SlideShare a Scribd company logo
Revised 03/06 to conform with the 2004 ASME Extract



Part A1                              CHAPTER 1

  ASME Code Calculations:
   Cylindrical Components


    Here is what you w i l l be able to do when you complete each objective:


     1. Calculate the required minimum thickness or the maximum allowable working
        pressure of piping, tubes, drums, and headers of ferrous tubing up to and
        including 125 mm O.D.

     2. Calculate the required minimum thickness or the maximum allowable working
        pressure of ferrous piping, drums, and headers.

     3. Calculate the required thickness or maximum allowable working pressure of a
        seamless, unstayed dished head.

     4. Calculate the minimum required thickness or maximum allowable working
        pressure of unstayed flat heads, covers, and blind flanges.

     5. Calculate the acceptability of openings in a cylindrical shell, header, or head.

     6. Calculate the compensation required to reinforce an opening in a cylindrical
        shell, header, or head.




       Revised 03/06 to conform with the 2004 ASME Extract

                                                                               1
Chapter 1 • ASME Code Calculations: Cylindrical Components   3




INTRODUCTION


As power engineers acquire their second and first class power engineering
certification, they find that their roles and areas of responsibility require them to
have a more detailed working knowledge of the key engineering codes and
standards with which their facility must comply. Power engineers often work on
teams or lead teams that are responsible for upgrades within their facilities
and/or for making changes to major pressure piping or equipment. Although
power engineers are not required to design a boiler or pressure vessel, they often
work as team members for equipment design, upgrade, process change,
commissioning, operation, or repair. These activities require work to be done in
accordance with applicable codes. As well, when you become chief engineer of a
facility, you may be called upon to lead teams and give approval for various
projects that must comply with specific engineering codes and standards.

In the early 1900’s, the American Society of Mechanical Engineers (ASME)
appointed various committees to draw up standards for the construction of
boilers and pressure vessels together with standards for welding and guidelines
for the care of boilers in service. These standards and guidelines have been
improved over the years with the improvement in materials and technology.

One important component of the standards for pressure vessels is the use of a
safety factor. The measured physical properties of a material, including ultimate
tensile strength, are divided by a defined safety factor to derive the maximum
allowable stress. In this way, allowance is made for limitations in the testing
technology, unusual stress concentrations, non-uniform materials, and material
flaws. Technological improvements, especially in materials testing, have allowed a
reduction in the safety factor to 3.5 in current editions of Section I; this is the
same factor used in Sections VIII-1 and VIII-2.

Pressures calculated or given in this module refer to gauge pressure unless
otherwise indicated.

Consult the latest ASME Codes (currently the 2004 Edition)—Section I and
Section VIII, Division 1—while studying this module. Figures referenced with a
Code section prefix, such as “Fig. PG-32” or “Fig. UG-34,” can be found in the
ASME Codes or the Academic Extract and are generally not reproduced here.

Note: Material and formulae used in this chapter refer to the 2004 edition of
      the ASME Codes. Most relevant sections can be found in the 2004
      ASME Academic Extract (visit www.powerengineering.ca for more info).

Note: Correct units of measure are very important to accurate calculations, and
      students should be well versed in their use. However, due to the size and
      complexity of Code calculations, it is common practice to omit the units

Conforms with the 2004 ASME Extract • Revised 03/06
4   Revised Second Class Course • Section A1 • SI Units



                    until the final answer is derived. This convention has been used
                    throughout this chapter.

            Note: It should be noted that many US customary unit values presented
                  in the ASME codes do not convert directly into metric values in
                  the current ASME edition or the 2004 ASME Academic Extract (
                  i.e. 5 in. converts to 127mm, ASME shows 5 in. (125 mm); ¼ in.
                  coverts to 6.35 mm, ASME shows ¼ in. (6 mm)). You are required
                  to use the ASME values as presented and not to convert US
                  customary numbers to metric.



             ASME SECTION I - POWER BOILERS


            Paragraphs PG-1, PG-2: This Code covers rules for construction of power
            boilers, electric boilers, miniature boilers, and high temperature water boilers.
            The scope of jurisdiction of Section I applies to the boiler proper and the boiler
            external piping. Superheaters, economizers, and other pressure parts connected
            directly to the boiler, without intervening valves, are considered to be parts of
            the boiler proper and their construction shall conform to Section I rules.

            Materials

            Paragraph PG-6 states that steel plates for any part of a boiler subject to
            pressure, whether or not exposed to the fire or products of combustion, shall be
            in accordance with specifications listed in paragraph PG-6.1. Paragraph PG-9
            states that pipes, tubes, and pressure containing parts used in boilers shall
            conform to one of the specifications listed in paragraph PG-9.1.

            Design

            Paragraph PG-16.3 states that the minimum thickness of any boiler plate under
            pressure shall be 6 mm. The minimum thickness of plates to which stays may be
            attached (in other than cylindrical outer shell plates) shall be 8 mm. When pipe
            over 125 mm O.D. is used in lieu of plate for the shell of cylindrical components
            under pressure, its minimum wall thickness shall be 6 mm.

            Paragraph PG-16.4 states that plate material not more than 0.3 mm thinner than
            the required thickness calculated by Code formula may be used provided the
            manufacturing process is such that the plate will not be more than 0.3 mm
            thinner than that specified in the order.

            Paragraph PG-16.5 states that pipe or tube material shall not be ordered thinner
            than the required thickness calculated by Code formula. Also, the ordered
            thickness shall include provisions for manufacturing tolerance.

                                      Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   5




Paragraph PG-21 states that the term maximum allowable working pressure
(MAWP) refers to gauge pressure, except when noted otherwise in the
calculation formula of PG-27.2.

Paragraph PG-27 Cylindrical Components Under Internal Pressure

The formulae in this section are used to determine the minimum required
thickness of piping, tubes, drums, and headers, when the maximum allowable
working pressure is known. These formulae can be transposed to determine the
maximum allowable working pressure if the minimum required thickness is
given.

The symbols used in the formulae are found in paragraph PG-27.3 and are
defined as follows:
   C = minimum allowance for threading and structural stability (mm) (see
       PG-27.4, note 3)
   D = outside diameter of cylinder (mm)
   E = efficiency of longitudinal welded joints or of ligaments between
       openings, whichever is lower (the values allowed for E are listed in
       PG-27.4, note 1)
   e = thickness factor for expanded tube ends (mm) (see PG-27.4, note 4)
   P = maximum allowable working pressure (MPa). (see PG-21, refers to
       gauge pressure)
   R = inside radius of cylinder (mm)
   S = maximum allowable stress value at the operating temperature of the
       metal (Section II, Part D, Table 1A. See PG-27.4, note 2)
   t = minimum required thickness (mm) (see PG-27.4, note 7)
   y = temperature coefficient (see PG-27.4, note 6)


ASME SECTION VIII, DIVISION 1 - PRESSURE VESSELS


Foreword

The Boiler and Pressure Vessel Committee established rules for new
construction of pressure vessels that ensure safe and reliable performance. The
Code is not a handbook and cannot replace education, experience, and the use of
good engineering judgement. This can be seen in that Section VIII-1 applies to
small compressed-air receivers sold commercially to the general public as well as
to very large pressure vessels used by the petrochemical industry. The Code
contains mandatory requirements, specific prohibitions, and non-mandatory
guidance for pressure vessel construction activities.



Conforms with the 2004 ASME Extract • Revised 03/06
6   Revised Second Class Course • Section A1 • SI Units



            Materials

            Paragraph UG-4 states that materials subject to stress due to pressure are to
            conform to the specifications given in Section II, except as otherwise permitted
            in paragraphs UG-9, UG-10, UG-11, UG-15 and the Mandatory Appendices.
            Paragraph UG-23 (a) lists the tables in Section II, D for various materials.

            Design

            ASME Boiler Code Section I, as well as Section VIII, Division 2 (VIII-2),
            requires all major longitudinal and circumferential butt joints to be examined by
            full radiograph. Section VIII-1 lists various levels of examination for these major
            joints. A fully radiographed major longitudinal butt-welded joint in a cylindrical
            shell would have a joint efficiency factor (E) of 1.0. This factor corresponds to
            a safety factor (or material quality factor) of 3.5 in the parent metal. Non-
            radiographed longitudinal butt-welded joints have a joint efficiency factor (E) of
            0.7, which corresponds to a safety factor of 0.5 in plates. This results in an
            increase of 43% in the thickness of the plates required.

            Paragraph UG-20: Design temperature

            With pressure vessels, the maximum temperature used in the design is important,
            as is the minimum temperature.

            The minimum temperature used in design shall be the lowest temperature that
            the vessel will experience from any factor, including normal operation, upset
            condition, or environmental conditions.

            Paragraph UG-27: Thickness of shells under internal pressure

            The formulae in this section are used to determine the minimum required
            thickness of shells when the maximum allowable working pressure is known.
            These formulae can be transposed to determine the maximum allowable working
            pressure if the minimum required thickness is given.

            The symbols used in the formulae are found in paragraph UG-27 (b) and are
            defined as follows:
                t   =
                    minimum required thickness (mm)
                P   =
                    internal design pressure (MPa) (see UG-21. refers to gauge pressure)
                R   =
                    inside radius of shell course under consideration (mm)
                S   =
                    maximum allowable stress value (see UG-23 and the stress limitations
                    specified in UG-24)
                E = joint efficiency for, or the efficiency of, appropriate joint in
                    cylindrical or spherical shells, or the efficiency of ligaments between
                    openings, whichever is less (use UW-12 for welded vessels. Use UW-
                    53 for ligaments between openings)

                                       Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   7




OBJECTIVE 3 1
OBJECTIVE
Calculate the required minimum thickness or the maximum allowable
working pressure of piping, tubes, drums and headers of ferrous
tubing up to and including 125 mm O.D.



SECTION I

The following formulae are found in ASME Section I, paragraph PG-27.2.1.

Formula for minimum required thickness

                      PD
               t =          + 0.005 D + e                                1.1
                     2S + P

Formula for MAWP

                     ⎡ 2t - 0.01D - 2e ⎤
               P = S ⎢                        ⎥                          1.2
                     ⎢ D - ( t - 0.005D - e ) ⎥
                     ⎣                        ⎦

Example 1: boiler tube
Calculate the minimum required wall thickness of a watertube boiler tube 70 mm
O.D. that is strength welded into place in a boiler. The tube is located in the
furnace area of the boiler and has an average wall temperature of 350°C. The
maximum allowable working pressure is 4000 kPa gauge. The tube material is
carbon steel SA-192.

Note:    Check PG-6 for plate materials and PG-9 for boiler tube materials
         before starting calculations; the information will direct you to the
         correct stress table in ASME Section II, Part D by indicating if the
         metal is carbon steel or an alloy steel.

Solution
For tubing up to and including 125 mm O.D. use equation 1.1.
(See paragraph PG-27.2.1 )

                      PD
               t =          + 0.005D + e
                     2S + P




Conforms with the 2004 ASME Extract • Revised 03/06
8   Revised Second Class Course • Section A1 • SI Units



            Where
                           P    =   4000 kPa = 4.0 MPa
                           D    =   70 mm
                           e    =   0 (see PG-27.4, note 4, strength welded)
                           S    =   87.8 MPa (see Section II, Part D, Table 1A,
                                               SA-192 at 350°C)

                                            4 × 70
                                    t =               + 0.005(70) + 0
                                          2(87.8) + 4
                                           280
                                       =         + 0.35
                                         179.6
                                       = 1.56 + 0.35
                                       = 1.9 mm (Ans.)

            Note:    This value is exclusive of the manufacturer’s tolerance allowance (see
                     PG-16.5). The manufacturing process does not produce absolutely
                     uniform wall thickness; add an allowance of approximately 12.5% to
                     the minimum thickness calculated.

            The formula for minimum thickness may be transposed to solve for the
            maximum allowable working pressure if the tube size and thickness are known.

            Example 2: superheater tube
            Calculate the maximum allowable working pressure, in kPa, for a 75 mm O.D.
            and 4.75 mm minimum thickness superheater tube connected to a header by
            strength welding. The average tube temperature is 400°C. The tube material is
            SA-213-T11.

            Note:    Check PG-9 for boiler tube materials before starting calculations; the
                     information will direct you to the correct stress table in ASME Section
                     II, Part D. SA-213-T11 is alloy steel.

            Solution
            For tubing up to and including 125 mm O.D. Use equation 1.2.
            (See paragraph PG-27.2.1.)

                         ⎡ 2t − 0.01D − 2e ⎤
                    P = S⎢                        ⎥
                         ⎢ D − ( t − 0.005D − e ) ⎥
                         ⎣                        ⎦

            Where
                           t    =   4.75 mm
                           D    =   75 mm
                           e    =   0 (see PG-27.4, note 4, strength welded.)
                           S    =   102 MPa (Section II, Part D, Table 1A,
                                              SA-213-T11 at 400°C)

                                       Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   9



                                  ⎡ ( 2 × 4.75 ) - ( 0.01 × 75 ) - ( 2 × 0 )    ⎤
                        P = 102 × ⎢                                             ⎥
                                  ⎢ 75 - ( 4.75 - ( 0.005 × 75 ) - 0 )
                                  ⎣                                             ⎥
                                                                                ⎦
                                   ⎡     9.5 - 0.75        ⎤
                           = 102 × ⎢                       ⎥
                                   ⎢ 75 - ( 4.75 - 0.375 ) ⎥
                                   ⎣                       ⎦
                                     8.75
                           = 102 ×
                                    70.625
                           = 12.64 MPa = 12 640 kPa (Ans.)

The tubes were strength welded in Example 1 and Example 2. For calculations
involving tubes expanded into place, the appropriate value of e is found in
paragraph PG-27.4, note 4.


SECTION VIII


The following formulae (found in ASME Section VIII-1, paragraph UG-27(c))
are used for calculating wall thickness and design pressure. Paragraph UG-31(a)
states that these calculations are used for tubes and pipes under internal pressure.

Thin Cylindrical Shells

(1) Circumferential stress (longitudinal joints)

                           PR
                t =                                                            1.3
                       (SE - 0.6P )
        Or
                           SEt
                P =                                                            1.4
                        (R + 0.6t )

        When t < 0.5R or P < 0.385SE

(2) Longitudinal stress (circumferential joints)
.
                             PR
               t =                                                             1.5
                      (2SE + 0.4P)
       Or
                           2SEt
               P =                                                             1.6
                        (R - 0.4t )

                When t < 0.5 R or P < 1.25SE


Conforms with the 2004 ASME Extract • Revised 03/06
10   Revised Second Class Course • Section A1 • SI Units



             Thick Cylindrical Shells

             As internal pressures increase higher than 20.6 MPa, special considerations must
             be given to the construction of the vessel as specified in paragraph U-1 (d). As
             the ratio of t/R increases beyond 0.5, a more accurate equation is required to
             determine the thickness. The formulae for thick walled vessels are listed in
             Appendix 1, Supplementary Design Formulas 1.1 to 1.3.


                     SE =
                              (
                            P R02 + R 2       )
                             (R2
                               0   - R2   )
             Where R0 and R are outside and inside radii, respectively.
             By substituting R0 = R + t

                               ⎛ 1      ⎞
                         t = R ⎜ Z 2 - 1⎟      Where          Z =
                                                                            ( SE + P )           1.7
                               ⎝        ⎠                                   ( SE - P )
                                    Where t > 0.5 R or P > 0.385SE

             And

                                ⎡ ( Z - 1) ⎤                                    ⎡ (R + t)⎤
                                                                                             2

                         P = SE ⎢          ⎥            Where       Z   =       ⎢        ⎥       1.8
                                ⎢ ( Z + 1) ⎥
                                ⎣          ⎦                                    ⎣    R ⎦

                     For longitudinal stress with t > 0.5R or P > 1.25SE

                               ⎛ 1      ⎞                       ⎛ P ⎞
                         t = R ⎜ Z 2 - 1⎟ Where              Z =⎜    ⎟ +1                        1.9
                               ⎝        ⎠                       ⎝ SE ⎠

             And

                                                                ⎡(R + t)⎤
                                                                            2

                         P = SE ( Z - 1) Where               Z =⎢       ⎥                        1.10
                                                                ⎣ R ⎦

             Note: Formulae 1.3 to 1.10 are for internal pressure only.

             Example 3: thin shell thickness
             A vertical boiler is constructed of SA-515-60 material in accordance with the
             requirements of Section VIII-1. It has an inside diameter of 2440 mm and an
             internal design pressure of 690 kPa at 230°C. The corrosion allowance is 3 mm,
             and joint efficiency is 0.85. Calculate the required thickness of the shell if the
             allowable stress is 138 MPa.


