Shield	
  in	
  space	
  if	
  it	
  is	
  	
  “thin”	
  ...
	
   	
   	
   	
   	
   .......then	
  it	
  “adds”	
  dose
15
Friday 15 August 14
15
Shield	
  in	
  space	
  if	
  it	
  is	
  	
  “thin”	
  ...
	
   	
   	
   	
   	
   .......then	
  it	
  “adds”	
  dose
15
Friday 15 August 14
15
Shield	
  in	
  space	
  if	
  it	
  is	
  	
  “thin”	
  ...
	
   	
   	
   	
   	
   .......then	
  it	
  “adds”	
  dose
15
Spacecrafts
structures
2 - 6 cm
Al eq
Friday 15 August 14
16
Advanced	
  materials	
  can	
  help	
  SPE	
  not	
  GCR
16
Friday 15 August 14
16
Advanced	
  materials	
  can	
  help	
  SPE	
  not	
  GCR
16
Spacecrafts
structures
2 - 6 cm Al eq
Friday 15 August 14
17
	
  So	
  we	
  turn	
  to	
  ac7ve	
  radia7on	
  shields
17
Friday 15 August 14
18
Ac7ve	
  magne7c	
  shielding	
  
18
Friday 15 August 14
19
Magne7c	
  shield	
  configura7ons
• The	
  angular	
  deflec:on	
  in	
  the	
  magne:c	
  field	
  may	
  be	
  
compared	
  to	
  the	
  kine:c	
  energy	
  lost	
  by	
  ioniza:on,	
  
where	
  BL	
  replace	
  the	
  electromagne:c	
  and	
  nuclear	
  
radia:on	
  length	
  to	
  characterizing	
  the	
  shielding	
  
performance	
  of	
  the	
  material
• Unconfined	
  Field	
  (e.g.	
  Earth’s	
  field),	
  very	
  large	
  
volume	
  (L),	
  lower	
  field	
  strength	
  (B)	
  
• Confined	
  field:	
  small	
  volume	
  (L),	
  higher	
  field	
  (B)	
  
and	
  larger	
  mass
19
Friday 15 August 14
20
The	
  ATLAS	
  superconduc7ng	
  toroid
20
Friday 15 August 14
21
Previous	
  Monte	
  Carlo	
  Studies
21
Friday 15 August 14
2222
Ac7ve	
  magne7c	
  shielding	
  
• Principle	
  of	
  opera=on
• B	
  	
  field	
  tangent	
  to	
  the	
  shielded	
  	
  volume	
  bends	
  
par7cle	
  away
• 1)	
  toroidal	
  B	
  field,	
  orthogonal	
  to	
  Hab	
  axis
• 2)	
  solenoidal	
  B	
  field,	
  parallel	
  to	
  Hab	
  axis
Friday 15 August 14
23
1)	
  TOROIDAL-­‐ORTHOGONAL	
  FIELD
23
eg.	
  racetracks
toroid
Friday 15 August 14
24
...but	
  also
24
double	
  helix donut
double	
  handle
Friday 15 August 14
2525
2)	
  SOLENOIDAL-­‐PARALLEL	
  FIELD
eg.	
  coaxial	
  
solenoids
Friday 15 August 14
26
...but	
  also
26
mul:solenoid axial	
  
mul:donut
Friday 15 August 14
27
Shielding	
  power	
  :	
  	
  ∫BdL
Re
Ri
For	
  an	
  ideal	
  toroid,	
  the	
  
shielding	
  power	
  is	
  defined	
  as
-­‐-­‐>	
  large	
  radius
-­‐-­‐>	
  large	
  B
	
  we	
  would	
  reach	
  effec:ve	
  
shielding	
  with	
  ∫BdL≈15	
  Tm
Friday 15 August 14
28
Magnet	
  mechanical	
  structure
28
• 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
• 	
  	
  	
  	
  	
  	
  	
  	
  	
  P(Pa)	
  =	
  B2/	
  2μo	
  (T2)
Toroidal field !B non uniform!
1-large inward pressure !structural mass
2-low leakage field
Solenoidal	
  	
  field	
  !	
  B	
  is	
  uniform	
  !
1-­‐large	
  outward	
  forces
2-­‐large	
  leakage	
  field!	
  compensaNon	
  coil
Avoid	
  stresses	
  on	
  superconducNng	
  cable	
  	
  !coil	
  support
	
  
Friday 15 August 14
29
SRS2	
  tradeoff	
  -­‐>	
  racetrack	
  toroid	
  system
Friday 15 August 14
30
Magnet	
  mechanical	
  structure
• 	
  Magnet	
  design	
  iteraNons	
  in	
  SR2S	
  
• 	
  Structure	
  design	
  opNmizaNon:
–minimize	
  the	
  material	
  traversed	
  by	
  GCR	
  to	
  avoid	
  secondary	
  producNon
–maximize	
  the	
  BdL	
  to	
  deflect	
  away	
  	
  Z<3	
  parNcles
–exploit	
  the	
  passive	
  material	
  to	
  absorb	
  	
  Z>2	
  parNcles	
  (stopping	
  power)
• 	
  Perform	
  Monte	
  Carlo	
  calculaNons	
  of	
  the	
  dose	
  reducNon	
  factor	
  for	
  GCR	
  and	
  SPE
• 	
  Improve	
  the	
  use	
  advanced	
  materials	
  and	
  mechanical	
  soluNons	
  to	
  reduce	
  mass.	
  	
  
•	
  Current	
  design	
  configuraNon:	
  BdL	
  ≈	
  8	
  Tm	
  
30
Friday 15 August 14
31
Superconduc7ng	
  cable	
  for	
  space	
  applica7ons
31
Friday 15 August 14
32
Superconductors	
  for	
  space	
  
32
Friday 15 August 14
33
Columbus	
  cable	
  for	
  SPACE	
  applica7ons
FROM	
  17	
  TO	
  10.2	
  grams,	
  
40%	
  weight	
  reducNon
FROM:
3x0,5	
  nickel	
  clad	
  wire
3x0,2	
  copper	
  stabiliza:on
TO:
3x0,5	
  :tanium	
  clad	
  wire
3x0,5	
  alluminium	
  stabiliza:on
Friday 15 August 14
34
Example	
  of	
  mass	
  op7miza7on
First	
  Design:
•24	
  Coils	
  	
   !	
  High	
  loads	
  on	
  the	
  racetrack

 ! Concentrated	
  Loads	
  on	
  the	
  Tube
	
   " ! High	
  Local	
  DeformaNon
	
   ! More	
  sensiNve	
  at	
  mechanical	
  
	
   	
  	
  	
  	
  	
  tolerance
Smart	
  
SoluNon
New	
  Design:
•	
  120	
  coils	
  	
   ! Lower	
  loads	
  on	
  the	
  racetrack
!	
  Loads	
  uniformly	
  distributed	
  	
   	
  	
  	
  	
  	
  	
  
	
   	
  	
  	
  	
  	
  	
  on	
  the	
  tube
	
  	
  	
  	
  	
