This document describes two machine learning techniques, particle swarm optimization with support vector machines (PSO-SVM) and recursive feature elimination with support vector machines (RFE-SVM), that were used to classify autism neuroimaging data from the Autism Brain Imaging Data Exchange database. PSO-SVM was used to select discriminative features for classification, while RFE-SVM ranked features by importance. Both techniques aimed to improve classification accuracy and reduce overfitting by selecting optimal feature subsets from the high-dimensional neuroimaging data. The results could help develop brain-based diagnostic criteria for autism.