                                              Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   11


Solution
The quantity 0.385SE = 45.16 MPa; since this is greater than the design pressure
P = 690 kPa, use equation 1.3. (See Section VIII-1, UG-27.)
Note R must be in the fully corroded state to determine the minimum thickness.

                                PR
                 t     =                  + corrosion allowance
                           ( SE - 0.6 P )
                                0.69 × (1220 + 3)
                       =                                 + 3
                           (138 × 0.85) - ( 0.6 × 0.69 )
                          843.87
                       =          + 3
                         116.886
                       = 7.22 + 3
                       = 10.22 mm (Ans.)

The calculated thickness is less than 0.5R; therefore, equation 1.3 is acceptable.

Example 4: thick shell thickness
Calculate the required shell thickness of an accumulator with P = 69 MPa,
R = 45.7 cm, S = 138 MPa, and E = 1.0.
Assume a corrosion allowance of 6 mm.

Solution
The quantity 0.385SE = 53.13 MPa; since this is less than the design pressure
P = 69 MPa, use equation 1.7.

               ⎛ 1      ⎞                                   SE + P
         t = R ⎜ Z 2 - 1⎟    Where                 Z    =
               ⎝        ⎠                                   SE - P
              (138 × 1) + 69
        Z =
              (138 × 1) − 69
                     207
             =
                     69
             =       3
                          ⎛ 1      ⎞
         t   =   ( 457
                    + 6 ) ⎜ 3 2 - 1⎟
                          ⎝        ⎠
             = 463 × 0.732
             = 338.92 mm

Total including corrosion allowance
        t = 338.92 + 6
         = 344.92 mm (Ans.)

Conforms with the 2004 ASME Extract • Revised 03/06
12   Revised Second Class Course • Section A1 • SI Units



             Example 5
             Calculate the required shell thickness of an accumulator with P = 52.75 MPa,
             R = 45.7 cm, S = 138 MPa, and E = 1.0. Assume corrosion allowance = 0.

             Solution
             The quantity 0.385SE = 53.13 MPa; since this is greater than the design pressure
             P = 52.75 MPa, use equation 1.3.

                                       PR
                             t =              + corrosion allowance
                                    SE - 0.6P
                                         52.75 × 457
                                  =                           +0
                                    (138 × 1) - 0.6 ( 52.75 )
                                          24106.75
                                  =
                                           106.35
                                  =       226.67 mm (Ans.)

             This example used equation 1.3; compare the answer using equation 1.7
                                    ⎛ 1      ⎞                           SE + P
                              t = R ⎜ Z 2 - 1⎟   Where Z            =
                                    ⎝        ⎠                           SE - P
                                   (138 × 1) + 52.75
                             Z =
                                   (138 × 1) - 52.75
                                        190.75
                                      =
                                         85.25
                                      = 2.2375
                                               ⎛        1
                                                             ⎞
                              t       =    457 ⎜ 2.2375 2 - 1⎟
                                               ⎝             ⎠
                                      =    457 × 0.4958
                                      =    226.59 mm (Ans.)

             This shows that the 'simple to use' equation (1.3) is accurate over a wide range of
             R/t ratios.




                                            Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   13




OBJECTIVE 3 2
OBJECTIVE
Calculate the required minimum thickness or the maximum allowable
working pressure of ferrous piping, drums, and headers.




In cylindrical vessels, the stress set up by the pressure on the longitudinal joints is
equal to twice the stress on the circumferential joints.


SECTION I

The following formulae are found in ASME Section I, paragraph PG-27.2.2.

The information for piping, drums, or headers may be given with either the
inside (R) or outside (D) measurement.

Using the outside diameter

                                   PD
                          t =              + C                                  2.1
                                2SE + 2 yP

                                    2SE ( t - C )
                          P =                                                   2.2
                                 D - ( 2 y )( t - C )

Using the inside radius
                                      PR
                          t =                   + C                             2.3
                                SE - (1 - y ) P

                                      SE ( t - C )
                          P =                                                   2.4
                                 R + (1 - y )( t − C )

Example 6: steam piping
Calculate the required minimum thickness of seamless steam piping which carries
steam at a pressure of 6200 kPa gauge and a temperature of 375°C. The piping is
plain end, 273.1 mm O.D. (nominal pipe size of 10 inches) and the material is
SA-335-P11. Allow a manufacturer's tolerance allowance of 12.5%.

Note: Check PG-6 and PG-9 for materials before starting calculations; the
      information will direct you to the correct stress table in ASME Section II,
      Part D. The material SA-335-P11 is alloy steel.
Conforms with the 2004 ASME Extract • Revised 03/06
14   Revised Second Class Course • Section A1 • SI Units



             Note: Plain-end pipe does not have its wall thickness reduced when joining to
                   another pipe. For example, lengths of pipe welded together, rather than
                   being joined by threading, are classed as plain-end pipes.

             Solution
             Use equation 2.1 (See PG-27.2.2.)

                                        PD
                            t =                 + C
                                    2 SE + 2 yP

             Where
                            P   =
                                6200 kPa = 6.2 MPa
                            D   =
                                273.1 mm
                            C   =
                                0 (see PG-27.4, note 3, 4-inch nominal and larger)
                            S   =
                                104 MPa (see Section II, Part D, Table 1A,
                                SA-335-P11 at 375°C)
                            E = 1.0 (see PG-27.4, note 1, seamless pipe as per PG-9.1)
                            y = 0.4 (see PG-27.4, note 6, ferritic steel less than 475°C)


                                                  6.2 × 273.1
                                    t =                                 + 0
                                          2 (104 × 1) + 2 ( 0.4 × 6.2 )
                                          1693.22
                                      =
                                        208 + 4.96
                                        1693.22
                                      =
                                         212.96
                                      = 7.95 mm

             This value does not include a manufacturer's tolerance allowance of 12.5%.

             Therefore

                            7.95 × 1.125 = 8.94 mm (Ans.)

             Example 7: steam piping using outside diameter
             Calculate the maximum allowable working pressure in kPa for a seamless steel
             pipe of material SA-209-T1. The nominal pipe size is 323.9 mm (~12 in. pipe)
             with a wall thickness of 11.85 mm. The operating temperature is 450°C. The pipe
             is plain ended. Assume that the material is austenitic steel.

             Note: Check PG-6 and PG-9 for materials before starting calculations; the
                   information will direct you to the correct stress table in ASME Section II,
                   Part D. The material SA-209-T1 is alloy steel.




                                       Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   15


Solution
Use equation 2.2. (See PG-27.2.)

                          2SE ( t - C )
               P =
                       D - ( 2 y )( t - C )

Where
               D = 323.9 mm (see 2005 Academic Supplement, Formulae and
                   Physical Constants, "Table of Actual Pipe Dimensions.")
               t = 11.85 mm
               C = 0 (see PG-27.4, note 3, 4-inch (100 mm) nominal and
                   larger)
               S = 101 MPa (Section II, Part D, Table 1A, SA-209-T1 at
                   450°C)
               E = 1.0 (see PG-27.4, note 1, seamless pipe as per PG-9.1)
               y = 0.4 (see PG-27.4, note 6, austenitic steel at 450°C)

                                   2 (101 × 1) × (11.85 - 0 )
                       P =
                               323.9 - ( 2 × 0.4 ) × (11.85 - 0 )
                             202 × 11.85
                          =
                             323.9 - 9.48
                             2393.7
                          =
                            314.42
                          = 7.613 MPa
                          = 7613 kPa (Ans.)

Example 8: drum using inside radius
A welded watertube boiler drum of SA-515-60 material is fabricated to an inside
radius of 475 mm on the tubesheet and 500 mm on the drum. The plate
thickness of the tubesheet and drum are 59.5 mm and 38 mm respectively. The
longitudinal joint efficiency is 100%, and the ligament efficiencies are 56%
horizontal and 30% circumferential. The operating temperature is not to exceed
300°C. Determine the maximum allowable working pressure based on:

           (a) the drum
           (b) the tubesheet




Conforms with the 2004 ASME Extract • Revised 03/06
16     Revised Second Class Course • Section A1 • SI Units



FIGURE 1
Welded Watertube
Boiler Drum
                                                                        DRUM




                                                            TUBESHEET




                     Note: This is a common example of a watertube drum fabricated from two
                           plates of different thickness. Greater material thickness is required where
                           the boiler tubes enter the drum than is required for a plain drum. For
                           economy, the drum is designed to meet the pressure requirements for
                           each situation.

                     Note: Check PG-6 and PG-9 for materials before starting calculations; the
                           information will direct you to the correct stress table in ASME Section II,
                           Part D. The material SA-515-60 is carbon steel plate.

                     Solution
                     This example has two parts:
                      a) The drum - consider the drum to be plain with no penetrations.
                      b) The tubesheet - consider the drum to have penetrations for boiler tubes.

                     (a)     Use equation 2.4 (inside radius R). (See PG-27.2.2.)

                                                             SE (t - C )
                                             Drum P =
                                                          R + (1 - y )(t - C )

                     Where
                                    S = 115 MPa (see Section II, Part D, Table 1A,
                                        SA-515-60 at 300°C)
                                    E = 1 (see PG-27.4, note 1)
                                    t = 38 mm
                                    C = 0 (see PG-27.4, note 3, 4-inch (100 mm) nominal
                                        and larger)
                                    R = 500 mm (for the drum)
                                    y = 0.4 (see PG-27.4, note 6, ferritic steel less than 480°C)




                                                Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   17




                                Drum P =
                                                (115 × 1) (38 - 0)
                                            500 + (1 - 0.4)(38 - 0)
                                               4370
                                          =
                                            500 + 22.8
                                          = 8.36 MPa (Ans.)

Note: In cylindrical vessels, the stress set up by the pressure on the longitudinal
       joints is equal to twice the stress on the circumferential joints.

(b) Use equation 2.4 (inside radius R). (See PG-27.2.2.)

                                             SE (t - C )
                        Tubesheet P =
                                          R + (1 - y )(t - C )

Where
               S   = 115 MPa (see Section II, Part D, Table A1, SA-515-60 at
                     300°C)
               E   = 0.56 (circumferential stress = 30% and longitudinal stress
                     = 56%; therefore, 0.56 < 2 x 0.30)
               T   = 59.5 mm
               C   = 0 (see PG-27.4, note 3, 4-inch (100 mm) nominal and
                     larger)
               R   = 475 mm (for the tubesheet)
               y   = 0.4 (see PG-27.4, note 6, ferritic steel less than 480°C)


                          Tubesheet P =
                                              (115
                                                 × 0.56 )( 59.5 - 0 )
                                            475 + (1 - 0.4)(59.5 - 0)
                                              3831.8
                                         =
                                            475 + 35.7
                                         = 7.5 MPa (Ans.)

Note: The maximum allowable working pressure is based on the lowest number.



  SECTION VIII-1


Section VIII-1 does not contain separate formulae for small and large bore
cylinders.

The formulae given in paragraph UG-27 are used as set out in Objective 1.



Conforms with the 2004 ASME Extract • Revised 03/06
18   Revised Second Class Course • Section A1 • SI Units




              OBJECTIVE 3
              Calculate the required thickness or maximum allowable working
              pressure of a seamless, unstayed dished head.




              Section I: DISHED HEAD CALCULATIONS


             The paragraphs from PG-29 must be considered when performing calculations
             on dished heads.

             Paragraph PG-29.1 states that the thickness of a blank, unstayed dished head
             with the pressure on the concave side, when it is a segment of a sphere, shall be
             calculated by the following formula:

                                     5PL
                            t   =                                                       3.1
                                     4.8S

             Where:
                            t = minimum thickness of head (mm).
                            P = maximum allowable working pressure (MPa).
                            L = radius (mm) to which the head is dished, measured on the
                                concave side
                            S = maximum allowable working stress (MPa) (see ASME
                                Section II, Part D, Table 1A).

             Paragraph PG-29.2 states: "The radius to which the head is dished shall be not
             greater than the outside diameter of the flanged portion of the head. Where two
             radii are used, the longer shall be taken as the value of L in the formula.”

             Example 9: the segment of a spherical dished head
             Calculate the thickness of a seamless, blank unstayed dished head having
             pressure on the concave side. The head has a diameter of 1085 mm and is a
             segment of a sphere with a dish radius of 918 mm. The maximum allowable
             working pressure is 2500 kPa and the material is SA-285 A. The metal
             temperature does not exceed 250°C. State if this thickness meets Code.




                                       Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   19


Solution
 Use equation 3.1. (See paragraph PG-29.1 for segment of a spherical dished
 head.)

                        5PL
               t   =
                        4.8S

Where
               P = 2.5 MPa
               L = 918 mm
               S = 88.9 MPa (see ASME Section II, Part D, Table 1A,
                   SA-285 A at 250°C)

                            5 ( 2.5 × 918 )
                       t=
                           4.8 × 88.9
                        = 26.89 mm (Ans.)

Note: PG-29.6 states “No head, except a full-hemispherical head, shall be of a
lesser thickness than that required for a seamless shell of the same diameter."

Therefore, to determine if this head thickness meets Code, the thickness of the
shell must be calculated.

Use equation 2.1 (See paragraph PG-27.2.2.)

                           PD
               t =                 + C
                       2 SE + 2 yP

Where
               D = 1085 mm
               y = 0.4 (see PG-27.4, note 6, ferritic steel less than 480°C)
               E = 1 (welded)

                                          2.5 × 1085
                       t =
                                2 ( 88.9 × 1) + 2 ( 0.4 × 2.5 )
                               2712.5
                            =
                              177.8 + 2
                            = 15.086 mm

Therefore, the head thickness of 26.89 mm meets Code requirements.




Conforms with the 2004 ASME Extract • Revised 03/06
20   Revised Second Class Course • Section A1 • SI Units



             Paragraph PG-29.3 states

                     When a head, dished to a segment of a sphere, has a
                     flanged-in manhole or access opening that exceeds 150
                     mm in any dimension, the thickness shall be increased by
                     15% of the required thickness for a blank head computed
                     by the above formula, but in no case less than 3.0 mm
                     additional thickness over a blank head. Where such a
                     dished head has a flanged opening supported by an
                     attached flue, an increase in thickness over that for a
                     blank head is not required. If more than one manhole is
                     inserted in a head, the thickness of which is calculated by
                     this rule, the minimum distance between the openings
                     shall be not less than one-fourth of the outside diameter
                     of the head.

             Note: This applies to the manhole found on the end of a boiler drum.

             Example 10: the segment of a spherical dished head with a flanged-in
             manhole
             Calculate the thickness of a seamless, unstayed dished head with pressure on the
             concave side, having a flanged-in manhole 154 mm by 406 mm. The head has a
             diameter of 1206.5 mm and is a segment of a sphere with a dish radius of 1143
             mm. The maximum allowable working pressure is 1550 kPa, the material is SA-
             285-C, and the metal temperature does not exceed 220oC.

             Note: Check paragraph PG-44, "Inspection Openings" to see if this manhole
             size is acceptable.

             Solution
             First thing to check: is the radius of the dish at least 80% of the diameter of the
             shell? (per paragraph PG-29.5)

                              dish radius     1143
                                           =
                             shell diameter 1206.5
                                           = 0.9473
                                      0.9473 > 0.8

             Therefore, the radius of this dish meets the criteria.

             Use equation 3.1. (See paragraph PG-29.1.)

                                       5PL
                             t   =
                                       4.8S



                                        Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   21


Where
               P = 1.55 MPa
               L = 1143 mm
               S = 108 MPa (see ASME Section II, Part D, Table 1A: use
                   250°C since 220°C is not listed; therefore, use the next
                   higher temperature)

                                5 (1.55 × 1143)
                        t   =
                                    4.8 (108 )
                            =   17.088 mm

This thickness is for a blank head. PG-29.3 requires this thickness to be
increased by 15% or 3.0 mm, whichever is greater.

Therefore

                17.088 × 0.15 = 2.56 mm

This is less than 3.0 mm, so the thickness must be increased by 3.0 mm

Therefore

                Required head thickness = 17.088 + 3.0
                                          = 20.088 mm (Ans.)

Semi-ellipsoidal head

Paragraph PG-29.7 A blank head of a semi-ellipsoidal form in which half the
minor axis or the depth of the head is at least equal to one-quarter of the inside
diameter of the head shall be made at least as thick as the required thickness of a
seamless shell of the same diameter as provided in PG-27.2.2. If a flanged-in
manhole that meets the Code requirements is placed in an ellipsoidal head, the
thickness of the head shall be the same as for a head dished to a segment of a
sphere (see PG-29.1 and PG-29.5) with a dish radius equal to eight-tenths the
diameter of the shell and with the added thickness for the manhole as specified
in PG-29.3.