  	
   ! Lower	
  DeformaNon
	
   ! Less	
  SensiNve	
  at	
  mechanical	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  tolerance
Friday 15 August 14
35
Analy7cal	
  and	
  Monte	
  Carlo	
  analyses
35
See	
  	
  M.	
  Giraudo	
  talks	
  
Friday 15 August 14
36
Magne7c	
  shielding	
  of	
  a	
  SPE	
  event
36
Friday 15 August 14
• The	
  Columbus	
  habitat	
  was	
  
surrounded	
  by	
  the	
  full	
  
model	
  already	
  used	
  in	
  the	
  
past,	
  without	
  considering	
  
hydrogen	
  and	
  endcaps
• The	
  density	
  of	
  every	
  
component	
  was	
  reduced:
– 0%	
  of	
  the	
  total	
  
– 25%	
  of	
  the	
  total	
  
– 50%	
  of	
  the	
  total	
  
– 75%	
  of	
  the	
  total	
  
– Total	
  (around	
  315	
  tons)
Simula:on	
  varying	
  the	
  mass	
  	
  -­‐	
  M.	
  Giraudo,	
  M.	
  Vuolo
08/15/14
Friday 15 August 14
• Par:cles	
  were	
  generated	
  on	
  a	
  cylinder	
  around	
  the	
  
habitat	
  !	
  No	
  evalua:on	
  of	
  the	
  radia:on	
  shielding	
  at	
  
the	
  endcaps:
– For	
  this	
  reason,	
  the	
  obtained	
  dose	
  values	
  are	
  valid	
  only	
  to	
  
perform	
  a	
  comparison	
  between	
  the	
  different	
  studied	
  
configura:ons,	
  they	
  are	
  not	
  absolute	
  values	
  of	
  dose	
  per	
  
event	
  in	
  space.
Source	
  
08/15/14
Friday 15 August 14
• Various	
  components	
  of	
  the	
  primary	
  radia:on	
  field	
  in	
  space	
  
par:ally	
  absorbed	
  in	
  the	
  walls	
  of	
  the	
  spacecrai
• Secondary	
  radia:on	
  produced	
  by	
  scajering	
  and	
  reac:ons	
  of	
  
the	
  primary	
  radia:on	
  in	
  the	
  walls	
  and	
  other	
  materials	
  within	
  
the	
  spacecrai
• GCR:	
  about	
  90%	
  hydrogen	
  nuclei;	
  9%	
  alpha	
  par:cles	
  and	
  1%	
  
are	
  the	
  nuclei	
  of	
  heavier	
  elements
High	
  energy	
  protons	
  and	
  neutrons:
• Knockout	
  and	
  spalla:on	
  reac:on
– Built-­‐up	
  of	
  light	
  par:cles	
  and	
  heavy	
  ion	
  target	
  fragments	
  with	
  high	
  LET	
  
and	
  low	
  ranges.	
  
About	
  radia:on	
  field	
  inside	
  the	
  spacecrai
08/15/14
Friday 15 August 14
HZE:	
  predominant	
  processes	
  in	
  their	
  penetra:on	
  through	
  majer	
  
are	
  energy	
  loss	
  through	
  atomic	
  and	
  molecular	
  collisions,	
  and	
  
absorpNon	
  and	
  parNcle	
  producNon	
  from	
  nuclear	
  interacNons	
  
with	
  spacecrai	
  materials	
  and	
  :ssues
•E>100	
  MeV/u	
  dominant	
  reac:on	
  mode:	
  fragmenta:on
– Nuclear	
  absorp:on	
  cross	
  sec:on	
  	
  	
  ̴	
  A1/3
•E<100	
  MeV/u	
  dominant	
  reac:on	
  modes:	
  elas:c	
  scajering,	
  compound	
  nucleus	
  
forma:on,	
  and	
  excita:ons	
  of	
  discrete	
  nuclear	
  levels	
  that	
  decay	
  by	
  gamma	
  
emission	
  or	
  par:cle	
  emission	
  
•Transport	
  of	
  HZE	
  highly	
  modulated	
  by	
  nuclear	
  reac:ons	
  in	
  passing	
  through	
  
majer
HZE
08/15/14
Friday 15 August 14
• In	
  case	
  of	
  thick	
  shielding	
  important	
  source	
  of	
  dose
• Low-­‐energy	
  neutrons	
  from	
  evapora:on	
  processes	
  where	
  a	
  
neutron	
  is	
  boiled	
  off	
  from	
  the	
  nucleus	
  because	
  it	
  contains	
  an	
  
excess	
  of	
  energy	
  from	
  its	
  last	
  interac:on
• High	
  energy	
  neutrons	
  from	
  high-­‐energy	
  collisions	
  (ten’s	
  of	
  
GeV/nucleon)	
  where	
  the	
  result	
  of	
  the	
  interac:on	
  is	
  a	
  spray	
  of	
  
nuclear	
  fragments	
  and	
  par:cles
• H	
  approximately	
  the	
  same	
  mass	
  as	
  the	
  neutron	
  !	
  the	
  best	
  
neutron-­‐scajering	
  medium	
  available
– The	
  hydrogen-­‐bearing	
  materials	
  reduce	
  the	
  number	
  of	
  higher	
  energy	
  
neutrons	
  in	
  the	
  500	
  keV	
  to	
  20	
  MeV	
  energy	
  range	
  that	
  penetrate	
  the	
  shield	
  
materials	
  considered.	
  In	
  fact,	
  the	
  more	
  hydrogen,	
  the	
  bejer	
  the	
  overall	
  
shielding	
  characteris:cs.
Neutrons
08/15/14
Friday 15 August 14
Preliminary	
  Results	
  Varying	
  Mass:	
  Protons	
  +	
  He	
  	
  GCR
All	
  doses	
  presented	
  are	
  EffecNve	
  sex	
  averaged	
  doses	
  according	
  ICRP123	
  
08/15/14
FIELD	
  ON
Friday 15 August 14
Preliminary	
  Results	
  Varying	
  Mass:	
  Protons	
  +	
  He	
  	
  GCR
All	
  doses	
  presented	
  are	
  EffecNve	
  sex	
  averaged	
  doses	
  according	
  ICRP123
08/15/14
FIELD	
  OFF
Friday 15 August 14
Preliminary	
  Results	
  Varying	
  Mass:	
  Ions	
  (z=3	
  to	
  26)	
  GCR
All	
  doses	
  presented	
  are	
  EffecNve	
  sex	
  averaged	
  doses	
  according	
  ICRP123
08/15/14
FIELD	
  ON
Friday 15 August 14
Preliminary	
  Results	
  Varying	
  Mass:	
  Ions	
  (z=3	
  to	
  26)	
  GCR
All	
  doses	
  presented	
  are	
  EffecNve	
  sex	
  averaged	
  doses	
  according	
  ICRP123
08/15/14
FIELD	
  OFF
Friday 15 August 14
Preliminary	
  Results	
  Varying	
  Mass:	
  TOTAL	
  dose	
  
08/15/14
Normaliza:on	
  extended	
  to	
  all	
  the	
  solid	
  angle.	
  
