Successfully reported this slideshow.
Upcoming SlideShare
×

2,314 views

Published on

national level ppt on "solar radiation modelling for design of solar systems"

Published in: Education
• Full Name
Comment goes here.

Are you sure you want to Yes No
• In slide 11, the line below:

An = 297672k - 37.37.853 for 0.5<1

just wanna ask if 297672 has a point... i could not get the approximate graph like the graph you have show in the succeeding slides.

Are you sure you want to  Yes  No

1. 1. WELCOME
2. 2. BY: I.S.GURURAGHAVENDRA RAVINDRA.R 2 nd SEM M.TECH ENERGY SYSTEMS ENGG. BVBCET, HUBBALLI
3. 5. Basic concepts <ul><li>Radiant energy travels in the form of electromagnetic waves. </li></ul><ul><li>These waves do not require molecules to propagate. </li></ul><ul><li>Different types of radiation are characterized by different wavelengths. </li></ul>
4. 6. Characteristics of the solar radiation <ul><li>Solar radiation is made up of electro magnetic waves (Es), which travel from the sun to the earth with the speed of light ( c ). </li></ul><ul><li>Energy(E), wavelength ( λ ) of the wave is related to the frequency ( ν ). </li></ul><ul><li>c = νλ </li></ul><ul><li>E = h * c / λ </li></ul><ul><li>Where, h = Planck’s constant </li></ul><ul><li>=6.626*10 -34 </li></ul>
5. 7. Energy from the Sun <ul><li>The total solar energy absorbed by Earth's atmosphere, oceans and land masses is approximately 3,850,000 exajoules (EJ) (10 18 joules) per year. (70% of incoming sunlight) (1 Joule = energy required to heat one gram of dry, cool air by 1˚ C) </li></ul><ul><li>Primary energy use 487 EJ (0.0126%) </li></ul><ul><li>Electricity 56.7 EJ (0.0015%) </li></ul>
6. 8. Breakdown of incoming solar energy
7. 9. Global solar radiation <ul><li>The quantity of short wave radiant energy emitted by the sun passing through a unit horizontal area in unit time is referred to generally as global solar radiation. </li></ul><ul><li>H av / H 0 = a+b(n/N) </li></ul><ul><li>where, </li></ul><ul><li>H0=(24/ π )*Isc[{1+0.033cos(360n/365)}(cos ϕ *cos δ *sin ω +((2* π * ω )/360)*sin ϕ *sin δ )] </li></ul><ul><li>ETR = 10.39*K*(cos θ *cos δ *sin ω + ω *sin ϕ *sin δ) </li></ul>
8. 10. Attenuation of beam radiation <ul><li>τ λ = τ λ(s) * τ λ(abs) </li></ul><ul><li>τ λ(s) = monochromatic atmospheric transmittance considering scattering only (at wavelength λ) </li></ul><ul><li>τ λ(abs) = monochromatic atmospheric transmittance considering absorption only </li></ul><ul><li>τ λ= monochromatic atmospheric transmittance considering both absorption and scattering </li></ul>
9. 11. Model development and description <ul><li>G h = A k *A N *A t </li></ul><ul><li>Where, Ak = 1.1196k-23.04 for k<0.5 </li></ul><ul><li>A k =297672 k -37.853 for 0.5<k < 1 </li></ul><ul><li>A N =0.01407sin[360/365(284+N)]-0.0357 </li></ul><ul><li>A t =t 4 -47.958t 3 +795.68t 2 -5291t+12158 </li></ul>Where , G h =The hourly global solar irradiation on a horizontal surface(W m -2 ) N=The Julian day of the year T =The hour of the day K=The cloudiness degree.
10. 12. Hourly global solar radiation Where , GD =The daily global solar radiation. t1 and t2 = The sunset and the sunrise hours, respectively. Gh =The hourly global radiation in horizontal surface
11. 13. Hourly solar radiation for julian day N=52,1997 and K<=0.5 Hourly global radiation for julian day N=47, 1997 and 0.5<K<1
12. 14. The monthly global solar radiation can be estimates by <ul><li>G M = Σ G D </li></ul>Where, d 1 and d e are ,respectively the first and the latest day of the month RMSE = {[ Σ (G ical – G imes ) 2 ]/n} 1/2
13. 15. <ul><li>Monthly global radiation(MJ m -2 ),modeled versus measured using the present mode </li></ul>
14. 16. <ul><li>Mean bias errors for monthly global radiation </li></ul>
15. 18. <ul><li>Mean relative percentage error for monthly global radiation </li></ul>
16. 19. <ul><li>Mean monthly global insolation (MJ m-2),modeled versus measured using Sivkov model </li></ul>
17. 20. Comparison with Sivkol Model <ul><li>H m =4.9(n m ) 1.31 + 10.500(sin α ) 2.1 </li></ul><ul><li>Where , </li></ul><ul><li>H m and n m are the monthly global irradiance(in cal . Cm -2 ) </li></ul>
18. 21. Conclusions <ul><li>Mathematical model for prediction of global solar radiation in horizontal surface is presented </li></ul><ul><li>Low values of RMSE,MBE and MPE for k<0.5, is remarkable for estimating the daily global solar radiation </li></ul><ul><li>Estimation of mean monthly and yearly global solar radiation have an accuracy of 4.5% and 0.34% respectively </li></ul><ul><li>Model predictions are in good agreement with experimental data </li></ul><ul><li>Essentially this modeling can be a useful tool for the design of various solar energy systems </li></ul>
19. 22. References <ul><li>Solar energy decision support system T. V. RAMACHANDRA*†‡, RAJEEV KUMAR JHA†, S. VAMSEE KRISHNA† and B. V. SHRUTHI† </li></ul><ul><li>International Journal of Sustainable Energy Vol. 24, No. 4, December 2005, 207–224 </li></ul><ul><li>Modelling Direct, Diffuse, and Total Solar Radiation for Cloudless Days </li></ul><ul><li>P. W. Suckling and J.E. Hay </li></ul><ul><li>Department of Geography, University of British Columbia, Vancouver </li></ul><ul><li>[Manuscript received 14 June 1976; in revised form 1 October 19761 </li></ul><ul><li>A global solar radiation model for the design of solar energy systems </li></ul><ul><li>Asian Journal of scientific research 1(3) : 231-238, 2008 </li></ul><ul><li>Solar Radiation Modelling and Measurements for Renewable Energy Applications: Data and Model Quality D.R. Myers </li></ul><ul><li>To be presented at the International Expert Conference on Mathematical Modelling of Solar Radiation and Daylight—Challenges for the 21st Century Edinburgh, Scotland September 15–16, 2003 </li></ul>
20. 23. <ul><li>THANK </li></ul><ul><li>YOU </li></ul>