This rule combines two rules:
   1. blank head rule
   2. flanged-in manhole rule

A semi-ellipsoidal head is shown in Fig. 2.




Conforms with the 2004 ASME Extract • Revised 03/06
22     Revised Second Class Course • Section A1 • SI Units



FIGURE 2
                                                  h = 1/4 D         1/2 r = 1/4 D
Semi-ellipsoidal Head

                                                                                h
                                                                          r
                                                            D



                                                                L




                        Full-hemispherical head

                        The following rule applies to drums or headers with a full-hemispherical end.

                        Paragraph PG-29.11: The thickness of a blank, unstayed, full-hemispherical head
                        with the pressure on the concave side shall be calculated by the following
                        formula:

                                            PL
                                t   =                                                              3.2
                                        2 S - 0.2 P

                        Where
                                        t = minimum thickness of head (mm).
                                        P = maximum allowable working pressure (MPa).
                                        L = radius to which the head was formed (mm)
                                            (measured on the concave side of the head).
                                        S = maximum allowable working stress (MPa)
                                            (Table A1, Section II, Part D).

                        The above formula shall not be used when the required thickness of the head
                        given by the formula exceeds 35.6% of the inside radius. Instead, use the
                        following formula:

                                              ⎛ 1      ⎞                      2(S + P)
                                        t = L ⎜ Y 3 - 1⎟   where    Y =                          3.3
                                              ⎝        ⎠                      2S - P

                        Example 11: full-hemispherical head
                        Calculate the minimum required thickness (mm) for a blank, unstayed, full-
                        hemispherical head with the pressure on the concave side. The radius to which
                        the head is dished is 190.5 mm. Maximum allowable working pressure is 6205
                        kPa, and the head material is SA-285-C. The average temperature of the header is
                        300oC.

                                                  Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   23


Solution
Use equation 3.2. (See PG-29.11.)

                           PL
                t   =
                        2S - 0.2 P

Where
               P = 6.205 MPa
               L = 190.5 mm
               S = 107 MPa (see ASME Section II, Part D, Table 1A, SA-285-C at 300oC)

                             6.205 × 190.5
                t   =
                         2 (107 ) - 0.2 ( 6.205 )
                         1182.05
                    =
                       214 - 1.241
                      1182.05
                    =
                       212.759
                    = 5.56 mm (Ans.)

Check if this thickness exceeds 35.6% of the inside radius:

               190.5 × 0.356 = 67.8 mm

It does not exceed 35.6%, therefore

               The thickness of the head meets Code requirements.

Paragraph PG-29.12: If a flanged-in manhole that meets the Code requirements
(see PG-44) is placed in a full-hemispherical head, the thickness of the head shall
be the same as for a head dished to a segment of a sphere (see PG-29.1 and
PG-29.5), with a dish radius equal to eight-tenths the diameter of the shell and
with the added thickness for the manhole as specified in PG-29.3.


 SECTION VIII-1: DISHED HEAD CALCULATIONS


Sections VIII-1 and VIII-2 each contain rules for the design of spherical shells,
heads, and transition sections. There are significant differences in the equations
due to the different design approaches used. This chapter uses only Section VIII-
1 equations.

Section VIII-1 has rules for head configurations including spherical,
hemispherical, ellipsoidal, and torispherical shapes.

Conforms with the 2004 ASME Extract • Revised 03/06
24   Revised Second Class Course • Section A1 • SI Units




             Spherical Shells and Hemispherical Heads

             Paragraph UG-27 (d) gives the required thickness of a thin spherical shell due to
             internal pressure.

                                          PR
                             t =                                                          3.4
                                       2SE - 0.2 P

                     or

                                           2SEt
                             P     =                                                      3.5
                                         R + 0.2t

                     Where t < 0.356R or P < 0.665SE

             For thick shells, where t >0.356R or P > 0.665SE, use Mandatory Appendix 1
             sections 1-3.

             As the ratio t/R increases beyond 0.356, use the following equations

                                   ⎛ 1 ⎞               2 ( SE + P )
                             t = R ⎜ Y 3 -1⎟ where Y =                                    3.6
                                   ⎝       ⎠             2 SE - P

                     or

                                                        ⎛ R+t⎞
                                                                     3
                                     ⎛ Y -1 ⎞
                             P = 2SE ⎜      ⎟ where Y = ⎜    ⎟                            3.7
                                     ⎝Y + 2⎠            ⎝ R ⎠

                     Where t > 0.356R or P > 0.665SE

             Example 12: hemispherical head
             A pressure vessel is built of SA-516-70 material and has an inside diameter of
             2440 mm. The internal design pressure is 690 kPa at 232°C. The corrosion
             allowance is 3 mm, and the joint efficiency is 0.85. What is the required thickness
             of the hemispherical heads if the allowable stress is 138 MPa?




                                          Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   25


Solution
The quantity 0.665SE = 78 MPa; since this is greater than the design pressure of
690 kPa, use equation 3.4. (See paragraph UG-32 (f).)
       The inside radius in a corroded condition is equal to
                R = 1220 + 3 (corrosion allowance)
                = 1223 mm
                         PR
                t =               + corrosion allowance
                     2 SE - 0.2 P
                          0.69 × 1223
                =                                +3
                  2 (138 × 0.85) - 0.2 ( 0.69 )
                  843.87
                =         +3
                  234.46
                = 3.6 + 3
                = 6.6 mm (Ans.)

The calculated thickness is less than 0.356R; therefore, equation 3.3 is acceptable.

Example 13: spherical head
A spherical pressure vessel with an internal diameter of 3048 mm has a head
thickness of 25.4 mm. Determine the design pressure if the allowable stress is
113 MPa. Assume joint efficiency E = 0.85.

Solution
As no corrosion allowance is stated the design pressure will act on the given
internal diameter.
Use equation 3.5 since t is less than 0.356R.

                          2 SEt
                P =
                        R + 0.2t
                        2 (113 × 0.85 × 25.4 )
                    =
                         1524 + 0.2 ( 25.4 )
                      4879.34
                    =
                      1529.08
                    = 3.191 MPa (Ans.)

The calculated pressure is less than 0.665SE; therefore, equation 3.4 is
acceptable.




Conforms with the 2004 ASME Extract • Revised 03/06
26   Revised Second Class Course • Section A1 • SI Units



             Example 14: thick hemispherical head
             Calculate the required hemispherical head thickness of an accumulator with
             P = 69 MPa, R = 460 mm, S = 103 MPa, and E = 1.0.
             Assume a corrosion allowance of 6 mm.

             Solution
             The quantity 0.665SE = 68.495 MPa; since this is less than the design pressure of
             69 MPa, use equation 3.6.

                                  ⎛ 1 ⎞                2 ( SE + P )
                            t = R ⎜ Y 3 - 1⎟ where Y =
                                  ⎝        ⎠             2 SE - P

                                              2 (103 × 1 + 69 )
                                      Y =
                                              2 (103 × 1) - 69
                                            344
                                          =
                                            137
                                          = 2.51
                                             ⎛ 1      ⎞
                                       t = R ⎜ Y 3 - 1⎟
                                             ⎝        ⎠
                                                     ⎛    1
                                                               ⎞
                                          = 460 + 6 ⎜ 2.513 - 1⎟
                                                     ⎝         ⎠
                                          = 466 ( 0.359 )
                                        = 167.3 mm
             This is the minimum thickness i.e. fully corroded state.
             Total head thickness is 167.3 + 6 mm (corrosion allowance) = 173.3 mm (Ans.).

             Connecting this head to the accumulator shell would require special treatment,
             which is outside of the scope of this module.

             Ellipsoidal Heads

             The commonly used ellipsoidal head has a ratio of base radius to depth of 2:1
             (shown in Fig. 3a). The actual shape can be approximated by a spherical radius of
             0.9D and a knuckle radius of 0.17D (shown in Fig. 3b.) The required thickness
             of 2:1 heads with pressure on the concave side is given in paragraph UG-32
             (d).

                                         PD
                            t =                                                           3.8
                                      2SE - 0.2 P
                     or
                                         2 SEt
                            P     =                                                       3.9
                                        D + 0.2t
                                         Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components         27




       Where
               D   =   inside base diameter
               E   =   joint efficiency factor
               P   =   pressure on the concave side of the head
               S   =   allowable stress for the material
               t   =   thickness of the head

                                                                                  FIGURE 3
                                                                                  Ellipsoidal Head




                                      (a)




                                      (b)


Section VIII-1 does not give any P/S limitations or rules for ellipsoidal heads
when the ratio of P/S is large.

Torispherical Heads

Shallow heads, commonly referred to as flanged and dished heads (F&D heads),
can be built according to paragraph UG-32 (e). A spherical radius L of 1.0D and
a knuckle radius r of 0.06D, as shown in Fig. 4, approximates the most common
F&D heads.



Conforms with the 2004 ASME Extract • Revised 03/06
28     Revised Second Class Course • Section A1 • SI Units



FIGURE 4
Torispherical Head




                      The required thickness of an F&D head is

                                              0.885PL
                                      t =                                                          3.10
                                              SE - 0.1P
                              or
                                                    SEt
                                      P =                                                          3.11
                                               0.885L + 0.1t

                              Where
                                      E   =   joint efficiency factor
                                      L   =   inside spherical radius
                                      P   =   pressure on the concave side of the head
                                      S   =   allowable stress
                                      t   =   thickness of the head

                      Shallow heads with internal pressure are subjected to a stress reversal at the
                      knuckle. This stress reversal could cause buckling of the shallow head as the ratio
                      D/t increases.




                                                 Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   29




OBJECTIVE 4
Calculate the minimum required thickness or maximum allowable
working pressure of unstayed flat heads, covers, and blind flanges.




UNSTAYED FLAT HEADS, COVERS, AND BLIND
FLANGES

Flat plates, covers, and flanges are used extensively in boilers and pressure
vessels. When a flat plate or cover is used as an end closure or head of a pressure
vessel, it may be designed as an integral part of the vessel (having been formed
with the cylindrical shell) or welded to it. Alternately, it may be a separate
component that is attached by bolts or some quick-opening mechanism utilizing
a gasket joint attached to a companion flange on the end of the shell. Bolted
flanges are not covered in the scope of this module.

The concepts of unstayed flat heads, covers, and especially blind flanges are
often misunderstood and can be challenging to anyone learning and working on
this type of equipment. It is very important for power engineers to have good
working knowledge of thickness requirements as this allows them to work safely
and provide sound and safe advice.


 SECTION 1


Paragraph PG-31.1 states that the minimum thickness of unstayed flat heads,
cover plates, and blind flanges shall conform to the requirements. Paragraph PG-
31.2 defines the notations used in this paragraph and in Fig. PG-31. Paragraph
PG-31.3 states formulae for calculating the minimum thickness of flat, unstayed
circular heads, covers, and blind flanges.

When the circular head, cover, or blind flange is attached by welding

                    CP
        t   =   d                                                            4.1
                     S

When the circular head, cover, or blind flange is attached by bolts
(Fig. PG-31 (j), (k))



Conforms with the 2004 ASME Extract • Revised 03/06
30   Revised Second Class Course • Section A1 • SI Units



                                 CP   1.9Whg
                     t   =   d      +                                                     4.2
                                  S     Sd 3

             Note: W = the total bolt loading and hg = the gasket moment arm. The gasket
                   moment arm is the radial distance from the centre line of the bolts to the
                   line of the gasket reaction force (Fig. PG-31 (j), (k)).

             When using equation 4.2, the thickness t shall be calculated for both design
             conditions (flange sketches j and k) and the greater value used.

             Note: The formulae used to determine thickness may be transposed to solve for
                   P and find the maximum allowable working pressure for a flat head or
                   cover of known thickness.

             Paragraph PG-31.3.3 states two formulae for the required thickness of flat
             unstayed heads, covers, or blind flanges that are square, rectangular, elliptical,
             obround, or segmental in design and attached by welding.

                                 ZCP
                     t   = d                                                              4.3
                                  S

             Where Z is a factor from the ratio of the short and long spans
                                           2.4d
                             Z = 3.4 -              to a maximum of 2.5
                                             D

             When the non-circular head, cover, or blind flange is attached by bolts (Fig. PG-
             31. (j), (k))

                                 ZCP   6Whg
                     t   = d         +                                                    4.4
                                  S    SLd 2


             Paragraph PG-31.4 lists the values for C to be used in the formulae 4.1, 4.2, 4.3,
             and 4.4.




                                        Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components        31


Example 15: circular flat head welded to a shell
(Illustrated by Fig. PG-31 (e) and Fig. 5.)

                                                                                    FIGURE 5
                                                                                    Circular Flat Head




Calculate the minimum thickness for the circular head and the depth of the fillet
welds required. The material for head and shell is SA-285-A. The shell is
seamless. The thickness t is 19 mm. Maximum allowable working pressure is
2500 kPa. Shell’s inside diameter d is 762 mm. Head joint welding meets Code
requirements.

Solution
Use equation 4.1

                           CP
                t   = d
                            S
Where
               P = 2.5 MPa
               d = 762 mm
               S = 88.9 MPa (ASME Section II, Part D, Table 1A)
                    As no temperature is given, the saturation temperature of
                    steam (224°C at 2500 kPa) may be used; therefore, use
                    the value for 250°C.
               C = 0.33 m (see PG-31.4, Fig PG-31 sketch (e), where m is
                    defined as the ratio of tr/ts from paragraph PG-31.2)
               tr = required minimum thickness of the shell
               ts = actual thickness of the shell as given
Use equation 2.3 to find the value of tr (see paragraph PG-27.2.2).

                            PR
                t =                    + C
                       SE - (1 - y ) P




Conforms with the 2004 ASME Extract • Revised 03/06
32   Revised Second Class Course • Section A1 • SI Units



             Where
                             R     =       d/2 = 381 mm
                             E     =       1 (see PG-27.4, note 1)
                             y     =       0.4 (see PG-27.4, note 6)
                             C     =       0 (see PG-27.4, note 3)
                                                         2.5 × 381
                              tr    =                                        + 0
                                               (88.9 × 1) - (1 - 0.4 ) × 2.5
                                               952.5
                                    =
                                                87.4
                                    =          10.898 mm

             Therefore
                                               tr
                                   m =
                                               ts
                                               10.898
                                       =
                                                 19
                                       =       0.574

                     C = 0.33 m (from PG - 31.4)
                         = 0.33 × 0.574
                         = 0.19

             As this value is less than 0.2, use 0.2 in the formula from PG-31.4 or in
             equation 4.1.

                                                CP
                              t    =       d
                                                 S
                                                0.20 × 2.5
                                   =       762
                                                   88.9
                                   =       762 × 0.0750
                                   =       57.15 mm (Ans.)

             For a welded circular flat head (Fig PG-31 (e)), a minimum thickness of 57.15
             mm is required.

             The depth of each weld would be 0.7 ts (see Fig PG-31 (e)).

                              ts = 19 mm (given)
                                   = 0.7 × 19
                                   = 13.3 mm


                                                Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   33


It is interesting to note that the required minimum shell thickness is 10.898 mm,
yet the required minimum thickness of the blank head is approximately 5.2 times
thicker at 57.15 mm.

Example 16: circular flat head maximum allowable working pressure
Calculate the maximum allowable working pressure for a circular flat head with
the following specifications. Head design to Fig. PG-31, sketch (d). Shell and
head thickness of 30.5 mm. Material is SA-285-B. Head joint weld meets Code
requirements. Shell diameter is 610 mm. Operating temperature not to exceed
300°C.

Solution
                t    =   30.5 mm
                S    =   96.6 MPa (see ASME Section II, Part D, Table 1A)
                d    =   610 mm
                C    =   0.13 (see Fig. PG-31 (d))

Use equation 4.6. (See PG-32.3.2.)

                         t 2S
                P =                                                      4.6
                         d 2C

                        30.52 × 96.6
                P    =
                        6102 × 0.13
                     = 1.858 MPa (Ans.)

The maximum allowable working pressure for this flat, unstayed head is
1858 kPa.



 SECTION VIII-1


The equations for the design of unstayed plates and covers are found in
paragraph UG-34.

                    CP
        t = d                                                            4.7
                    SE

       Where
                d = effective diameter of the flat plate (mm)
                C = coefficient between 0.1 and 0.33 (depending on the
                    corner details as shown in Fig. UG-34)
                P = design pressure
                S = allowable stress at design temperature

Conforms with the 2004 ASME Extract • Revised 03/06
34   Revised Second Class Course • Section A1 • SI Units



                            E = butt-welded joint efficiency of the joint within the flat
                                plate
                            t = minimum required thickness of the flat plate

             The value of E depends on the degree of non-destructive examination
             performed. E is not a weld efficiency value of the head to shell corner joint.