Note	
  that	
  we	
  are	
  genera:ng	
  par:cles	
  from	
  a	
  lateral	
  source.	
  
In	
  this	
  preliminary	
  analysis	
  we	
  are	
  not	
  considering	
  ‘endcaps	
  effect’!
Friday 15 August 14
Dose	
  Eq.	
  Results
08/15/14
Friday 15 August 14
• Carbon	
  Epoxy	
  cylinder	
  has	
  the	
  best	
  
performance	
  in	
  reducing	
  the	
  number	
  of	
  
secondary	
  neutrons
• The	
  effect	
  of	
  Boron	
  is	
  not	
  influen:al	
  on	
  the	
  
results
• We	
  have	
  to	
  inves:gate	
  the	
  energy	
  distribu:on	
  
of	
  neutrons	
  and	
  the	
  cross	
  sec:ons	
  for	
  the	
  
simulated	
  configura:ons
Cross	
  sec:ons	
  comparison
08/15/14
Friday 15 August 14
Energy	
  distribu:on	
  of	
  secondary	
  neutrons	
  dose
08/15/14
Lin-­‐Log	
  	
  scale
Negligible	
  
contribuNon	
  
below	
  100	
  KeV
Friday 15 August 14
Cross	
  sec:ons	
  for	
  different	
  materials	
  	
  ENDF-­‐VII	
  (n,Total)
08/15/14
Friday 15 August 14
Considering	
  different	
  materials	
  configura:ons	
  :
08/15/14
1. Carbon	
  Epoxy,	
  same	
  
geometry	
  (No	
  Titanium)
• Pb	
  internal	
  cylinder	
  	
  	
  	
  	
  	
  	
  	
  	
  
(3	
  cm	
  thick	
  –	
  75	
  tons)
• All	
  Carbon	
  Epoxy	
  (Coils	
  
and	
  structures)
Friday 15 August 14
Material	
  componentMaterial	
  componentMaterial	
  componentMaterial	
  component Other	
  featuresOther	
  featuresOther	
  features
ConfiguraNon COILS STRUCT.	
  1 STRUCT.	
  2 Solid	
  H2 	
   Par:cle Field G4	
  	
  Phisiscs	
  List
B4C/Al Coil	
  Eq.	
  Mat	
   Titanium B4C/Al -­‐ 	
   H OFF QBBC
C	
  Epoxy	
   Coil	
  Eq.	
  Mat	
   Titanium C	
  Epoxy	
   -­‐ 	
   H OFF QBBC
C	
  Epoxy	
  HP Coil	
  Eq.	
  Mat	
   Titanium C	
  Epoxy	
   -­‐ 	
   H OFF QGSP_BERT_HP
No	
  Mat Coil	
  Eq.	
  Mat	
   Titanium -­‐ -­‐ 	
   H OFF QBBC
Lead Coil	
  Eq.	
  Mat	
   Titanium Lead -­‐ 	
   H OFF QBBC
All	
  Carbon Carbon	
  Epoxy Carbon	
  Epoxy Carbon	
  Epoxy -­‐ 	
   H OFF QBBC
Carbon_NoTi Coil	
  Eq.	
  Mat	
   Carbon	
  Epoxy Carbon	
  Epoxy -­‐ 	
   H OFF QBBC
Hydro+B4C/Al Coil	
  Eq.	
  Mat	
   Titanium B4C/Al 10	
  tons 	
   H OFF QBBC
Hydro+B4C/Al+Field Coil	
  Eq.	
  Mat	
   Titanium B4C/Al 10	
  tons 	
   H ON QBBC
C	
  Epoxy	
  	
  Field	
  (H) Coil	
  Eq.	
  Mat	
   Titanium C	
  Epoxy	
   -­‐ 	
   H ON QBBC
C	
  Epoxy	
  	
  Field	
  (H+He) Coil	
  Eq.	
  Mat	
   Titanium C	
  Epoxy	
   -­‐ 	
   H+He ON QBBC
C	
  Epoxy	
  	
  Field	
  x2	
  (H+He) Coil	
  Eq.	
  Mat	
   Titanium C	
  Epoxy	
   -­‐ 	
   H+He ON	
  (double) QBBC
08/15/14
STRUCT.	
  1
Solid	
  H2
STRUCT.	
  2
COILS
Friday 15 August 14
Effec:ve	
  Doses:	
  All	
  Configura:ons
08/15/14
Freespace	
  H,	
  
normalized	
  on	
  the	
  
lateral	
  region	
  (47%	
  
of	
  total	
  solid	
  angle)
Field	
  Off
Friday 15 August 14
54
Conclusions	
  (1)
54
•The	
  SR2S	
  project	
  brings	
  one	
  of	
  the	
  most	
  
challenging	
  magnet	
  systems	
  to	
  be	
  built
•Various	
  of	
  the	
  technologies	
  for	
  such	
  a	
  
space	
  superconduc:ng	
  system	
  do	
  not	
  exist	
  
yet
•SR2S	
  is	
  an	
  extraordinary	
  technology	
  
development	
  field	
  and	
  technology	
  driver
Friday 15 August 14
55
Conclusions	
  (2)
•Ac:ve	
  Radia:on	
  Shielding	
  for	
  explora:on	
  is	
  a	
  
necessity
•Passive	
  shielding	
  for	
  GCR	
  is	
  not	
  adequate	
  and	
  for	
  
SPE	
  can	
  only	
  protect	
  limited	
  volumes	
  
•Ac:ve	
  magne:c	
  shielding	
  becomes	
  effec:ve	
  at	
  
high	
  	
  ∫	
  BdL	
  values	
  and	
  	
  only	
  if	
  the	
  material	
  
thickness	
  traversed	
  by	
  the	
  GCR	
  is	
  “small”
•Interplay	
  between	
  ac:ve	
  and	
  passive	
  shielding	
  is	
  
complex	
  and	
  detailed	
  simula:ons	
  are	
  needed	
  to	
  
understand	
  it55
Friday 15 August 14
56
Conclusions	
  (3)
•Op:miza:on	
  of	
  magne:c	
  and	
  structural	
  forces	
  	
  is	
  
mandatory
•During	
  the	
  first	
  year	
  SR2S	
  has	
  developed	
  the	
  basic	
  
tools	
  for	
  ac:ve	
  shield	
  analysis,	
  started	
  a	
  sistema:c	
  
inves:ga:on	
  and	
  achieved	
  important	
  technological	
  
developments
•We	
  are	
  analyzing	
  a	
  toroidal	
  configura:on:	
  	
  	
  other	
  
magne:c	
  configura:ons	
  would	
  also	
  	
  deserve	
  careful	
  
study	
  
•A	
  R&D	
  path	
  towards	
  future	
  developments	
  for	
  light,	
  
high	
  field,	
  modular	
  toroidal	
  shield	
  design	
  has	
  been	
  
iden:fied
•Collabora:on	
  and	
  synergy	
  	
  with	
  	
  NASA,	
  ESA	
  and	
  EU	
  56
Friday 15 August 14
• In	
  order	
  to	
  reduce	
  neutron	
  contribu:on	
  we	
  must	
  
consider	
  genera:on	
  and	
  absorb:on	
  of	
  n	
  in	
  different	
  
materials
• Heavy	
  materials	
  as	
  lead	
  (Pb)	
  have	
  a	
  large	
  absorb:on	
  
cross	
  sec:on	
  but	
  in	
  case	
  of	
  	
  high	
  energy	
  protons	
  (GCR)	
  
they	
  produce	
  more	
  neutrons	
  (large	
  secondaries	
  
genera:on).	
  GeneraNon	
  >	
  AbsorbNon
• Boron	
  rich	
  materials	
  are	
  efficient	
  neutron	
  absorber	
  only	
  
in	
  the	
  low	
  energy	
  region	
  where	
  dose	
  contribu:on	
  is	
  
negligible.
08/15/14
Conclusions	
  (4)
Friday 15 August 14
• Using	
  Carbon	
  Epoxy	
  in	
  place	
  of	
  Titanium	
  reduces	
  significantly	
  
the	
  neutron	
  produc:on	
  but	
  increases	
  protons	
  contribu:on.	
  
• The	
  magne:c	
  field	
  is	
  off	
  in	
  this	
  configura:on	
  and	
  proton	
  
contribu:on	
  may	
  be	
  decreased	
  by	
  the	
  field.	
  
• The	
  choice	
  of	
  structural	
  materials	
  is	
  fundamental
• Materials	
  and	
  field	
  must	
  work	
  in	
  synergy	
  in	
  order	
  to	
  improve	
  
the	
  dose	
  reduc:on	
  avoiding	
  secondaries	
  produc:on	
  
08/15/14
Conclusions	
  (5)
Friday 15 August 14
Thank you !
Friday 15 August 14
60
backup	
  
60
Friday 15 August 14
SC	
  cables
Friday 15 August 14
Friday 15 August 14

More Related Content

What's hot

Antigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldAntigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldVapula
 
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...Ivan Kitov
 
Makoutz_Oralpresenation.pptx
Makoutz_Oralpresenation.pptxMakoutz_Oralpresenation.pptx
Makoutz_Oralpresenation.pptxEmily Makoutz
 
Presentation on energy iter2017 january
Presentation on energy iter2017 januaryPresentation on energy iter2017 january
Presentation on energy iter2017 januaryCooper Lackay
 
solar radiation modelling
solar radiation modellingsolar radiation modelling
solar radiation modellingguru mech
 
Giant magnetoresistance
Giant magnetoresistanceGiant magnetoresistance
Giant magnetoresistancejamilahmedawan
 
Quantum Computers PART 5 Scanning Tunneling Microscope by Lili Saghafi
Quantum Computers PART 5 Scanning Tunneling Microscope  by Lili SaghafiQuantum Computers PART 5 Scanning Tunneling Microscope  by Lili Saghafi
Quantum Computers PART 5 Scanning Tunneling Microscope by Lili SaghafiProfessor Lili Saghafi
 
Nantennas/Nano antenna
Nantennas/Nano antenna Nantennas/Nano antenna
Nantennas/Nano antenna Nagarjuna P
 
Realistic interstellarexplorer
Realistic interstellarexplorerRealistic interstellarexplorer
Realistic interstellarexplorerClifford Stone
 
Fusion Energy: When might it become economically feasible?
Fusion Energy: When might it become economically feasible?Fusion Energy: When might it become economically feasible?
Fusion Energy: When might it become economically feasible?Jeffrey Funk
 
Ion engine
Ion engineIon engine
Ion engineCHharsha
 
Accelerators and Applications- Summer Training in Physics 16
 Accelerators and Applications- Summer Training in Physics 16 Accelerators and Applications- Summer Training in Physics 16
Accelerators and Applications- Summer Training in Physics 16Kamalakkannan K
 

What's hot (20)

Zubrin nov99
Zubrin nov99Zubrin nov99
Zubrin nov99
 
Gmr
GmrGmr
Gmr
 
912 komerath[1]
912 komerath[1]912 komerath[1]
912 komerath[1]
 
Antigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF fieldAntigravity: Biefeld-Brown Effect / ZPF field
Antigravity: Biefeld-Brown Effect / ZPF field
 
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...
Joint interpretation of infrasound, acoustic, and seismic waves from meteorit...
 
Tailored forcefields
Tailored forcefieldsTailored forcefields
Tailored forcefields
 
Senior Design Poster
Senior Design PosterSenior Design Poster
Senior Design Poster
 
Nantenna
NantennaNantenna
Nantenna
 
Makoutz_Oralpresenation.pptx
Makoutz_Oralpresenation.pptxMakoutz_Oralpresenation.pptx
Makoutz_Oralpresenation.pptx
 
Presentation on energy iter2017 january
Presentation on energy iter2017 januaryPresentation on energy iter2017 january
Presentation on energy iter2017 january
 
solar radiation modelling
solar radiation modellingsolar radiation modelling
solar radiation modelling
 
Solid state aircrafts
Solid state aircraftsSolid state aircrafts
Solid state aircrafts
 
J-PARC
J-PARCJ-PARC
J-PARC
 
Giant magnetoresistance
Giant magnetoresistanceGiant magnetoresistance
Giant magnetoresistance
 
Quantum Computers PART 5 Scanning Tunneling Microscope by Lili Saghafi
Quantum Computers PART 5 Scanning Tunneling Microscope  by Lili SaghafiQuantum Computers PART 5 Scanning Tunneling Microscope  by Lili Saghafi
Quantum Computers PART 5 Scanning Tunneling Microscope by Lili Saghafi
 
Nantennas/Nano antenna
Nantennas/Nano antenna Nantennas/Nano antenna
Nantennas/Nano antenna
 
Realistic interstellarexplorer
Realistic interstellarexplorerRealistic interstellarexplorer
Realistic interstellarexplorer
 
Fusion Energy: When might it become economically feasible?
Fusion Energy: When might it become economically feasible?Fusion Energy: When might it become economically feasible?
Fusion Energy: When might it become economically feasible?
 