             Example 17: integral flat plate
             Using the rules of paragraph UG-34, determine the minimum required thickness
             of an integral flat plate with an internal pressure P = 17 MPa, an allowable stress
             S = 120 MPa, and a plate diameter d = 610 mm. There are no butt weld joints
             within the head. There is a corrosion allowance of 4 mm. The corner detail
             conforms to Fig. UG-34 (b-2) (assume that m = 1).

             Solution
             Use equation 4.7. (See Fig UG-34 (b-2))

             Where
                            C = 0.33(m) = 0.33(1) = 0.33
                            d = 610 + 4 = 614 mm (fully corroded state)

                                       CP
                             t = d        + corrosion allowance
                                       SE
                                      0.33×17
                             = 614 ×          +4
                                       120 ×1
                             = 136.76 mm (Ans.)




                                        Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   35




OBJECTIVE 5
Calculate the acceptability of openings in a cylindrical shell, header,
or head.




Openings through the pressure boundary of a vessel require extra care to keep
loading and stresses at acceptable levels. An examination of the pressure
boundary may indicate that extra material is needed near the opening to keep
stresses at acceptable levels. This extra material may be provided by increasing
the wall thickness of the shell or nozzle or by adding a reinforcement plate
around the opening.

The stress analysis basis used in the ASME Codes to analyze nozzle
reinforcement is called Beams on Elastic Foundation (Hetenyi, 1946). Although the
methods used are a simplified application of the elastic foundation theory,
experience has shown that they are acceptable.

ASME Codes Section I and Section VIII give two methods for examining the
acceptability of openings in the pressure boundary for pressure loads only. The
first method, called the reinforced opening or area replacement method is
used when nearby substitute areas replace the area removed by the opening. The
second method is the ligament efficiency method. This method determines the
effectiveness of the material between adjacent openings to carry the stress
compared with the area of metal that was there before the openings existed.
Curves have been developed to simplify this examination. For single openings,
only the area replacement method is used. For multiple openings, either method
may be used.

Since stress is related to load and cross-sectional area, areas are substituted when
making calculations. Placement and location of the replacement area are very
important. Equations have been developed to set the limits for reinforcement.

Reinforcement limits are developed parallel and perpendicular to the shell
surface from the opening.




Conforms with the 2004 ASME Extract • Revised 03/06
36     Revised Second Class Course • Section A1 • SI Units



Figure 6
Reinforcement Limits                                     Rn
                                              tn
                                                      t rn
                          A                                                                           B
                smaller of
                 2.5t or          WL1
                 2.5tn + t e                             tr


                 t


                smaller of
                                                                  d
                 2.5t or
                   2.5tn                                           ABCD = Limits of reinforcement

                         C                  d or                                  d or                 D
                                        Rn + t n + t                         Rn + t n + t
                                      Use larger value                      Use larger value



                       When an opening is cut into a vessel wall for the attachment of a nozzle with
                       diameter d (as in Fig. 6), the vessel wall thickness t is usually thicker than the
                       minimum thickness required tr. The area (tr x d) is the cross-sectional area that is
                       removed and has to be compensated for. ASME Section I, paragraph PG-36
                       (ASME Section VIII, paragraph UG-40) gives the rules for the “Limits of Metal
                       Available for Compensation." The limit is shown by box ABCD in Fig. 6 above.

                       If greater than the cross-sectional area removed, the additional material in the
                       shell wall and the additional material in the nozzle wall (the hatched cross-
                       sectional area shown in Fig. 6 within the limit of compensation boundary) may
                       provide adequate compensation.


                        SECTION I


                       ASME Section I, paragraph PG-32 "Openings in Shells, Headers and Heads"
                       contains rules to be applied to maintain the vessel pressure boundary. Paragraph
                       PG-32.1.1 states that paragraphs PG-32 to PG-39 shall apply to all openings
                       (except for flanged-in manholes as stated in paragraph PG-29) and to tube holes
                       in a definite pattern that are designed according to paragraph PG-52. Paragraph
                       PG-32.1.2 provides the rules for openings that do not require reinforcement
                       calculations, providing the diameter of the opening does not exceed that
                       permitted by the chart in Fig. PG-32.

                                                   Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   37


To determine if reinforcement is required, the value K is calculated from the
formula

                    PD
        K    =                                                                5.1
                  1.82St

Using the chart in Fig. PG-32, the value for the x-axis is calculated from the shell
diameter times the shell thickness. The point where the x-axis value meets the K
value curve is read to the y-axis and gives the maximum diameter of the opening,
allowed without reinforcement.

Example 18: reinforcement of nozzle abutting vessel
Determine if reinforcement is required for a 100 mm I.D. nozzle located in a
cylindrical boiler shell. The nozzle abuts the vessel wall and is attached by a full-
penetration weld. The O.D. of the shell is 1000 mm. The thickness of the shell
wall is 25.4 mm. The thickness of the nozzle wall is 10 mm. The shell material is
SA-515-60 and the nozzle material is SA-192. The maximum allowable working
pressure is 4500 kPa, and the design temperature is not to exceed 200°C. All
joint efficiencies E = 1.0.

Solution
As this is a boiler shell, ASME Section I rules apply. (See PG-32.1.2.)
Use equation 5.1 to calculate the K value.

                           PD
                 K =
                         1.82St

Where
                 P   =   4.5 MPa
                 D   =   1000 mm
                 S   =   118 MPa
                 t   =   25.4 mm

                          PD
                 K =
                        1.82St
                           4.5 × 1000
                     =
                       1.82 (118 × 25.4 )
                     = 0.825

Using Fig. PG-32, calculate the x-axis value.

        Shell diameter × shell thickness = 1000 × 25.4
                                            = 25400 mm 2



Conforms with the 2004 ASME Extract • Revised 03/06
38   Revised Second Class Course • Section A1 • SI Units



             The intersection of the x-axis value (2540) and the K value curve (0.825) give a y-
             axis value of approximately 134 mm.

             Therefore, no additional reinforcement is required (Ans.) for an opening of
             100 mm diameter.



              SECTION VIII-1

             Section VIII-1 requires all openings in pressure vessels, not subjected to rapid
             fluctuations, to use reinforcement calculations in paragraph UG-37, unless
             certain dimensional requirements are met as listed in paragraph UG-36(c)(3).

             Example 19: reinforcement of nozzle abutting vessel
             Determine the reinforcement requirements for a 60 mm I.D. nozzle located in a
             cylindrical shell. The nozzle abuts the vessel wall and is attached by a full-
             penetration weld. The O.D. of the shell is 1000 mm. The thickness of the shell
             wall is 25.4 mm, and the thickness of the nozzle wall is 10 mm. The shell material
             is SA-516-60 and the nozzle is SA-192. The maximum allowable working
             pressure is 4500 kPa, and the design temperature is not to exceed 200°C. All
             joint efficiencies E = 1.0

             Solution
             As this is a not a boiler shell, ASME Section VIII-1 rules apply.
             (See UG-36(c)(3).)

             UG-36(c)(3) states that reinforcement is not required if
             (a)the opening is not larger than 89 mm diameter and the shell is 10 mm thick or
             less; or (b) the opening is not larger than 60 mm diameter and the shell thickness
             is greater than 10 mm.

             In this example, the nozzle diameter is 60 mm

             This falls within the second condition, i.e. not larger than 60 mm in a shell that is
             thicker than 10 mm.

             Therefore, no reinforcement is required (Ans.).




                                        Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components         39




OBJECTIVE 6
Calculate the compensation required to reinforce an opening in a
cylindrical shell, header, or head.




SECTION I


ASME Section I, paragraph PG-33, "Compensation required for openings in
shells and formed heads", states the rules for compensation. Paragraph PG-33.2
states that the total cross-sectional area of compensation required in any given
plane for a vessel under internal pressure shall not be less than A as defined in
PG-33.1, shown in Fig. 7.

For an opening in a shell with a nozzle abutting the shell wall (such as an
opening for a safety valve), the requirements are illustrated in Fig. 7.
                                                                                    FIGURE 7
                                                                                    Nozzle Wall Abutting
                                                                                    Vessel Wall
                                                      Dp

                                   tn         Rn
                                          tr n
                                           rn
              A                                                                          B
                    WL1                                                                  te
     smaller of WL2
      2.5t or
     2.5tn + t e                              tr


     t


     smaller of                                        d
     2.5t or
       2.5tn                                            ABCD = Limits of reinforcement

             C                   d or                                  d or              D
                             Rn + t n + t                          Rn + t n + t
                           Use larger value                      Use larger value
                                 NOZZLE WALL ABUTTING VESSEL WALL




Conforms with the 2004 ASME Extract • Revised 03/06
40   Revised Second Class Course • Section A1 • SI Units



             Where

             (a)     The area to be replaced A (shown as the cross-hatched area)
                                = dtrF
                                        where F is taken from the chart Fig. PG-33

             (b)     The area in the shell wall thickness available to be used as
                     compensation A1
                     (shown as the forward sloped hatched areas on either side of the opening)
                                  = the larger of d(t – Ftr) or 2(t + tn)(t – Ftr)

             (c)     The area in the nozzle wall thickness available to be used as
                     compensation A2
                     (shown as the backward sloped hatched area on either side of the nozzle)
                                 = the smaller of 2(tn – trn)(2.5tfr1) or 2(tn – trn)(2.5tn + te)fr1
                                        where fr1 is the ratio of Snozzle/Sshell

             (d)     The area available from the nozzle to the reinforcement plate welds A41
                                = (WL1)2 × fr1
                                         where fr1 is the ratio of the lesser of Snozzle or Splate / Sshell

             (e)     The area available from the reinforcement plate to shell weld A42
                                 = (WL2)2fr3

             (f)     The area available in the reinforcement plate (shown as herring-bone
                     brick hatch) A5
                                 = (Dp – d – 2tn)te/fr3
                                         `Where fr3 is Splate/Sshell

             If A1 + A2 + A41 > A
             The opening is adequately reinforced.

             If A1 + A2 + A41 < A
             The opening is not adequately reinforced, and reinforcing elements
             (reinforcement plate and welds) must be added and/or the thickness must be
             increased.

             Therefore, if A1 + A2 + A41 +A42 + A5 > A
             The opening is adequately reinforced.

             Example 20: reinforcement of nozzle abutting vessel
             Determine the reinforcement requirements for a 100 mm I.D. nozzle located in a
             cylindrical boiler shell. The nozzle abuts the vessel wall and is attached by a full-
             penetration weld. The O.D. of the shell is 1000 mm. The thickness of the shell
             wall is 22.5 mm and the thickness of the nozzle wall is 8 mm. The nozzle fillet
             welds are 5 mm wide. The shell material is SA-516-60 and the nozzle is SA-192.
             The maximum allowable working pressure is 4900 kPa, and the design

                                          Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   41


temperature is not to exceed 200°C. All joint efficiencies E = 1.0. The
reinforcement plate (if required) shall be of SA-192 material and 18 mm thick.

Solution
As this is a boiler shell, ASME Section I rules apply. Use equation 5.1.
(See PG-32.1.2.)

                            PD
                K    =
                          1.82St

Where
               P    =    4.9 MPa
               D    =    1000 mm
               S    =    118 MPa
               t    =    22.5 mm
                                  4.9 × 1000
                         K =
                               1.82 (118 × 22.5 )
                             = 1.014

ASME Section I, Fig. PG-32, "General Notes," states that K is limited to a value
of 0.99. Therefore PG-32.1.2 cannot be used.

Allowable tensile stress for SA-516-60 is 118 MPa and for SA-192 is 92.4 MPa.

Therefore:
                      118
                f r1 =
                      92.4
                    = 1.28

Use equation 2.3 to determine the minimum required shell thickness (additional
thickness may be used towards reinforcement requirements). (See PG-27.2.2)

Where
               P    =    4.5 MPa
               R    =    500 – 22.5 = 477.5 mm
               S    =    118 MPa
               E    =    1
               y    =    0.4 (see PG-27.4, note 6)
               C    =    0 (see PG-27.4, note 3)




Conforms with the 2004 ASME Extract • Revised 03/06
42   Revised Second Class Course • Section A1 • SI Units



                                                PR
                                    tr =                   +C
                                           SE - (1 - y ) P
                                                4.5 × 477.5
                                       =                            +0
                                           (118 × 1) - (1 - 0.4)4.5
                                       = 20.408 mm
             Therefore
                             tr = 20.408 mm and t = 22.5 mm

             Use equation 1.1 to determine the minimum required nozzle thickness.
             (See PG-27.2.1)

             Where
                            P   =   4.5 MPa
                            D   =   100 + (2 x 8) = 116 mm
                            S   =   92.4 MPa
                            e   =   0 (see PG-27.4, note 4)

                                          PD
                                    t =          + 0.005D + e
                                        2S + P
                                           4.5 × 116
                                      =                  + 0.005 (116 ) + 0
                                        2 ( 92.4 ) + 4.5
                                         522
                                      =       + 0.58
                                        189.3
                                      = 3.3375 mm

             Therefore
                             tr n = 3.3375 mm and tn = 8 mm

             Limit of compensation parallel to shell surface
                           X = d or X = (0.5d + tn + t), whichever is larger
                           X = 100 or X = (0.5 ×100 + 8 + 22.5) = 80.5
                           Therefore
                                   X = 100 mm

             Limit perpendicular to the shell surface
                            Y = 2.5t or Y = (2.5tn + te), whichever is smaller
                            Y = 2.5 × 22.5 = 56.25 or Y = (2.5 × 8 + 18) = 38
                            Therefore
                                    Y = 38 mm

             (a)     Reinforcement area required A (according to Fig. PG-33.1)
                            A = dtrF (where F is taken from the chart Fig. PG-33.3, F=1)
                            Ar = 100 ×20.408 ×1 = 2040.8 mm2


                                       Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   43


(b)    Reinforcement area available in the shell
       (X replaces d in the equation)
               A1 = X(t – Ftr)
               A1 = 100(22.5 – 1 x 20.408) = 209.2
               Therefore
                       A1 =209.2 mm2

(c)    Reinforcement area available in the nozzle
       Y replaces (2.5tn + te) in the equation
               A2 = 2(tn - trn)(Y)fr1
               A2 = 2(8 - 3.3375)(38) × 1.17 = 414.59
               Therefore
                       A2 = 414.59 mm2

(d)    Reinforcement area available in the nozzle weld
              A41 = (WL1)2fr2 where fr2 = Sn/Ss
              A41 = (5)2 × 92.4/118 = 19.58
              Therefore
                     A41 = 19.58 mm2

       Total area available from shell, nozzle, and nozzle weld
               Ar = A1 + A2 + A41
               Ar = 209.2 + 414.59 + 19.58 = 643.37 mm2

(e)    Area provided by the reinforcement plate weld
              A42 = (WL2)2Fr3
              A42 = (5)2 × 92.4/118 = 19.58
              Therefore
                     A42 = 19.58 mm2

       Area required by reinforcement pad
              A5 = A – (Ar + A42)
              A5 = 2040.8 - (643.37 + 19.58) = 1377.85
              Therefore
                      A5 = 1377.85 mm2

(f)    Diameter of the reinforcement pad
                              A5 = ( D p - d - 2tn )te f r 3
                                                                  92.4
                         1377.85 = ( D p - 100 - 2 × 8) × 18 ×
                                                                  118
                                     1377.85
               ( D p - 100 - 16) =
                                      14.095
                              Dp   = 97.75 + 100 + 16
                                   = 213.75 mm ( Ans.)



Conforms with the 2004 ASME Extract • Revised 03/06
44   Revised Second Class Course • Section A1 • SI Units



             Thus, a reinforcing pad 213.75 mm diameter and 18 mm thick is required to
             carry the tensile stress and maintain the vessel pressure boundary. This pad size
             falls within the limits of compensation.


              SECTION VIII-1


             The limits of compensation stated in paragraph UG-40 (b) and (c) are the same
             used in Section I, except that the vessel shell and nozzle must be treated as being
             in a corroded condition.

             Therefore, the limit of compensation parallel to the shell surface

                            X = diameter of the finished opening in corroded condition
                     Or
                            X = radius of the finished opening in corroded condition + shell
                                wall thickness+ nozzle wall thickness

                     Whichever is larger

             The limit of compensation normal to the shell surface

                            Y = 2.5 × nominal shell thickness less the corrosion allowance
                     Or
                            Y = 2.5 × nozzle wall thickness + the thickness of the
                                reinforcing plate (te)

                     Whichever is smaller




                                        Conforms with the 2004 ASME Extract • Revised 03/06
Chapter 1 • ASME Code Calculations: Cylindrical Components   45




CHAPTER QUESTIONS

The following questions provide candidates with experience using the ASME
Codes.