Ion engine
Ion engineIon engine
Ion engine
 
Accelerators and Applications- Summer Training in Physics 16
 Accelerators and Applications- Summer Training in Physics 16 Accelerators and Applications- Summer Training in Physics 16
Accelerators and Applications- Summer Training in Physics 16
 

Viewers also liked

Neurosynaptic chips
Neurosynaptic chipsNeurosynaptic chips
Neurosynaptic chipsJeffrey Funk
 
Industrial internet big data china market study
Industrial internet big data china market studyIndustrial internet big data china market study
Industrial internet big data china market studyBusiness Finland
 
IEA Policy Pathway series, A Tale of Renewed Cities
 IEA Policy Pathway series, A Tale of Renewed Cities IEA Policy Pathway series, A Tale of Renewed Cities
IEA Policy Pathway series, A Tale of Renewed CitiesInternational Energy Agency
 
March 9 Focus Fusion NYC presentation
March 9 Focus Fusion NYC presentationMarch 9 Focus Fusion NYC presentation
March 9 Focus Fusion NYC presentationFocusFusion
 
Use of plastic waste in road construction
Use of plastic waste in road constructionUse of plastic waste in road construction
Use of plastic waste in road constructionRajashekar Reddy
 
637131main radiation shielding symposium_r1
637131main radiation shielding symposium_r1637131main radiation shielding symposium_r1
637131main radiation shielding symposium_r1Clifford Stone
 
5G for the Networked Society beyond 2020
5G for the Networked Society beyond 20205G for the Networked Society beyond 2020
5G for the Networked Society beyond 2020Ericsson Labs
 
Modificare immagini con power point
Modificare immagini con power pointModificare immagini con power point
Modificare immagini con power pointCristina Rigutto
 
Cosmic Ray Presentation
Cosmic Ray PresentationCosmic Ray Presentation
Cosmic Ray Presentationguest3aa2df
 
Exponential Organizations - Why new organizations are 10x better, faster and ...
Exponential Organizations - Why new organizations are 10x better, faster and ...Exponential Organizations - Why new organizations are 10x better, faster and ...
Exponential Organizations - Why new organizations are 10x better, faster and ...Yuri van Geest
 

Viewers also liked (13)

Neurosynaptic chips
Neurosynaptic chipsNeurosynaptic chips
Neurosynaptic chips
 
Industrial internet big data china market study
Industrial internet big data china market studyIndustrial internet big data china market study
Industrial internet big data china market study
 
IEA Policy Pathway series, A Tale of Renewed Cities
 IEA Policy Pathway series, A Tale of Renewed Cities IEA Policy Pathway series, A Tale of Renewed Cities
IEA Policy Pathway series, A Tale of Renewed Cities
 
2015 1118 hyperloop_tube_spec
2015 1118 hyperloop_tube_spec2015 1118 hyperloop_tube_spec
2015 1118 hyperloop_tube_spec
 
March 9 Focus Fusion NYC presentation
March 9 Focus Fusion NYC presentationMarch 9 Focus Fusion NYC presentation
March 9 Focus Fusion NYC presentation
 
Use of plastic waste in road construction
Use of plastic waste in road constructionUse of plastic waste in road construction
Use of plastic waste in road construction
 
637131main radiation shielding symposium_r1
637131main radiation shielding symposium_r1637131main radiation shielding symposium_r1
637131main radiation shielding symposium_r1
 
MgB2 Cables for Space Applications - SR2S
MgB2 Cables for Space Applications - SR2SMgB2 Cables for Space Applications - SR2S
MgB2 Cables for Space Applications - SR2S
 
OUM-NESTLE 2008 3
OUM-NESTLE 2008 3OUM-NESTLE 2008 3
OUM-NESTLE 2008 3
 
5G for the Networked Society beyond 2020
5G for the Networked Society beyond 20205G for the Networked Society beyond 2020
5G for the Networked Society beyond 2020
 
Modificare immagini con power point
Modificare immagini con power pointModificare immagini con power point
Modificare immagini con power point
 
Cosmic Ray Presentation
Cosmic Ray PresentationCosmic Ray Presentation
Cosmic Ray Presentation
 
Exponential Organizations - Why new organizations are 10x better, faster and ...
Exponential Organizations - Why new organizations are 10x better, faster and ...Exponential Organizations - Why new organizations are 10x better, faster and ...
Exponential Organizations - Why new organizations are 10x better, faster and ...
 

Similar to Superconductive Radiation Space Shielding

Micro asteroidprospector
Micro asteroidprospectorMicro asteroidprospector
Micro asteroidprospectorClifford Stone
 
Sputtering of Ga-doped ZnO nanocoatings on silicon for piezoelectric transducers
Sputtering of Ga-doped ZnO nanocoatings on silicon for piezoelectric transducersSputtering of Ga-doped ZnO nanocoatings on silicon for piezoelectric transducers
Sputtering of Ga-doped ZnO nanocoatings on silicon for piezoelectric transducersMariya Aleksandrova
 
The Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy ClustersThe Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy ClustersJohn ZuHone
 
Vol. 1 (3), 2014, 56‒59
Vol. 1 (3), 2014, 56‒59Vol. 1 (3), 2014, 56‒59
Vol. 1 (3), 2014, 56‒59Said Benramache
 
Astrophysical constraints on dark matter
Astrophysical constraints on dark matterAstrophysical constraints on dark matter
Astrophysical constraints on dark matterCamille Sigrid Vasquez
 
bài Giếng lượng tử trong cơ học lượng tử
bài Giếng lượng tử trong cơ học lượng tửbài Giếng lượng tử trong cơ học lượng tử
bài Giếng lượng tử trong cơ học lượng tửkhanhdd19010084
 
Etht grp 16 (1400080125029,30,31,32)
Etht grp 16 (1400080125029,30,31,32)Etht grp 16 (1400080125029,30,31,32)
Etht grp 16 (1400080125029,30,31,32)Yash Dobariya
 
p-i-n Solar Cell Modeling with Graphene as Electrode
p-i-n Solar Cell Modeling with Graphene as Electrodep-i-n Solar Cell Modeling with Graphene as Electrode
p-i-n Solar Cell Modeling with Graphene as ElectrodeWahiduzzaman Khan
 
Military Geophysics Program
Military Geophysics ProgramMilitary Geophysics Program
Military Geophysics ProgramAli Osman Öncel
 
Phys122B_L17_mjs.ppt
Phys122B_L17_mjs.pptPhys122B_L17_mjs.ppt
Phys122B_L17_mjs.pptSuhaanHussain
 
Cds photo resistor
Cds photo resistorCds photo resistor
Cds photo resistorravi7742
 
LIGO - General Information
LIGO - General InformationLIGO - General Information
LIGO - General InformationIan Rothbarth
 
Science Vale UK energy event renewable energy technology - solar
Science Vale UK energy event renewable energy technology - solarScience Vale UK energy event renewable energy technology - solar
Science Vale UK energy event renewable energy technology - solarScience Vale UK
 

Similar to Superconductive Radiation Space Shielding (20)

Micro asteroidprospector
Micro asteroidprospectorMicro asteroidprospector
Micro asteroidprospector
 
Sputtering of Ga-doped ZnO nanocoatings on silicon for piezoelectric transducers
Sputtering of Ga-doped ZnO nanocoatings on silicon for piezoelectric transducersSputtering of Ga-doped ZnO nanocoatings on silicon for piezoelectric transducers
Sputtering of Ga-doped ZnO nanocoatings on silicon for piezoelectric transducers
 
The Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy ClustersThe Physics of Gas Sloshing in Galaxy Clusters
The Physics of Gas Sloshing in Galaxy Clusters
 
Vol. 1 (3), 2014, 56‒59
Vol. 1 (3), 2014, 56‒59Vol. 1 (3), 2014, 56‒59
Vol. 1 (3), 2014, 56‒59
 
1379 bickford[2]
1379 bickford[2]1379 bickford[2]
1379 bickford[2]
 