1. Calculate the minimum required wall thickness of a watertube boiler tube 75
   mm O.D. that is strength welded in place in a boiler drum. The tube will be
   in the furnace area of the boiler and have an average wall temperature of
   350°C. The maximum allowable working pressure is 3500 kPa. The tube
   material is SA-192.

2. Calculate the required shell thickness for a hydraulic cylinder with a design
   pressure of 62 000 kPa. The cylinder has an internal diameter of 36 cm,
   S = 142 MPa, and E = 1.0. Assume no corrosion allowance for this cylinder.

3. Calculate the thickness of a boiler steam header designed with a seamless,
   unstayed, full hemispherical head, with pressure on the concave side. The
   inside radius of the header and the radius to which the head is dished is 304
   mm, MAWP is 6205 kPa, and the header and head material is SA-204-A. The
   average temperature of the header is 400°C. The header has a flanged-in
   circular inspection opening 100 mm diameter.

4. An air receiver pressure vessel is constructed from SA-204-A with an inside
   diameter of 1830 mm. The design pressure is 1034 kPa at 200°C. The
   corrosion allowance is 4 mm, and the joint efficiency is 0.85. What is the
   required thickness of the hemispherical heads if the allowable stress is 147.5
   MPa?

5. Using the rules in Section VIII-1, determine the minimum required thickness
   of the flat end plate of a rectangular box header 200 mm by 400 mm with an
   internal pressure of 2500 kPa. The material used has a stress value of 103
   MPa. The plate is integrally welded into place as per Fig UG-34(h). There is
   no corrosion allowance and no butt-welded joints in the plate.

6. Using the rules in Section I, calculate the reinforcement requirements for a
   150 mm I.D. nozzle located in a cylindrical boiler drum. The nozzle abuts the
   vessel wall and is attached by a full-penetration weld. The I.D. of the drum is
   780 mm. The thickness of the drum is 28.575 mm. The nozzle wall thickness
   is 35 mm. The drum material is SA-516-60, and the nozzle material is SA-
   209-T1. The maximum allowable working pressure is 6000 kPa, and the
   design temperature is 250°C. All joint efficiencies E = 1. The reinforcement
   plate material (if required) is of SA-515-55 and 10 mm thick.




Conforms with the 2004 ASME Extract • Revised 03/06

More Related Content

What's hot

Tank design - word
Tank design - wordTank design - word
Tank design - word
moamen mohamed
 
API STD 521
API STD 521API STD 521
Tank Introduction.pptx
Tank Introduction.pptxTank Introduction.pptx
Tank Introduction.pptx
AlipFitriani
 
Psv scenario-and-calculation
Psv scenario-and-calculationPsv scenario-and-calculation
Psv scenario-and-calculation
ChingLuh Nike
 
Design by Analysis - A general guideline for pressure vessel
Design by Analysis - A general guideline for pressure vesselDesign by Analysis - A general guideline for pressure vessel
Design by Analysis - A general guideline for pressure vessel
AnalyzeForSafety
 
Bp fired heater specifications
Bp fired heater specificationsBp fired heater specifications
Bp fired heater specifications
Khurram Masood
 
[Point] pipe stress analysis by computer-caesar ii
[Point] pipe stress analysis by computer-caesar ii[Point] pipe stress analysis by computer-caesar ii
[Point] pipe stress analysis by computer-caesar ii
Luis Luis
 
Piping Fundamentals .pdf
Piping Fundamentals .pdfPiping Fundamentals .pdf
Piping Fundamentals .pdf
VenkataSivaNagaSai
 
Mechanical Seals Piping Plans Api 628
Mechanical Seals Piping Plans   Api 628Mechanical Seals Piping Plans   Api 628
Mechanical Seals Piping Plans Api 628IONEL DUTU
 
Calculo de espesor de tuberia de diseno segun ASME B31.1
Calculo de espesor de tuberia de diseno segun ASME B31.1Calculo de espesor de tuberia de diseno segun ASME B31.1
Calculo de espesor de tuberia de diseno segun ASME B31.1
Cert INT API 580 510 570 653 577 FFS PASS 55 Ely Ramirez
 
Pressure vessel
Pressure vesselPressure vessel
Pressure vessel
Dhiraj Bhaskar
 
AIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGERAIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGERAhsan Shakil
 
Pressure Safety Valve Sizing - API 520/521/526
Pressure Safety Valve Sizing - API 520/521/526Pressure Safety Valve Sizing - API 520/521/526
Pressure Safety Valve Sizing - API 520/521/526
Vijay Sarathy
 
Eng handbook crosby pressure relief valve engineering handbook
Eng handbook crosby pressure relief valve engineering handbookEng handbook crosby pressure relief valve engineering handbook
Eng handbook crosby pressure relief valve engineering handbook
Ali Meshaikhis
 
Inspection of Heat exchanger .pdf
Inspection of Heat exchanger .pdfInspection of Heat exchanger .pdf
Inspection of Heat exchanger .pdf
TusharNayak32
 
Storage Tank.pdf
Storage Tank.pdfStorage Tank.pdf
Kunkle Safety and Relief Valves Technical Reference
Kunkle Safety and Relief Valves Technical ReferenceKunkle Safety and Relief Valves Technical Reference
Kunkle Safety and Relief Valves Technical Reference
Mountain States Engineering and Controls
 
Overview of STI SP001 vs. API 653 Tank Inspections
Overview of STI SP001 vs. API 653 Tank InspectionsOverview of STI SP001 vs. API 653 Tank Inspections
Overview of STI SP001 vs. API 653 Tank Inspections
Antea Group
 
Gas Compression Stages – Process Design & Optimization
Gas Compression Stages – Process Design & OptimizationGas Compression Stages – Process Design & Optimization
Gas Compression Stages – Process Design & Optimization
Vijay Sarathy
 

What's hot (20)

Tank design - word
Tank design - wordTank design - word
Tank design - word
 
API STD 521
API STD 521API STD 521
API STD 521
 
Tank Introduction.pptx
Tank Introduction.pptxTank Introduction.pptx
Tank Introduction.pptx
 
Psv scenario-and-calculation
Psv scenario-and-calculationPsv scenario-and-calculation
Psv scenario-and-calculation
 
Design by Analysis - A general guideline for pressure vessel
Design by Analysis - A general guideline for pressure vesselDesign by Analysis - A general guideline for pressure vessel
Design by Analysis - A general guideline for pressure vessel
 
Bp fired heater specifications
Bp fired heater specificationsBp fired heater specifications
Bp fired heater specifications
 
[Point] pipe stress analysis by computer-caesar ii
[Point] pipe stress analysis by computer-caesar ii[Point] pipe stress analysis by computer-caesar ii
[Point] pipe stress analysis by computer-caesar ii
 
Piping Fundamentals .pdf
Piping Fundamentals .pdfPiping Fundamentals .pdf
Piping Fundamentals .pdf
 
Mechanical Seals Piping Plans Api 628
Mechanical Seals Piping Plans   Api 628Mechanical Seals Piping Plans   Api 628
Mechanical Seals Piping Plans Api 628
 
236135365 heat-treatment-manual
236135365 heat-treatment-manual236135365 heat-treatment-manual
236135365 heat-treatment-manual
 
Calculo de espesor de tuberia de diseno segun ASME B31.1
Calculo de espesor de tuberia de diseno segun ASME B31.1Calculo de espesor de tuberia de diseno segun ASME B31.1
Calculo de espesor de tuberia de diseno segun ASME B31.1
 
Pressure vessel
Pressure vesselPressure vessel
Pressure vessel
 
AIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGERAIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGER
 
Pressure Safety Valve Sizing - API 520/521/526
Pressure Safety Valve Sizing - API 520/521/526Pressure Safety Valve Sizing - API 520/521/526
Pressure Safety Valve Sizing - API 520/521/526
 
Eng handbook crosby pressure relief valve engineering handbook
Eng handbook crosby pressure relief valve engineering handbookEng handbook crosby pressure relief valve engineering handbook
Eng handbook crosby pressure relief valve engineering handbook
 
Inspection of Heat exchanger .pdf
Inspection of Heat exchanger .pdfInspection of Heat exchanger .pdf
Inspection of Heat exchanger .pdf
 
Storage Tank.pdf
Storage Tank.pdfStorage Tank.pdf
Storage Tank.pdf
 
Kunkle Safety and Relief Valves Technical Reference
Kunkle Safety and Relief Valves Technical ReferenceKunkle Safety and Relief Valves Technical Reference
Kunkle Safety and Relief Valves Technical Reference
 
Overview of STI SP001 vs. API 653 Tank Inspections
Overview of STI SP001 vs. API 653 Tank InspectionsOverview of STI SP001 vs. API 653 Tank Inspections
Overview of STI SP001 vs. API 653 Tank Inspections
 
Gas Compression Stages – Process Design & Optimization
Gas Compression Stages – Process Design & OptimizationGas Compression Stages – Process Design & Optimization
Gas Compression Stages – Process Design & Optimization
 

Viewers also liked

Asme st llc wstf-sheth_120814_rd
Asme st llc wstf-sheth_120814_rdAsme st llc wstf-sheth_120814_rd
Asme st llc wstf-sheth_120814_rd
jjkoehr
 
Asme sec viii div 1 icb
Asme sec viii div 1 icbAsme sec viii div 1 icb
Asme sec viii div 1 icb
Praj Industries Ltd.
 
Cswip welding inspection notes and questions
Cswip welding inspection notes and questionsCswip welding inspection notes and questions
Cswip welding inspection notes and questions
Karthik Banari
 
Piping Training course-How to be an Expert in Pipe & Fittings for Oil & Gas c...
Piping Training course-How to be an Expert in Pipe & Fittings for Oil & Gas c...Piping Training course-How to be an Expert in Pipe & Fittings for Oil & Gas c...
Piping Training course-How to be an Expert in Pipe & Fittings for Oil & Gas c...
Varun Patel
 
Piping training-course
Piping training-coursePiping training-course
Piping training-course
pdmsguy
 

Viewers also liked (6)

Asme st llc wstf-sheth_120814_rd
Asme st llc wstf-sheth_120814_rdAsme st llc wstf-sheth_120814_rd
Asme st llc wstf-sheth_120814_rd
 
Asme sec viii div 1 icb
Asme sec viii div 1 icbAsme sec viii div 1 icb
Asme sec viii div 1 icb
 
Question bank
Question bankQuestion bank
Question bank
 
Cswip welding inspection notes and questions
Cswip welding inspection notes and questionsCswip welding inspection notes and questions
Cswip welding inspection notes and questions
 
Piping Training course-How to be an Expert in Pipe & Fittings for Oil & Gas c...
Piping Training course-How to be an Expert in Pipe & Fittings for Oil & Gas c...Piping Training course-How to be an Expert in Pipe & Fittings for Oil & Gas c...
Piping Training course-How to be an Expert in Pipe & Fittings for Oil & Gas c...
 
Piping training-course
Piping training-coursePiping training-course
Piping training-course
 

Similar to Asme Code Calculations Cylindrical Components

A105 a105m − 14
A105 a105m − 14A105 a105m − 14
A105 a105m − 14
Sameer Ahmed
 
Asme viii Div. 1 presentation rev.0
Asme viii Div. 1  presentation   rev.0Asme viii Div. 1  presentation   rev.0
Asme viii Div. 1 presentation rev.0
Mohammad Mahrous
 
Piping Code & Standards Presentation
Piping Code & Standards PresentationPiping Code & Standards Presentation
Piping Code & Standards Presentation
ssuser4f6d4b
 
ASTM A105 material standard
ASTM A105 material standard ASTM A105 material standard
ASTM A105 material standard
wang yilia
 
Design & Stress Analysis of a Cylinder with Closed ends using ANSYS
Design & Stress Analysis of a Cylinder with Closed ends using ANSYSDesign & Stress Analysis of a Cylinder with Closed ends using ANSYS
Design & Stress Analysis of a Cylinder with Closed ends using ANSYS
IJERA Editor
 
A 105 a5
A 105 a5A 105 a5
A 105 a5
Hans A
 
Astm a105
Astm a105Astm a105
Astm a105
Luis_76
 
Design of Self Regulating Pressure Valve using Transient Finite Element Analysis
Design of Self Regulating Pressure Valve using Transient Finite Element AnalysisDesign of Self Regulating Pressure Valve using Transient Finite Element Analysis
Design of Self Regulating Pressure Valve using Transient Finite Element Analysis
IRJET Journal
 
A 105 a3
A 105 a3A 105 a3
A 105 a3
Hans A
 
A694 forgings for flanges, fittings, valves, hi press trans
A694 forgings for flanges, fittings, valves, hi press transA694 forgings for flanges, fittings, valves, hi press trans
A694 forgings for flanges, fittings, valves, hi press trans
JairoFranciscoArroyo
 
Pressure piping thickness and flange rating calculation 2
Pressure piping thickness and flange rating calculation 2Pressure piping thickness and flange rating calculation 2
Pressure piping thickness and flange rating calculation 2
Thành Lý Phạm
 
Astm a234-a234 m-2015
Astm a234-a234 m-2015Astm a234-a234 m-2015
Astm a234-a234 m-2015
gote99
 
Design and Analysis of Vapour Absorbing Machine
Design and Analysis of Vapour Absorbing MachineDesign and Analysis of Vapour Absorbing Machine
Design and Analysis of Vapour Absorbing Machine
IJMER
 
A234 a234m − 14
A234 a234m − 14A234 a234m − 14
A234 a234m − 14
Sameer Ahmed
 
office final ppt [7760835] final update
office final ppt [7760835] final updateoffice final ppt [7760835] final update
office final ppt [7760835] final updateAashish Soin
 
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Versli Lietuva (Enterprise Lithuania)
 
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Denis Senin
 
Flange Bolting
Flange BoltingFlange Bolting
Flange Bolting
Austin Pwrs
 
4. Mechanical design of pressure vessels_slides.pdf
4. Mechanical design of pressure vessels_slides.pdf4. Mechanical design of pressure vessels_slides.pdf
4. Mechanical design of pressure vessels_slides.pdf
YafetTilahun
 
Design and Stress Analysis of High Pressure Accumulator
Design and Stress Analysis of High Pressure AccumulatorDesign and Stress Analysis of High Pressure Accumulator
Design and Stress Analysis of High Pressure Accumulator
IRJET Journal
 

Similar to Asme Code Calculations Cylindrical Components (20)

A105 a105m − 14
A105 a105m − 14A105 a105m − 14
A105 a105m − 14
 
Asme viii Div. 1 presentation rev.0
Asme viii Div. 1  presentation   rev.0Asme viii Div. 1  presentation   rev.0
Asme viii Div. 1 presentation rev.0
 
Piping Code & Standards Presentation
Piping Code & Standards PresentationPiping Code & Standards Presentation
Piping Code & Standards Presentation
 
ASTM A105 material standard
ASTM A105 material standard ASTM A105 material standard
ASTM A105 material standard
 
Design & Stress Analysis of a Cylinder with Closed ends using ANSYS
Design & Stress Analysis of a Cylinder with Closed ends using ANSYSDesign & Stress Analysis of a Cylinder with Closed ends using ANSYS
Design & Stress Analysis of a Cylinder with Closed ends using ANSYS
 
A 105 a5
A 105 a5A 105 a5
A 105 a5
 
Astm a105
Astm a105Astm a105
Astm a105
 
Design of Self Regulating Pressure Valve using Transient Finite Element Analysis
Design of Self Regulating Pressure Valve using Transient Finite Element AnalysisDesign of Self Regulating Pressure Valve using Transient Finite Element Analysis
Design of Self Regulating Pressure Valve using Transient Finite Element Analysis
 
A 105 a3
A 105 a3A 105 a3
A 105 a3
 
A694 forgings for flanges, fittings, valves, hi press trans
A694 forgings for flanges, fittings, valves, hi press transA694 forgings for flanges, fittings, valves, hi press trans
A694 forgings for flanges, fittings, valves, hi press trans
 
Pressure piping thickness and flange rating calculation 2
Pressure piping thickness and flange rating calculation 2Pressure piping thickness and flange rating calculation 2
Pressure piping thickness and flange rating calculation 2
 
Astm a234-a234 m-2015
Astm a234-a234 m-2015Astm a234-a234 m-2015
Astm a234-a234 m-2015
 
Design and Analysis of Vapour Absorbing Machine
Design and Analysis of Vapour Absorbing MachineDesign and Analysis of Vapour Absorbing Machine
Design and Analysis of Vapour Absorbing Machine
 
A234 a234m − 14
A234 a234m − 14A234 a234m − 14
A234 a234m − 14
 
office final ppt [7760835] final update
office final ppt [7760835] final updateoffice final ppt [7760835] final update
office final ppt [7760835] final update
 
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
 
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
Purje Juha, Inspecta Tarkastus (Suomija), „Visagino VAE projektas. Techniniai...
 