Astro9995 report
Astro9995 reportAstro9995 report
Astro9995 report
 
988 hoffman[1]
988 hoffman[1]988 hoffman[1]
988 hoffman[1]
 
740 howe
740 howe740 howe
740 howe
 
Antimatter drivensail
Antimatter drivensailAntimatter drivensail
Antimatter drivensail
 
Murugkar spie 13
Murugkar spie 13Murugkar spie 13
Murugkar spie 13
 
Astrophysical constraints on dark matter
Astrophysical constraints on dark matterAstrophysical constraints on dark matter
Astrophysical constraints on dark matter
 
bài Giếng lượng tử trong cơ học lượng tử
bài Giếng lượng tử trong cơ học lượng tửbài Giếng lượng tử trong cơ học lượng tử
bài Giếng lượng tử trong cơ học lượng tử
 
Weinstock - Quantum Electronic Solids - Spring Review 2013
Weinstock - Quantum Electronic Solids - Spring Review 2013Weinstock - Quantum Electronic Solids - Spring Review 2013
Weinstock - Quantum Electronic Solids - Spring Review 2013
 
Etht grp 16 (1400080125029,30,31,32)
Etht grp 16 (1400080125029,30,31,32)Etht grp 16 (1400080125029,30,31,32)
Etht grp 16 (1400080125029,30,31,32)
 
p-i-n Solar Cell Modeling with Graphene as Electrode
p-i-n Solar Cell Modeling with Graphene as Electrodep-i-n Solar Cell Modeling with Graphene as Electrode
p-i-n Solar Cell Modeling with Graphene as Electrode
 
Military Geophysics Program
Military Geophysics ProgramMilitary Geophysics Program
Military Geophysics Program
 
Phys122B_L17_mjs.ppt
Phys122B_L17_mjs.pptPhys122B_L17_mjs.ppt
Phys122B_L17_mjs.ppt
 
Cds photo resistor
Cds photo resistorCds photo resistor
Cds photo resistor
 
LIGO - General Information
LIGO - General InformationLIGO - General Information
LIGO - General Information
 
Science Vale UK energy event renewable energy technology - solar
Science Vale UK energy event renewable energy technology - solarScience Vale UK energy event renewable energy technology - solar
Science Vale UK energy event renewable energy technology - solar
 

Recently uploaded

Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 

Recently uploaded (20)

Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 

Superconductive Radiation Space Shielding

  • 1. Superconductive Radiation Space Shielding for Exploration Missions R. Battiston INFN-TIFPA and University of Trento Italian Space Agency COSPAR 2014 Moscow Friday 15 August 14
  • 2. The Consortium SPA 2012 2.2.02 Key technologies for in-space activities Friday 15 August 14
  • 3. 3 FP7  SR2S  program  (2013-­‐15) 3 Friday 15 August 14
  • 4. 4 Radia7on  effects  on  biological  7ssues   4 Friday 15 August 14
  • 6. 6 The  interplanetary  travel  case 6 •          The  evidence  for  cancer  risks  from  humans  who  are   exposed  to  low-­‐LET  radia:on  is  extensive  for  doses  above  100   mSv  (10  rem). •          The  doses  that  are  to  be  expected  on  space  missions,  as   well  as    the  nuclear  type  and  energies,  are  quite  well   understood.   •          The  main  contribu:on    to  the    ionizing  radia:on   encountered  in  space    are   • Solar  Par:cle  Events    (SPE) • Galac:c  Cosmic  Rays    (GCR) •   Friday 15 August 14
  • 7. Distribu=on  of  energies  of  GCR.  This  is  a  graph  of  the  more   abundant  nuclear  species    in  CR  as  measured  near    Earth.   Below  a  few  GeV/nucleon  these  spectra  are  strongly   influenced  by  the  Sun.  The  different  curves  for  the  same   species  represent  measurement  extremes  resul=ng  from   varying  solar  ac=vity  (Physics  Today,  Oct.  1974,  p.  25)   Par=cle  spectra  observed  in  SPE  compared  with  the  GCR     spectrum Friday 15 August 14
  • 9. 9 %  of  death  due  to  cancer  -­‐  95%  CL 9 Durante  &  CucinoUa,  Nat.  2008 Friday 15 August 14
  • 10. 10 Doses  for  explora7on  missions..... 10 • FREE  SPACE:    equivalent    doses  in  excess  of  1.2  Sv  /yr  (∼120  rem/yr)   • SPACECRAFT  (thin)  SHIELDING:  about    700-­‐800  mSv/yr  (70-­‐80  rem/yr) • ON  THE    MARS  SURFACE:  between  100  and  200  mSv/yr  (10  and  20     rem/yr),  depending  on  the  loca:on     • ON  THE    MOON  SURFACE  :  223  mSv/yr  (22,3  rem/yr)    with  oscilla:ons   of  ±  10  rem/yr    as  a  func:on  of  solar  ac:vity   –for  comparison:    ISS  about  18  rem/yr      -­‐-­‐>    6  month   expedi7ons •   Friday 15 August 14
  • 11. 11 Projec7on  of  risk  of    radia7on  on   11 95%  CL Friday 15 August 14
  • 12. 12 3%  REID  limit  =>increase  of  P(cancer  death)   12 Friday 15 August 14
  • 13. 13 Mars  Mission  1000  days  in  space   13 Friday 15 August 14
  • 14. 14 SR2S  mission  scenarios   14 Friday 15 August 14
  • 15. 14 SR2S  mission  scenarios   14 Friday 15 August 14
  • 16. 15 Shield  in  space  if  it  is    “thin”  ...           .......then  it  “adds”  dose 15 Friday 15 August 14
  • 17. 15 Shield  in  space  if  it  is    “thin”  ...           .......then  it  “adds”  dose 15 Friday 15 August 14
  • 18. 15 Shield  in  space  if  it  is    “thin”  ...           .......then  it  “adds”  dose 15 Spacecrafts structures 2 - 6 cm Al eq Friday 15 August 14
  • 19. 16 Advanced  materials  can  help  SPE  not  GCR 16 Friday 15 August 14
  • 20. 16 Advanced  materials  can  help  SPE  not  GCR 16 Spacecrafts structures 2 - 6 cm Al eq Friday 15 August 14
  • 21. 17  So  we  turn  to  ac7ve  radia7on  shields 17 Friday 15 August 14
  • 22. 18 Ac7ve  magne7c  shielding   18 Friday 15 August 14
  • 23. 19 Magne7c  shield  configura7ons • The  angular  deflec:on  in  the  magne:c  field  may  be   compared  to  the  kine:c  energy  lost  by  ioniza:on,   where  BL  replace  the  electromagne:c  and  nuclear   radia:on  length  to  characterizing  the  shielding   performance  of  the  material • Unconfined  Field  (e.g.  Earth’s  field),  very  large   volume  (L),  lower  field  strength  (B)   • Confined  field:  small  volume  (L),  higher  field  (B)   and  larger  mass 19 Friday 15 August 14
  • 24. 20 The  ATLAS  superconduc7ng  toroid 20 Friday 15 August 14
  • 25. 21 Previous  Monte  Carlo  Studies 21 Friday 15 August 14
  • 26. 2222 Ac7ve  magne7c  shielding   • Principle  of  opera=on • B    field  tangent  to  the  shielded    volume  bends   par7cle  away • 1)  toroidal  B  field,  orthogonal  to  Hab  axis • 2)  solenoidal  B  field,  parallel  to  Hab  axis Friday 15 August 14
  • 27. 23 1)  TOROIDAL-­‐ORTHOGONAL  FIELD 23 eg.  racetracks toroid Friday 15 August 14
  • 28. 24 ...but  also 24 double  helix donut double  handle Friday 15 August 14
  • 29. 2525 2)  SOLENOIDAL-­‐PARALLEL  FIELD eg.  coaxial   solenoids Friday 15 August 14
  • 30. 26 ...but  also 26 mul:solenoid axial   mul:donut Friday 15 August 14
  • 31. 27 Shielding  power  :    ∫BdL Re Ri For  an  ideal  toroid,  the   shielding  power  is  defined  as -­‐-­‐>  large  radius -­‐-­‐>  large  B  we  would  reach  effec:ve   shielding  with  ∫BdL≈15  Tm Friday 15 August 14
  • 32. 28 Magnet  mechanical  structure 28 •                               •                  P(Pa)  =  B2/  2μo  (T2) Toroidal field !B non uniform! 1-large inward pressure !structural mass 2-low leakage field Solenoidal    field  !  B  is  uniform  ! 1-­‐large  outward  forces 2-­‐large  leakage  field!  compensaNon  coil Avoid  stresses  on  superconducNng  cable    !coil  support   Friday 15 August 14
  • 33. 29 SRS2  tradeoff  -­‐>  racetrack  toroid  system Friday 15 August 14
  • 34. 30 Magnet  mechanical  structure •  Magnet  design  iteraNons  in  SR2S   •  Structure  design  opNmizaNon: –minimize  the  material  traversed  by  GCR  to  avoid  secondary  producNon –maximize  the  BdL  to  deflect  away    Z<3  parNcles –exploit  the  passive  material  to  absorb    Z>2  parNcles  (stopping  power) •  Perform  Monte  Carlo  calculaNons  of  the  dose  reducNon  factor  for  GCR  and  SPE •  Improve  the  use  advanced  materials  and  mechanical  soluNons  to  reduce  mass.     •  Current  design  configuraNon:  BdL  ≈  8  Tm   30 Friday 15 August 14
  • 35. 31 Superconduc7ng  cable  for  space  applica7ons 31 Friday 15 August 14
  • 36. 32 Superconductors  for  space   32 Friday 15 August 14
  • 37. 33 Columbus  cable  for  SPACE  applica7ons FROM  17  TO  10.2  grams,   40%  weight  reducNon FROM: 3x0,5  nickel  clad  wire 3x0,2  copper  stabiliza:on TO: 3x0,5  :tanium  clad  wire 3x0,5  alluminium  stabiliza:on Friday 15 August 14
  • 38. 34 Example  of  mass  op7miza7on First  Design: •24  Coils     !  High  loads  on  the  racetrack ! Concentrated  Loads  on  the  Tube   " ! High  Local  DeformaNon   ! More  sensiNve  at  mechanical              tolerance Smart   SoluNon New  Design: •  120  coils     ! Lower  loads  on  the  racetrack !  Loads  uniformly  distributed                              on  the  tube             ! Lower  DeformaNon   ! Less  SensiNve  at  mechanical                              tolerance Friday 15 August 14
  • 39. 35 Analy7cal  and  Monte  Carlo  analyses 35 See    M.  Giraudo  talks   Friday 15 August 14
  • 40. 36 Magne7c  shielding  of  a  SPE  event 36 Friday 15 August 14
  • 41. • The  Columbus  habitat  was   surrounded  by  the  full   model  already  used  in  the   past,  without  considering   hydrogen  and  endcaps • The  density  of  every   component  was  reduced: – 0%  of  the  total   – 25%  of  the  total   – 50%  of  the  total   – 75%  of  the  total   – Total  (around  315  tons) Simula:on  varying  the  mass    -­‐  M.  Giraudo,  M.  Vuolo 08/15/14 Friday 15 August 14
  • 42. • Par:cles  were  generated  on  a  cylinder  around  the   habitat  !  No  evalua:on  of  the  radia:on  shielding  at   the  endcaps: – For  this  reason,  the  obtained  dose  values  are  valid  only  to   perform  a  comparison  between  the  different  studied   configura:ons,  they  are  not  absolute  values  of  dose  per   event  in  space. Source   08/15/14 Friday 15 August 14