Flange Bolting
Flange BoltingFlange Bolting
Flange Bolting
 
4. Mechanical design of pressure vessels_slides.pdf
4. Mechanical design of pressure vessels_slides.pdf4. Mechanical design of pressure vessels_slides.pdf
4. Mechanical design of pressure vessels_slides.pdf
 
Design and Stress Analysis of High Pressure Accumulator
Design and Stress Analysis of High Pressure AccumulatorDesign and Stress Analysis of High Pressure Accumulator
Design and Stress Analysis of High Pressure Accumulator
 

Asme Code Calculations Cylindrical Components

  • 1. Revised 03/06 to conform with the 2004 ASME Extract Part A1 CHAPTER 1 ASME Code Calculations: Cylindrical Components Here is what you w i l l be able to do when you complete each objective: 1. Calculate the required minimum thickness or the maximum allowable working pressure of piping, tubes, drums, and headers of ferrous tubing up to and including 125 mm O.D. 2. Calculate the required minimum thickness or the maximum allowable working pressure of ferrous piping, drums, and headers. 3. Calculate the required thickness or maximum allowable working pressure of a seamless, unstayed dished head. 4. Calculate the minimum required thickness or maximum allowable working pressure of unstayed flat heads, covers, and blind flanges. 5. Calculate the acceptability of openings in a cylindrical shell, header, or head. 6. Calculate the compensation required to reinforce an opening in a cylindrical shell, header, or head. Revised 03/06 to conform with the 2004 ASME Extract 1
  • 2.
  • 3. Chapter 1 • ASME Code Calculations: Cylindrical Components 3 INTRODUCTION As power engineers acquire their second and first class power engineering certification, they find that their roles and areas of responsibility require them to have a more detailed working knowledge of the key engineering codes and standards with which their facility must comply. Power engineers often work on teams or lead teams that are responsible for upgrades within their facilities and/or for making changes to major pressure piping or equipment. Although power engineers are not required to design a boiler or pressure vessel, they often work as team members for equipment design, upgrade, process change, commissioning, operation, or repair. These activities require work to be done in accordance with applicable codes. As well, when you become chief engineer of a facility, you may be called upon to lead teams and give approval for various projects that must comply with specific engineering codes and standards. In the early 1900’s, the American Society of Mechanical Engineers (ASME) appointed various committees to draw up standards for the construction of boilers and pressure vessels together with standards for welding and guidelines for the care of boilers in service. These standards and guidelines have been improved over the years with the improvement in materials and technology. One important component of the standards for pressure vessels is the use of a safety factor. The measured physical properties of a material, including ultimate tensile strength, are divided by a defined safety factor to derive the maximum allowable stress. In this way, allowance is made for limitations in the testing technology, unusual stress concentrations, non-uniform materials, and material flaws. Technological improvements, especially in materials testing, have allowed a reduction in the safety factor to 3.5 in current editions of Section I; this is the same factor used in Sections VIII-1 and VIII-2. Pressures calculated or given in this module refer to gauge pressure unless otherwise indicated. Consult the latest ASME Codes (currently the 2004 Edition)—Section I and Section VIII, Division 1—while studying this module. Figures referenced with a Code section prefix, such as “Fig. PG-32” or “Fig. UG-34,” can be found in the ASME Codes or the Academic Extract and are generally not reproduced here. Note: Material and formulae used in this chapter refer to the 2004 edition of the ASME Codes. Most relevant sections can be found in the 2004 ASME Academic Extract (visit www.powerengineering.ca for more info). Note: Correct units of measure are very important to accurate calculations, and students should be well versed in their use. However, due to the size and complexity of Code calculations, it is common practice to omit the units Conforms with the 2004 ASME Extract • Revised 03/06
  • 4. 4 Revised Second Class Course • Section A1 • SI Units until the final answer is derived. This convention has been used throughout this chapter. Note: It should be noted that many US customary unit values presented in the ASME codes do not convert directly into metric values in the current ASME edition or the 2004 ASME Academic Extract ( i.e. 5 in. converts to 127mm, ASME shows 5 in. (125 mm); ¼ in. coverts to 6.35 mm, ASME shows ¼ in. (6 mm)). You are required to use the ASME values as presented and not to convert US customary numbers to metric. ASME SECTION I - POWER BOILERS Paragraphs PG-1, PG-2: This Code covers rules for construction of power boilers, electric boilers, miniature boilers, and high temperature water boilers. The scope of jurisdiction of Section I applies to the boiler proper and the boiler external piping. Superheaters, economizers, and other pressure parts connected directly to the boiler, without intervening valves, are considered to be parts of the boiler proper and their construction shall conform to Section I rules. Materials Paragraph PG-6 states that steel plates for any part of a boiler subject to pressure, whether or not exposed to the fire or products of combustion, shall be in accordance with specifications listed in paragraph PG-6.1. Paragraph PG-9 states that pipes, tubes, and pressure containing parts used in boilers shall conform to one of the specifications listed in paragraph PG-9.1. Design Paragraph PG-16.3 states that the minimum thickness of any boiler plate under pressure shall be 6 mm. The minimum thickness of plates to which stays may be attached (in other than cylindrical outer shell plates) shall be 8 mm. When pipe over 125 mm O.D. is used in lieu of plate for the shell of cylindrical components under pressure, its minimum wall thickness shall be 6 mm. Paragraph PG-16.4 states that plate material not more than 0.3 mm thinner than the required thickness calculated by Code formula may be used provided the manufacturing process is such that the plate will not be more than 0.3 mm thinner than that specified in the order. Paragraph PG-16.5 states that pipe or tube material shall not be ordered thinner than the required thickness calculated by Code formula. Also, the ordered thickness shall include provisions for manufacturing tolerance. Conforms with the 2004 ASME Extract • Revised 03/06
  • 5. Chapter 1 • ASME Code Calculations: Cylindrical Components 5 Paragraph PG-21 states that the term maximum allowable working pressure (MAWP) refers to gauge pressure, except when noted otherwise in the calculation formula of PG-27.2. Paragraph PG-27 Cylindrical Components Under Internal Pressure The formulae in this section are used to determine the minimum required thickness of piping, tubes, drums, and headers, when the maximum allowable working pressure is known. These formulae can be transposed to determine the maximum allowable working pressure if the minimum required thickness is given. The symbols used in the formulae are found in paragraph PG-27.3 and are defined as follows: C = minimum allowance for threading and structural stability (mm) (see PG-27.4, note 3) D = outside diameter of cylinder (mm) E = efficiency of longitudinal welded joints or of ligaments between openings, whichever is lower (the values allowed for E are listed in PG-27.4, note 1) e = thickness factor for expanded tube ends (mm) (see PG-27.4, note 4) P = maximum allowable working pressure (MPa). (see PG-21, refers to gauge pressure) R = inside radius of cylinder (mm) S = maximum allowable stress value at the operating temperature of the metal (Section II, Part D, Table 1A. See PG-27.4, note 2) t = minimum required thickness (mm) (see PG-27.4, note 7) y = temperature coefficient (see PG-27.4, note 6) ASME SECTION VIII, DIVISION 1 - PRESSURE VESSELS Foreword The Boiler and Pressure Vessel Committee established rules for new construction of pressure vessels that ensure safe and reliable performance. The Code is not a handbook and cannot replace education, experience, and the use of good engineering judgement. This can be seen in that Section VIII-1 applies to small compressed-air receivers sold commercially to the general public as well as to very large pressure vessels used by the petrochemical industry. The Code contains mandatory requirements, specific prohibitions, and non-mandatory guidance for pressure vessel construction activities. Conforms with the 2004 ASME Extract • Revised 03/06
  • 6. 6 Revised Second Class Course • Section A1 • SI Units Materials Paragraph UG-4 states that materials subject to stress due to pressure are to conform to the specifications given in Section II, except as otherwise permitted in paragraphs UG-9, UG-10, UG-11, UG-15 and the Mandatory Appendices. Paragraph UG-23 (a) lists the tables in Section II, D for various materials. Design ASME Boiler Code Section I, as well as Section VIII, Division 2 (VIII-2), requires all major longitudinal and circumferential butt joints to be examined by full radiograph. Section VIII-1 lists various levels of examination for these major joints. A fully radiographed major longitudinal butt-welded joint in a cylindrical shell would have a joint efficiency factor (E) of 1.0. This factor corresponds to a safety factor (or material quality factor) of 3.5 in the parent metal. Non- radiographed longitudinal butt-welded joints have a joint efficiency factor (E) of 0.7, which corresponds to a safety factor of 0.5 in plates. This results in an increase of 43% in the thickness of the plates required. Paragraph UG-20: Design temperature With pressure vessels, the maximum temperature used in the design is important, as is the minimum temperature. The minimum temperature used in design shall be the lowest temperature that the vessel will experience from any factor, including normal operation, upset condition, or environmental conditions. Paragraph UG-27: Thickness of shells under internal pressure The formulae in this section are used to determine the minimum required thickness of shells when the maximum allowable working pressure is known. These formulae can be transposed to determine the maximum allowable working pressure if the minimum required thickness is given. The symbols used in the formulae are found in paragraph UG-27 (b) and are defined as follows: t = minimum required thickness (mm) P = internal design pressure (MPa) (see UG-21. refers to gauge pressure) R = inside radius of shell course under consideration (mm) S = maximum allowable stress value (see UG-23 and the stress limitations specified in UG-24) E = joint efficiency for, or the efficiency of, appropriate joint in cylindrical or spherical shells, or the efficiency of ligaments between openings, whichever is less (use UW-12 for welded vessels. Use UW- 53 for ligaments between openings) Conforms with the 2004 ASME Extract • Revised 03/06
  • 7. Chapter 1 • ASME Code Calculations: Cylindrical Components 7 OBJECTIVE 3 1 OBJECTIVE Calculate the required minimum thickness or the maximum allowable working pressure of piping, tubes, drums and headers of ferrous tubing up to and including 125 mm O.D. SECTION I The following formulae are found in ASME Section I, paragraph PG-27.2.1. Formula for minimum required thickness PD t = + 0.005 D + e 1.1 2S + P Formula for MAWP ⎡ 2t - 0.01D - 2e ⎤ P = S ⎢ ⎥ 1.2 ⎢ D - ( t - 0.005D - e ) ⎥ ⎣ ⎦ Example 1: boiler tube Calculate the minimum required wall thickness of a watertube boiler tube 70 mm O.D. that is strength welded into place in a boiler. The tube is located in the furnace area of the boiler and has an average wall temperature of 350°C. The maximum allowable working pressure is 4000 kPa gauge. The tube material is carbon steel SA-192. Note: Check PG-6 for plate materials and PG-9 for boiler tube materials before starting calculations; the information will direct you to the correct stress table in ASME Section II, Part D by indicating if the metal is carbon steel or an alloy steel. Solution For tubing up to and including 125 mm O.D. use equation 1.1. (See paragraph PG-27.2.1 ) PD t = + 0.005D + e 2S + P Conforms with the 2004 ASME Extract • Revised 03/06
  • 8. 8 Revised Second Class Course • Section A1 • SI Units Where P = 4000 kPa = 4.0 MPa D = 70 mm e = 0 (see PG-27.4, note 4, strength welded) S = 87.8 MPa (see Section II, Part D, Table 1A, SA-192 at 350°C) 4 × 70 t = + 0.005(70) + 0 2(87.8) + 4 280 = + 0.35 179.6 = 1.56 + 0.35 = 1.9 mm (Ans.) Note: This value is exclusive of the manufacturer’s tolerance allowance (see PG-16.5). The manufacturing process does not produce absolutely uniform wall thickness; add an allowance of approximately 12.5% to the minimum thickness calculated. The formula for minimum thickness may be transposed to solve for the maximum allowable working pressure if the tube size and thickness are known. Example 2: superheater tube Calculate the maximum allowable working pressure, in kPa, for a 75 mm O.D. and 4.75 mm minimum thickness superheater tube connected to a header by strength welding. The average tube temperature is 400°C. The tube material is SA-213-T11. Note: Check PG-9 for boiler tube materials before starting calculations; the information will direct you to the correct stress table in ASME Section II, Part D. SA-213-T11 is alloy steel. Solution For tubing up to and including 125 mm O.D. Use equation 1.2. (See paragraph PG-27.2.1.) ⎡ 2t − 0.01D − 2e ⎤ P = S⎢ ⎥ ⎢ D − ( t − 0.005D − e ) ⎥ ⎣ ⎦ Where t = 4.75 mm D = 75 mm e = 0 (see PG-27.4, note 4, strength welded.) S = 102 MPa (Section II, Part D, Table 1A, SA-213-T11 at 400°C) Conforms with the 2004 ASME Extract • Revised 03/06
  • 9. Chapter 1 • ASME Code Calculations: Cylindrical Components 9 ⎡ ( 2 × 4.75 ) - ( 0.01 × 75 ) - ( 2 × 0 ) ⎤ P = 102 × ⎢ ⎥ ⎢ 75 - ( 4.75 - ( 0.005 × 75 ) - 0 ) ⎣ ⎥ ⎦ ⎡ 9.5 - 0.75 ⎤ = 102 × ⎢ ⎥ ⎢ 75 - ( 4.75 - 0.375 ) ⎥ ⎣ ⎦ 8.75 = 102 × 70.625 = 12.64 MPa = 12 640 kPa (Ans.) The tubes were strength welded in Example 1 and Example 2. For calculations involving tubes expanded into place, the appropriate value of e is found in paragraph PG-27.4, note 4. SECTION VIII The following formulae (found in ASME Section VIII-1, paragraph UG-27(c)) are used for calculating wall thickness and design pressure. Paragraph UG-31(a) states that these calculations are used for tubes and pipes under internal pressure. Thin Cylindrical Shells (1) Circumferential stress (longitudinal joints) PR t = 1.3 (SE - 0.6P ) Or SEt P = 1.4 (R + 0.6t ) When t < 0.5R or P < 0.385SE (2) Longitudinal stress (circumferential joints) . PR t = 1.5 (2SE + 0.4P) Or 2SEt P = 1.6 (R - 0.4t ) When t < 0.5 R or P < 1.25SE Conforms with the 2004 ASME Extract • Revised 03/06
  • 10. 10 Revised Second Class Course • Section A1 • SI Units Thick Cylindrical Shells As internal pressures increase higher than 20.6 MPa, special considerations must be given to the construction of the vessel as specified in paragraph U-1 (d). As the ratio of t/R increases beyond 0.5, a more accurate equation is required to determine the thickness. The formulae for thick walled vessels are listed in Appendix 1, Supplementary Design Formulas 1.1 to 1.3. SE = ( P R02 + R 2 ) (R2 0 - R2 ) Where R0 and R are outside and inside radii, respectively. By substituting R0 = R + t ⎛ 1 ⎞ t = R ⎜ Z 2 - 1⎟ Where Z = ( SE + P ) 1.7 ⎝ ⎠ ( SE - P ) Where t > 0.5 R or P > 0.385SE And ⎡ ( Z - 1) ⎤ ⎡ (R + t)⎤ 2 P = SE ⎢ ⎥ Where Z = ⎢ ⎥ 1.8 ⎢ ( Z + 1) ⎥ ⎣ ⎦ ⎣ R ⎦ For longitudinal stress with t > 0.5R or P > 1.25SE ⎛ 1 ⎞ ⎛ P ⎞ t = R ⎜ Z 2 - 1⎟ Where Z =⎜ ⎟ +1 1.9 ⎝ ⎠ ⎝ SE ⎠ And ⎡(R + t)⎤ 2 P = SE ( Z - 1) Where Z =⎢ ⎥ 1.10 ⎣ R ⎦ Note: Formulae 1.3 to 1.10 are for internal pressure only. Example 3: thin shell thickness A vertical boiler is constructed of SA-515-60 material in accordance with the requirements of Section VIII-1. It has an inside diameter of 2440 mm and an internal design pressure of 690 kPa at 230°C. The corrosion allowance is 3 mm, and joint efficiency is 0.85. Calculate the required thickness of the shell if the allowable stress is 138 MPa. Conforms with the 2004 ASME Extract • Revised 03/06