  • 43. • Various  components  of  the  primary  radia:on  field  in  space   par:ally  absorbed  in  the  walls  of  the  spacecrai • Secondary  radia:on  produced  by  scajering  and  reac:ons  of   the  primary  radia:on  in  the  walls  and  other  materials  within   the  spacecrai • GCR:  about  90%  hydrogen  nuclei;  9%  alpha  par:cles  and  1%   are  the  nuclei  of  heavier  elements High  energy  protons  and  neutrons: • Knockout  and  spalla:on  reac:on – Built-­‐up  of  light  par:cles  and  heavy  ion  target  fragments  with  high  LET   and  low  ranges.   About  radia:on  field  inside  the  spacecrai 08/15/14 Friday 15 August 14
  • 44. HZE:  predominant  processes  in  their  penetra:on  through  majer   are  energy  loss  through  atomic  and  molecular  collisions,  and   absorpNon  and  parNcle  producNon  from  nuclear  interacNons   with  spacecrai  materials  and  :ssues •E>100  MeV/u  dominant  reac:on  mode:  fragmenta:on – Nuclear  absorp:on  cross  sec:on      ̴  A1/3 •E<100  MeV/u  dominant  reac:on  modes:  elas:c  scajering,  compound  nucleus   forma:on,  and  excita:ons  of  discrete  nuclear  levels  that  decay  by  gamma   emission  or  par:cle  emission   •Transport  of  HZE  highly  modulated  by  nuclear  reac:ons  in  passing  through   majer HZE 08/15/14 Friday 15 August 14
  • 45. • In  case  of  thick  shielding  important  source  of  dose • Low-­‐energy  neutrons  from  evapora:on  processes  where  a   neutron  is  boiled  off  from  the  nucleus  because  it  contains  an   excess  of  energy  from  its  last  interac:on • High  energy  neutrons  from  high-­‐energy  collisions  (ten’s  of   GeV/nucleon)  where  the  result  of  the  interac:on  is  a  spray  of   nuclear  fragments  and  par:cles • H  approximately  the  same  mass  as  the  neutron  !  the  best   neutron-­‐scajering  medium  available – The  hydrogen-­‐bearing  materials  reduce  the  number  of  higher  energy   neutrons  in  the  500  keV  to  20  MeV  energy  range  that  penetrate  the  shield   materials  considered.  In  fact,  the  more  hydrogen,  the  bejer  the  overall   shielding  characteris:cs. Neutrons 08/15/14 Friday 15 August 14
  • 46. Preliminary  Results  Varying  Mass:  Protons  +  He    GCR All  doses  presented  are  EffecNve  sex  averaged  doses  according  ICRP123   08/15/14 FIELD  ON Friday 15 August 14
  • 47. Preliminary  Results  Varying  Mass:  Protons  +  He    GCR All  doses  presented  are  EffecNve  sex  averaged  doses  according  ICRP123 08/15/14 FIELD  OFF Friday 15 August 14
  • 48. Preliminary  Results  Varying  Mass:  Ions  (z=3  to  26)  GCR All  doses  presented  are  EffecNve  sex  averaged  doses  according  ICRP123 08/15/14 FIELD  ON Friday 15 August 14
  • 49. Preliminary  Results  Varying  Mass:  Ions  (z=3  to  26)  GCR All  doses  presented  are  EffecNve  sex  averaged  doses  according  ICRP123 08/15/14 FIELD  OFF Friday 15 August 14
  • 50. Preliminary  Results  Varying  Mass:  TOTAL  dose   08/15/14 Normaliza:on  extended  to  all  the  solid  angle.   Note  that  we  are  genera:ng  par:cles  from  a  lateral  source.   In  this  preliminary  analysis  we  are  not  considering  ‘endcaps  effect’! Friday 15 August 14
  • 52. • Carbon  Epoxy  cylinder  has  the  best   performance  in  reducing  the  number  of   secondary  neutrons • The  effect  of  Boron  is  not  influen:al  on  the   results • We  have  to  inves:gate  the  energy  distribu:on   of  neutrons  and  the  cross  sec:ons  for  the   simulated  configura:ons Cross  sec:ons  comparison 08/15/14 Friday 15 August 14
  • 53. Energy  distribu:on  of  secondary  neutrons  dose 08/15/14 Lin-­‐Log    scale Negligible   contribuNon   below  100  KeV Friday 15 August 14
  • 54. Cross  sec:ons  for  different  materials    ENDF-­‐VII  (n,Total) 08/15/14 Friday 15 August 14
  • 55. Considering  different  materials  configura:ons  : 08/15/14 1. Carbon  Epoxy,  same   geometry  (No  Titanium) • Pb  internal  cylinder                   (3  cm  thick  –  75  tons) • All  Carbon  Epoxy  (Coils   and  structures) Friday 15 August 14
  • 56. Material  componentMaterial  componentMaterial  componentMaterial  component Other  featuresOther  featuresOther  features ConfiguraNon COILS STRUCT.  1 STRUCT.  2 Solid  H2   Par:cle Field G4    Phisiscs  List B4C/Al Coil  Eq.  Mat   Titanium B4C/Al -­‐   H OFF QBBC C  Epoxy   Coil  Eq.  Mat   Titanium C  Epoxy   -­‐   H OFF QBBC C  Epoxy  HP Coil  Eq.  Mat   Titanium C  Epoxy   -­‐   H OFF QGSP_BERT_HP No  Mat Coil  Eq.  Mat   Titanium -­‐ -­‐   H OFF QBBC Lead Coil  Eq.  Mat   Titanium Lead -­‐   H OFF QBBC All  Carbon Carbon  Epoxy Carbon  Epoxy Carbon  Epoxy -­‐   H OFF QBBC Carbon_NoTi Coil  Eq.  Mat   Carbon  Epoxy Carbon  Epoxy -­‐   H OFF QBBC Hydro+B4C/Al Coil  Eq.  Mat   Titanium B4C/Al 10  tons   H OFF QBBC Hydro+B4C/Al+Field Coil  Eq.  Mat   Titanium B4C/Al 10  tons   H ON QBBC C  Epoxy    Field  (H) Coil  Eq.  Mat   Titanium C  Epoxy   -­‐   H ON QBBC C  Epoxy    Field  (H+He) Coil  Eq.  Mat   Titanium C  Epoxy   -­‐   H+He ON QBBC C  Epoxy    Field  x2  (H+He) Coil  Eq.  Mat   Titanium C  Epoxy   -­‐   H+He ON  (double) QBBC 08/15/14 STRUCT.  1 Solid  H2 STRUCT.  2 COILS Friday 15 August 14
  • 57. Effec:ve  Doses:  All  Configura:ons 08/15/14 Freespace  H,   normalized  on  the   lateral  region  (47%   of  total  solid  angle) Field  Off Friday 15 August 14
  • 58. 54 Conclusions  (1) 54 •The  SR2S  project  brings  one  of  the  most   challenging  magnet  systems  to  be  built •Various  of  the  technologies  for  such  a   space  superconduc:ng  system  do  not  exist   yet •SR2S  is  an  extraordinary  technology   development  field  and  technology  driver Friday 15 August 14
  • 59. 55 Conclusions  (2) •Ac:ve  Radia:on  Shielding  for  explora:on  is  a   necessity •Passive  shielding  for  GCR  is  not  adequate  and  for   SPE  can  only  protect  limited  volumes   •Ac:ve  magne:c  shielding  becomes  effec:ve  at   high    ∫  BdL  values  and    only  if  the  material   thickness  traversed  by  the  GCR  is  “small” •Interplay  between  ac:ve  and  passive  shielding  is   complex  and  detailed  simula:ons  are  needed  to   understand  it55 Friday 15 August 14
  • 60. 56 Conclusions  (3) •Op:miza:on  of  magne:c  and  structural  forces    is   mandatory •During  the  first  year  SR2S  has  developed  the  basic   tools  for  ac:ve  shield  analysis,  started  a  sistema:c   inves:ga:on  and  achieved  important  technological   developments •We  are  analyzing  a  toroidal  configura:on:      other   magne:c  configura:ons  would  also    deserve  careful   study   •A  R&D  path  towards  future  developments  for  light,   high  field,  modular  toroidal  shield  design  has  been   iden:fied •Collabora:on  and  synergy    with    NASA,  ESA  and  EU  56 Friday 15 August 14
  • 61. • In  order  to  reduce  neutron  contribu:on  we  must   consider  genera:on  and  absorb:on  of  n  in  different   materials • Heavy  materials  as  lead  (Pb)  have  a  large  absorb:on   cross  sec:on  but  in  case  of    high  energy  protons  (GCR)   they  produce  more  neutrons  (large  secondaries   genera:on).  GeneraNon  >  AbsorbNon • Boron  rich  materials  are  efficient  neutron  absorber  only   in  the  low  energy  region  where  dose  contribu:on  is   negligible. 08/15/14 Conclusions  (4) Friday 15 August 14
  • 62. • Using  Carbon  Epoxy  in  place  of  Titanium  reduces  significantly   the  neutron  produc:on  but  increases  protons  contribu:on.   • The  magne:c  field  is  off  in  this  configura:on  and  proton   contribu:on  may  be  decreased  by  the  field.   • The  choice  of  structural  materials  is  fundamental • Materials  and  field  must  work  in  synergy  in  order  to  improve   the  dose  reduc:on  avoiding  secondaries  produc:on   08/15/14 Conclusions  (5) Friday 15 August 14
  • 63. Thank you ! Friday 15 August 14