  • 11. Chapter 1 • ASME Code Calculations: Cylindrical Components 11 Solution The quantity 0.385SE = 45.16 MPa; since this is greater than the design pressure P = 690 kPa, use equation 1.3. (See Section VIII-1, UG-27.) Note R must be in the fully corroded state to determine the minimum thickness. PR t = + corrosion allowance ( SE - 0.6 P ) 0.69 × (1220 + 3) = + 3 (138 × 0.85) - ( 0.6 × 0.69 ) 843.87 = + 3 116.886 = 7.22 + 3 = 10.22 mm (Ans.) The calculated thickness is less than 0.5R; therefore, equation 1.3 is acceptable. Example 4: thick shell thickness Calculate the required shell thickness of an accumulator with P = 69 MPa, R = 45.7 cm, S = 138 MPa, and E = 1.0. Assume a corrosion allowance of 6 mm. Solution The quantity 0.385SE = 53.13 MPa; since this is less than the design pressure P = 69 MPa, use equation 1.7. ⎛ 1 ⎞ SE + P t = R ⎜ Z 2 - 1⎟ Where Z = ⎝ ⎠ SE - P (138 × 1) + 69 Z = (138 × 1) − 69 207 = 69 = 3 ⎛ 1 ⎞ t = ( 457 + 6 ) ⎜ 3 2 - 1⎟ ⎝ ⎠ = 463 × 0.732 = 338.92 mm Total including corrosion allowance t = 338.92 + 6 = 344.92 mm (Ans.) Conforms with the 2004 ASME Extract • Revised 03/06
  • 12. 12 Revised Second Class Course • Section A1 • SI Units Example 5 Calculate the required shell thickness of an accumulator with P = 52.75 MPa, R = 45.7 cm, S = 138 MPa, and E = 1.0. Assume corrosion allowance = 0. Solution The quantity 0.385SE = 53.13 MPa; since this is greater than the design pressure P = 52.75 MPa, use equation 1.3. PR t = + corrosion allowance SE - 0.6P 52.75 × 457 = +0 (138 × 1) - 0.6 ( 52.75 ) 24106.75 = 106.35 = 226.67 mm (Ans.) This example used equation 1.3; compare the answer using equation 1.7 ⎛ 1 ⎞ SE + P t = R ⎜ Z 2 - 1⎟ Where Z = ⎝ ⎠ SE - P (138 × 1) + 52.75 Z = (138 × 1) - 52.75 190.75 = 85.25 = 2.2375 ⎛ 1 ⎞ t = 457 ⎜ 2.2375 2 - 1⎟ ⎝ ⎠ = 457 × 0.4958 = 226.59 mm (Ans.) This shows that the 'simple to use' equation (1.3) is accurate over a wide range of R/t ratios. Conforms with the 2004 ASME Extract • Revised 03/06
  • 13. Chapter 1 • ASME Code Calculations: Cylindrical Components 13 OBJECTIVE 3 2 OBJECTIVE Calculate the required minimum thickness or the maximum allowable working pressure of ferrous piping, drums, and headers. In cylindrical vessels, the stress set up by the pressure on the longitudinal joints is equal to twice the stress on the circumferential joints. SECTION I The following formulae are found in ASME Section I, paragraph PG-27.2.2. The information for piping, drums, or headers may be given with either the inside (R) or outside (D) measurement. Using the outside diameter PD t = + C 2.1 2SE + 2 yP 2SE ( t - C ) P = 2.2 D - ( 2 y )( t - C ) Using the inside radius PR t = + C 2.3 SE - (1 - y ) P SE ( t - C ) P = 2.4 R + (1 - y )( t − C ) Example 6: steam piping Calculate the required minimum thickness of seamless steam piping which carries steam at a pressure of 6200 kPa gauge and a temperature of 375°C. The piping is plain end, 273.1 mm O.D. (nominal pipe size of 10 inches) and the material is SA-335-P11. Allow a manufacturer's tolerance allowance of 12.5%. Note: Check PG-6 and PG-9 for materials before starting calculations; the information will direct you to the correct stress table in ASME Section II, Part D. The material SA-335-P11 is alloy steel. Conforms with the 2004 ASME Extract • Revised 03/06
  • 14. 14 Revised Second Class Course • Section A1 • SI Units Note: Plain-end pipe does not have its wall thickness reduced when joining to another pipe. For example, lengths of pipe welded together, rather than being joined by threading, are classed as plain-end pipes. Solution Use equation 2.1 (See PG-27.2.2.) PD t = + C 2 SE + 2 yP Where P = 6200 kPa = 6.2 MPa D = 273.1 mm C = 0 (see PG-27.4, note 3, 4-inch nominal and larger) S = 104 MPa (see Section II, Part D, Table 1A, SA-335-P11 at 375°C) E = 1.0 (see PG-27.4, note 1, seamless pipe as per PG-9.1) y = 0.4 (see PG-27.4, note 6, ferritic steel less than 475°C) 6.2 × 273.1 t = + 0 2 (104 × 1) + 2 ( 0.4 × 6.2 ) 1693.22 = 208 + 4.96 1693.22 = 212.96 = 7.95 mm This value does not include a manufacturer's tolerance allowance of 12.5%. Therefore 7.95 × 1.125 = 8.94 mm (Ans.) Example 7: steam piping using outside diameter Calculate the maximum allowable working pressure in kPa for a seamless steel pipe of material SA-209-T1. The nominal pipe size is 323.9 mm (~12 in. pipe) with a wall thickness of 11.85 mm. The operating temperature is 450°C. The pipe is plain ended. Assume that the material is austenitic steel. Note: Check PG-6 and PG-9 for materials before starting calculations; the information will direct you to the correct stress table in ASME Section II, Part D. The material SA-209-T1 is alloy steel. Conforms with the 2004 ASME Extract • Revised 03/06
  • 15. Chapter 1 • ASME Code Calculations: Cylindrical Components 15 Solution Use equation 2.2. (See PG-27.2.) 2SE ( t - C ) P = D - ( 2 y )( t - C ) Where D = 323.9 mm (see 2005 Academic Supplement, Formulae and Physical Constants, "Table of Actual Pipe Dimensions.") t = 11.85 mm C = 0 (see PG-27.4, note 3, 4-inch (100 mm) nominal and larger) S = 101 MPa (Section II, Part D, Table 1A, SA-209-T1 at 450°C) E = 1.0 (see PG-27.4, note 1, seamless pipe as per PG-9.1) y = 0.4 (see PG-27.4, note 6, austenitic steel at 450°C) 2 (101 × 1) × (11.85 - 0 ) P = 323.9 - ( 2 × 0.4 ) × (11.85 - 0 ) 202 × 11.85 = 323.9 - 9.48 2393.7 = 314.42 = 7.613 MPa = 7613 kPa (Ans.) Example 8: drum using inside radius A welded watertube boiler drum of SA-515-60 material is fabricated to an inside radius of 475 mm on the tubesheet and 500 mm on the drum. The plate thickness of the tubesheet and drum are 59.5 mm and 38 mm respectively. The longitudinal joint efficiency is 100%, and the ligament efficiencies are 56% horizontal and 30% circumferential. The operating temperature is not to exceed 300°C. Determine the maximum allowable working pressure based on: (a) the drum (b) the tubesheet Conforms with the 2004 ASME Extract • Revised 03/06
  • 16. 16 Revised Second Class Course • Section A1 • SI Units FIGURE 1 Welded Watertube Boiler Drum DRUM TUBESHEET Note: This is a common example of a watertube drum fabricated from two plates of different thickness. Greater material thickness is required where the boiler tubes enter the drum than is required for a plain drum. For economy, the drum is designed to meet the pressure requirements for each situation. Note: Check PG-6 and PG-9 for materials before starting calculations; the information will direct you to the correct stress table in ASME Section II, Part D. The material SA-515-60 is carbon steel plate. Solution This example has two parts: a) The drum - consider the drum to be plain with no penetrations. b) The tubesheet - consider the drum to have penetrations for boiler tubes. (a) Use equation 2.4 (inside radius R). (See PG-27.2.2.) SE (t - C ) Drum P = R + (1 - y )(t - C ) Where S = 115 MPa (see Section II, Part D, Table 1A, SA-515-60 at 300°C) E = 1 (see PG-27.4, note 1) t = 38 mm C = 0 (see PG-27.4, note 3, 4-inch (100 mm) nominal and larger) R = 500 mm (for the drum) y = 0.4 (see PG-27.4, note 6, ferritic steel less than 480°C) Conforms with the 2004 ASME Extract • Revised 03/06
  • 17. Chapter 1 • ASME Code Calculations: Cylindrical Components 17 Drum P = (115 × 1) (38 - 0) 500 + (1 - 0.4)(38 - 0) 4370 = 500 + 22.8 = 8.36 MPa (Ans.) Note: In cylindrical vessels, the stress set up by the pressure on the longitudinal joints is equal to twice the stress on the circumferential joints. (b) Use equation 2.4 (inside radius R). (See PG-27.2.2.) SE (t - C ) Tubesheet P = R + (1 - y )(t - C ) Where S = 115 MPa (see Section II, Part D, Table A1, SA-515-60 at 300°C) E = 0.56 (circumferential stress = 30% and longitudinal stress = 56%; therefore, 0.56 < 2 x 0.30) T = 59.5 mm C = 0 (see PG-27.4, note 3, 4-inch (100 mm) nominal and larger) R = 475 mm (for the tubesheet) y = 0.4 (see PG-27.4, note 6, ferritic steel less than 480°C) Tubesheet P = (115 × 0.56 )( 59.5 - 0 ) 475 + (1 - 0.4)(59.5 - 0) 3831.8 = 475 + 35.7 = 7.5 MPa (Ans.) Note: The maximum allowable working pressure is based on the lowest number. SECTION VIII-1 Section VIII-1 does not contain separate formulae for small and large bore cylinders. The formulae given in paragraph UG-27 are used as set out in Objective 1. Conforms with the 2004 ASME Extract • Revised 03/06
  • 18. 18 Revised Second Class Course • Section A1 • SI Units OBJECTIVE 3 Calculate the required thickness or maximum allowable working pressure of a seamless, unstayed dished head. Section I: DISHED HEAD CALCULATIONS The paragraphs from PG-29 must be considered when performing calculations on dished heads. Paragraph PG-29.1 states that the thickness of a blank, unstayed dished head with the pressure on the concave side, when it is a segment of a sphere, shall be calculated by the following formula: 5PL t = 3.1 4.8S Where: t = minimum thickness of head (mm). P = maximum allowable working pressure (MPa). L = radius (mm) to which the head is dished, measured on the concave side S = maximum allowable working stress (MPa) (see ASME Section II, Part D, Table 1A). Paragraph PG-29.2 states: "The radius to which the head is dished shall be not greater than the outside diameter of the flanged portion of the head. Where two radii are used, the longer shall be taken as the value of L in the formula.” Example 9: the segment of a spherical dished head Calculate the thickness of a seamless, blank unstayed dished head having pressure on the concave side. The head has a diameter of 1085 mm and is a segment of a sphere with a dish radius of 918 mm. The maximum allowable working pressure is 2500 kPa and the material is SA-285 A. The metal temperature does not exceed 250°C. State if this thickness meets Code. Conforms with the 2004 ASME Extract • Revised 03/06
  • 19. Chapter 1 • ASME Code Calculations: Cylindrical Components 19 Solution Use equation 3.1. (See paragraph PG-29.1 for segment of a spherical dished head.) 5PL t = 4.8S Where P = 2.5 MPa L = 918 mm S = 88.9 MPa (see ASME Section II, Part D, Table 1A, SA-285 A at 250°C) 5 ( 2.5 × 918 ) t= 4.8 × 88.9 = 26.89 mm (Ans.) Note: PG-29.6 states “No head, except a full-hemispherical head, shall be of a lesser thickness than that required for a seamless shell of the same diameter." Therefore, to determine if this head thickness meets Code, the thickness of the shell must be calculated. Use equation 2.1 (See paragraph PG-27.2.2.) PD t = + C 2 SE + 2 yP Where D = 1085 mm y = 0.4 (see PG-27.4, note 6, ferritic steel less than 480°C) E = 1 (welded) 2.5 × 1085 t = 2 ( 88.9 × 1) + 2 ( 0.4 × 2.5 ) 2712.5 = 177.8 + 2 = 15.086 mm Therefore, the head thickness of 26.89 mm meets Code requirements. Conforms with the 2004 ASME Extract • Revised 03/06
  • 20. 20 Revised Second Class Course • Section A1 • SI Units Paragraph PG-29.3 states When a head, dished to a segment of a sphere, has a flanged-in manhole or access opening that exceeds 150 mm in any dimension, the thickness shall be increased by 15% of the required thickness for a blank head computed by the above formula, but in no case less than 3.0 mm additional thickness over a blank head. Where such a dished head has a flanged opening supported by an attached flue, an increase in thickness over that for a blank head is not required. If more than one manhole is inserted in a head, the thickness of which is calculated by this rule, the minimum distance between the openings shall be not less than one-fourth of the outside diameter of the head. Note: This applies to the manhole found on the end of a boiler drum. Example 10: the segment of a spherical dished head with a flanged-in manhole Calculate the thickness of a seamless, unstayed dished head with pressure on the concave side, having a flanged-in manhole 154 mm by 406 mm. The head has a diameter of 1206.5 mm and is a segment of a sphere with a dish radius of 1143 mm. The maximum allowable working pressure is 1550 kPa, the material is SA- 285-C, and the metal temperature does not exceed 220oC. Note: Check paragraph PG-44, "Inspection Openings" to see if this manhole size is acceptable. Solution First thing to check: is the radius of the dish at least 80% of the diameter of the shell? (per paragraph PG-29.5) dish radius 1143 = shell diameter 1206.5 = 0.9473 0.9473 > 0.8 Therefore, the radius of this dish meets the criteria. Use equation 3.1. (See paragraph PG-29.1.) 5PL t = 4.8S Conforms with the 2004 ASME Extract • Revised 03/06
  • 21. Chapter 1 • ASME Code Calculations: Cylindrical Components 21 Where P = 1.55 MPa L = 1143 mm S = 108 MPa (see ASME Section II, Part D, Table 1A: use 250°C since 220°C is not listed; therefore, use the next higher temperature) 5 (1.55 × 1143) t = 4.8 (108 ) = 17.088 mm This thickness is for a blank head. PG-29.3 requires this thickness to be increased by 15% or 3.0 mm, whichever is greater. Therefore 17.088 × 0.15 = 2.56 mm This is less than 3.0 mm, so the thickness must be increased by 3.0 mm Therefore Required head thickness = 17.088 + 3.0 = 20.088 mm (Ans.) Semi-ellipsoidal head Paragraph PG-29.7 A blank head of a semi-ellipsoidal form in which half the minor axis or the depth of the head is at least equal to one-quarter of the inside diameter of the head shall be made at least as thick as the required thickness of a seamless shell of the same diameter as provided in PG-27.2.2. If a flanged-in manhole that meets the Code requirements is placed in an ellipsoidal head, the thickness of the head shall be the same as for a head dished to a segment of a sphere (see PG-29.1 and PG-29.5) with a dish radius equal to eight-tenths the diameter of the shell and with the added thickness for the manhole as specified in PG-29.3. This rule combines two rules: 1. blank head rule 2. flanged-in manhole rule A semi-ellipsoidal head is shown in Fig. 2. Conforms with the 2004 ASME Extract • Revised 03/06
  • 22. 22 Revised Second Class Course • Section A1 • SI Units FIGURE 2 h = 1/4 D 1/2 r = 1/4 D Semi-ellipsoidal Head h r D L Full-hemispherical head The following rule applies to drums or headers with a full-hemispherical end. Paragraph PG-29.11: The thickness of a blank, unstayed, full-hemispherical head with the pressure on the concave side shall be calculated by the following formula: PL t = 3.2 2 S - 0.2 P Where t = minimum thickness of head (mm). P = maximum allowable working pressure (MPa). L = radius to which the head was formed (mm) (measured on the concave side of the head). S = maximum allowable working stress (MPa) (Table A1, Section II, Part D). The above formula shall not be used when the required thickness of the head given by the formula exceeds 35.6% of the inside radius. Instead, use the following formula: ⎛ 1 ⎞ 2(S + P) t = L ⎜ Y 3 - 1⎟ where Y = 3.3 ⎝ ⎠ 2S - P Example 11: full-hemispherical head Calculate the minimum required thickness (mm) for a blank, unstayed, full- hemispherical head with the pressure on the concave side. The radius to which the head is dished is 190.5 mm. Maximum allowable working pressure is 6205 kPa, and the head material is SA-285-C. The average temperature of the header is 300oC. Conforms with the 2004 ASME Extract • Revised 03/06
  • 23. Chapter 1 • ASME Code Calculations: Cylindrical Components 23 Solution Use equation 3.2. (See PG-29.11.) PL t = 2S - 0.2 P Where P = 6.205 MPa L = 190.5 mm S = 107 MPa (see ASME Section II, Part D, Table 1A, SA-285-C at 300oC) 6.205 × 190.5 t = 2 (107 ) - 0.2 ( 6.205 ) 1182.05 = 214 - 1.241 1182.05 = 212.759 = 5.56 mm (Ans.) Check if this thickness exceeds 35.6% of the inside radius: 190.5 × 0.356 = 67.8 mm It does not exceed 35.6%, therefore The thickness of the head meets Code requirements. Paragraph PG-29.12: If a flanged-in manhole that meets the Code requirements (see PG-44) is placed in a full-hemispherical head, the thickness of the head shall be the same as for a head dished to a segment of a sphere (see PG-29.1 and PG-29.5), with a dish radius equal to eight-tenths the diameter of the shell and with the added thickness for the manhole as specified in PG-29.3. SECTION VIII-1: DISHED HEAD CALCULATIONS Sections VIII-1 and VIII-2 each contain rules for the design of spherical shells, heads, and transition sections. There are significant differences in the equations due to the different design approaches used. This chapter uses only Section VIII- 1 equations. Section VIII-1 has rules for head configurations including spherical, hemispherical, ellipsoidal, and torispherical shapes. Conforms with the 2004 ASME Extract • Revised 03/06
  • 24. 24 Revised Second Class Course • Section A1 • SI Units Spherical Shells and Hemispherical Heads Paragraph UG-27 (d) gives the required thickness of a thin spherical shell due to internal pressure. PR t = 3.4 2SE - 0.2 P or 2SEt P = 3.5 R + 0.2t Where t < 0.356R or P < 0.665SE For thick shells, where t >0.356R or P > 0.665SE, use Mandatory Appendix 1 sections 1-3. As the ratio t/R increases beyond 0.356, use the following equations ⎛ 1 ⎞ 2 ( SE + P ) t = R ⎜ Y 3 -1⎟ where Y = 3.6 ⎝ ⎠ 2 SE - P or ⎛ R+t⎞ 3 ⎛ Y -1 ⎞ P = 2SE ⎜ ⎟ where Y = ⎜ ⎟ 3.7 ⎝Y + 2⎠ ⎝ R ⎠ Where t > 0.356R or P > 0.665SE Example 12: hemispherical head A pressure vessel is built of SA-516-70 material and has an inside diameter of 2440 mm. The internal design pressure is 690 kPa at 232°C. The corrosion allowance is 3 mm, and the joint efficiency is 0.85. What is the required thickness of the hemispherical heads if the allowable stress is 138 MPa? Conforms with the 2004 ASME Extract • Revised 03/06
  • 25. Chapter 1 • ASME Code Calculations: Cylindrical Components 25 Solution The quantity 0.665SE = 78 MPa; since this is greater than the design pressure of 690 kPa, use equation 3.4. (See paragraph UG-32 (f).) The inside radius in a corroded condition is equal to R = 1220 + 3 (corrosion allowance) = 1223 mm PR t = + corrosion allowance 2 SE - 0.2 P 0.69 × 1223 = +3 2 (138 × 0.85) - 0.2 ( 0.69 ) 843.87 = +3 234.46 = 3.6 + 3 = 6.6 mm (Ans.) The calculated thickness is less than 0.356R; therefore, equation 3.3 is acceptable. Example 13: spherical head A spherical pressure vessel with an internal diameter of 3048 mm has a head thickness of 25.4 mm. Determine the design pressure if the allowable stress is 113 MPa. Assume joint efficiency E = 0.85. Solution As no corrosion allowance is stated the design pressure will act on the given internal diameter. Use equation 3.5 since t is less than 0.356R. 2 SEt P = R + 0.2t 2 (113 × 0.85 × 25.4 ) = 1524 + 0.2 ( 25.4 ) 4879.34 = 1529.08 = 3.191 MPa (Ans.) The calculated pressure is less than 0.665SE; therefore, equation 3.4 is acceptable. Conforms with the 2004 ASME Extract • Revised 03/06
  • 26. 26 Revised Second Class Course • Section A1 • SI Units Example 14: thick hemispherical head Calculate the required hemispherical head thickness of an accumulator with P = 69 MPa, R = 460 mm, S = 103 MPa, and E = 1.0. Assume a corrosion allowance of 6 mm. Solution The quantity 0.665SE = 68.495 MPa; since this is less than the design pressure of 69 MPa, use equation 3.6. ⎛ 1 ⎞ 2 ( SE + P ) t = R ⎜ Y 3 - 1⎟ where Y = ⎝ ⎠ 2 SE - P 2 (103 × 1 + 69 ) Y = 2 (103 × 1) - 69 344 = 137 = 2.51 ⎛ 1 ⎞ t = R ⎜ Y 3 - 1⎟ ⎝ ⎠ ⎛ 1 ⎞ = 460 + 6 ⎜ 2.513 - 1⎟ ⎝ ⎠ = 466 ( 0.359 ) = 167.3 mm This is the minimum thickness i.e. fully corroded state. Total head thickness is 167.3 + 6 mm (corrosion allowance) = 173.3 mm (Ans.). Connecting this head to the accumulator shell would require special treatment, which is outside of the scope of this module. Ellipsoidal Heads The commonly used ellipsoidal head has a ratio of base radius to depth of 2:1 (shown in Fig. 3a). The actual shape can be approximated by a spherical radius of 0.9D and a knuckle radius of 0.17D (shown in Fig. 3b.) The required thickness of 2:1 heads with pressure on the concave side is given in paragraph UG-32 (d). PD t = 3.8 2SE - 0.2 P or 2 SEt P = 3.9 D + 0.2t Conforms with the 2004 ASME Extract • Revised 03/06
  • 27. Chapter 1 • ASME Code Calculations: Cylindrical Components 27 Where D = inside base diameter E = joint efficiency factor P = pressure on the concave side of the head S = allowable stress for the material t = thickness of the head FIGURE 3 Ellipsoidal Head (a) (b) Section VIII-1 does not give any P/S limitations or rules for ellipsoidal heads when the ratio of P/S is large. Torispherical Heads Shallow heads, commonly referred to as flanged and dished heads (F&D heads), can be built according to paragraph UG-32 (e). A spherical radius L of 1.0D and a knuckle radius r of 0.06D, as shown in Fig. 4, approximates the most common F&D heads. Conforms with the 2004 ASME Extract • Revised 03/06
  • 28. 28 Revised Second Class Course • Section A1 • SI Units FIGURE 4 Torispherical Head The required thickness of an F&D head is 0.885PL t = 3.10 SE - 0.1P or SEt P = 3.11 0.885L + 0.1t Where E = joint efficiency factor L = inside spherical radius P = pressure on the concave side of the head S = allowable stress t = thickness of the head Shallow heads with internal pressure are subjected to a stress reversal at the knuckle. This stress reversal could cause buckling of the shallow head as the ratio D/t increases. Conforms with the 2004 ASME Extract • Revised 03/06
  • 29. Chapter 1 • ASME Code Calculations: Cylindrical Components 29 OBJECTIVE 4 Calculate the minimum required thickness or maximum allowable working pressure of unstayed flat heads, covers, and blind flanges. UNSTAYED FLAT HEADS, COVERS, AND BLIND FLANGES Flat plates, covers, and flanges are used extensively in boilers and pressure vessels. When a flat plate or cover is used as an end closure or head of a pressure vessel, it may be designed as an integral part of the vessel (having been formed with the cylindrical shell) or welded to it. Alternately, it may be a separate component that is attached by bolts or some quick-opening mechanism utilizing a gasket joint attached to a companion flange on the end of the shell. Bolted flanges are not covered in the scope of this module. The concepts of unstayed flat heads, covers, and especially blind flanges are often misunderstood and can be challenging to anyone learning and working on this type of equipment. It is very important for power engineers to have good working knowledge of thickness requirements as this allows them to work safely and provide sound and safe advice. SECTION 1 Paragraph PG-31.1 states that the minimum thickness of unstayed flat heads, cover plates, and blind flanges shall conform to the requirements. Paragraph PG- 31.2 defines the notations used in this paragraph and in Fig. PG-31. Paragraph PG-31.3 states formulae for calculating the minimum thickness of flat, unstayed circular heads, covers, and blind flanges. When the circular head, cover, or blind flange is attached by welding CP t = d 4.1 S When the circular head, cover, or blind flange is attached by bolts (Fig. PG-31 (j), (k)) Conforms with the 2004 ASME Extract • Revised 03/06
  • 30. 30 Revised Second Class Course • Section A1 • SI Units CP 1.9Whg t = d + 4.2 S Sd 3 Note: W = the total bolt loading and hg = the gasket moment arm. The gasket moment arm is the radial distance from the centre line of the bolts to the line of the gasket reaction force (Fig. PG-31 (j), (k)). When using equation 4.2, the thickness t shall be calculated for both design conditions (flange sketches j and k) and the greater value used. Note: The formulae used to determine thickness may be transposed to solve for P and find the maximum allowable working pressure for a flat head or cover of known thickness. Paragraph PG-31.3.3 states two formulae for the required thickness of flat unstayed heads, covers, or blind flanges that are square, rectangular, elliptical, obround, or segmental in design and attached by welding. ZCP t = d 4.3 S Where Z is a factor from the ratio of the short and long spans 2.4d Z = 3.4 - to a maximum of 2.5 D When the non-circular head, cover, or blind flange is attached by bolts (Fig. PG- 31. (j), (k)) ZCP 6Whg t = d + 4.4 S SLd 2 Paragraph PG-31.4 lists the values for C to be used in the formulae 4.1, 4.2, 4.3, and 4.4. Conforms with the 2004 ASME Extract • Revised 03/06
  • 31. Chapter 1 • ASME Code Calculations: Cylindrical Components 31 Example 15: circular flat head welded to a shell (Illustrated by Fig. PG-31 (e) and Fig. 5.) FIGURE 5 Circular Flat Head Calculate the minimum thickness for the circular head and the depth of the fillet welds required. The material for head and shell is SA-285-A. The shell is seamless. The thickness t is 19 mm. Maximum allowable working pressure is 2500 kPa. Shell’s inside diameter d is 762 mm. Head joint welding meets Code requirements. Solution Use equation 4.1 CP t = d S Where P = 2.5 MPa d = 762 mm S = 88.9 MPa (ASME Section II, Part D, Table 1A) As no temperature is given, the saturation temperature of steam (224°C at 2500 kPa) may be used; therefore, use the value for 250°C. C = 0.33 m (see PG-31.4, Fig PG-31 sketch (e), where m is defined as the ratio of tr/ts from paragraph PG-31.2) tr = required minimum thickness of the shell ts = actual thickness of the shell as given Use equation 2.3 to find the value of tr (see paragraph PG-27.2.2). PR t = + C SE - (1 - y ) P Conforms with the 2004 ASME Extract • Revised 03/06
  • 32. 32 Revised Second Class Course • Section A1 • SI Units Where R = d/2 = 381 mm E = 1 (see PG-27.4, note 1) y = 0.4 (see PG-27.4, note 6) C = 0 (see PG-27.4, note 3) 2.5 × 381 tr = + 0 (88.9 × 1) - (1 - 0.4 ) × 2.5 952.5 = 87.4 = 10.898 mm Therefore tr m = ts 10.898 = 19 = 0.574 C = 0.33 m (from PG - 31.4) = 0.33 × 0.574 = 0.19 As this value is less than 0.2, use 0.2 in the formula from PG-31.4 or in equation 4.1. CP t = d S 0.20 × 2.5 = 762 88.9 = 762 × 0.0750 = 57.15 mm (Ans.) For a welded circular flat head (Fig PG-31 (e)), a minimum thickness of 57.15 mm is required. The depth of each weld would be 0.7 ts (see Fig PG-31 (e)). ts = 19 mm (given) = 0.7 × 19 = 13.3 mm Conforms with the 2004 ASME Extract • Revised 03/06
  • 33. Chapter 1 • ASME Code Calculations: Cylindrical Components 33 It is interesting to note that the required minimum shell thickness is 10.898 mm, yet the required minimum thickness of the blank head is approximately 5.2 times thicker at 57.15 mm. Example 16: circular flat head maximum allowable working pressure Calculate the maximum allowable working pressure for a circular flat head with the following specifications. Head design to Fig. PG-31, sketch (d). Shell and head thickness of 30.5 mm. Material is SA-285-B. Head joint weld meets Code requirements. Shell diameter is 610 mm. Operating temperature not to exceed 300°C. Solution t = 30.5 mm S = 96.6 MPa (see ASME Section II, Part D, Table 1A) d = 610 mm C = 0.13 (see Fig. PG-31 (d)) Use equation 4.6. (See PG-32.3.2.) t 2S P = 4.6 d 2C 30.52 × 96.6 P = 6102 × 0.13 = 1.858 MPa (Ans.) The maximum allowable working pressure for this flat, unstayed head is 1858 kPa. SECTION VIII-1 The equations for the design of unstayed plates and covers are found in paragraph UG-34. CP t = d 4.7 SE Where d = effective diameter of the flat plate (mm) C = coefficient between 0.1 and 0.33 (depending on the corner details as shown in Fig. UG-34) P = design pressure S = allowable stress at design temperature Conforms with the 2004 ASME Extract • Revised 03/06
  • 34. 34 Revised Second Class Course • Section A1 • SI Units E = butt-welded joint efficiency of the joint within the flat plate t = minimum required thickness of the flat plate The value of E depends on the degree of non-destructive examination performed. E is not a weld efficiency value of the head to shell corner joint. Example 17: integral flat plate Using the rules of paragraph UG-34, determine the minimum required thickness of an integral flat plate with an internal pressure P = 17 MPa, an allowable stress S = 120 MPa, and a plate diameter d = 610 mm. There are no butt weld joints within the head. There is a corrosion allowance of 4 mm. The corner detail conforms to Fig. UG-34 (b-2) (assume that m = 1). Solution Use equation 4.7. (See Fig UG-34 (b-2)) Where C = 0.33(m) = 0.33(1) = 0.33 d = 610 + 4 = 614 mm (fully corroded state) CP t = d + corrosion allowance SE 0.33×17 = 614 × +4 120 ×1 = 136.76 mm (Ans.) Conforms with the 2004 ASME Extract • Revised 03/06
  • 35. Chapter 1 • ASME Code Calculations: Cylindrical Components 35 OBJECTIVE 5 Calculate the acceptability of openings in a cylindrical shell, header, or head. Openings through the pressure boundary of a vessel require extra care to keep loading and stresses at acceptable levels. An examination of the pressure boundary may indicate that extra material is needed near the opening to keep stresses at acceptable levels. This extra material may be provided by increasing the wall thickness of the shell or nozzle or by adding a reinforcement plate around the opening. The stress analysis basis used in the ASME Codes to analyze nozzle reinforcement is called Beams on Elastic Foundation (Hetenyi, 1946). Although the methods used are a simplified application of the elastic foundation theory, experience has shown that they are acceptable. ASME Codes Section I and Section VIII give two methods for examining the acceptability of openings in the pressure boundary for pressure loads only. The first method, called the reinforced opening or area replacement method is used when nearby substitute areas replace the area removed by the opening. The second method is the ligament efficiency method. This method determines the effectiveness of the material between adjacent openings to carry the stress compared with the area of metal that was there before the openings existed. Curves have been developed to simplify this examination. For single openings, only the area replacement method is used. For multiple openings, either method may be used. Since stress is related to load and cross-sectional area, areas are substituted when making calculations. Placement and location of the replacement area are very important. Equations have been developed to set the limits for reinforcement. Reinforcement limits are developed parallel and perpendicular to the shell surface from the opening. Conforms with the 2004 ASME Extract • Revised 03/06
  • 36. 36 Revised Second Class Course • Section A1 • SI Units Figure 6 Reinforcement Limits Rn tn t rn A B smaller of 2.5t or WL1 2.5tn + t e tr t smaller of d 2.5t or 2.5tn ABCD = Limits of reinforcement C d or d or D Rn + t n + t Rn + t n + t Use larger value Use larger value When an opening is cut into a vessel wall for the attachment of a nozzle with diameter d (as in Fig. 6), the vessel wall thickness t is usually thicker than the minimum thickness required tr. The area (tr x d) is the cross-sectional area that is removed and has to be compensated for. ASME Section I, paragraph PG-36 (ASME Section VIII, paragraph UG-40) gives the rules for the “Limits of Metal Available for Compensation." The limit is shown by box ABCD in Fig. 6 above. If greater than the cross-sectional area removed, the additional material in the shell wall and the additional material in the nozzle wall (the hatched cross- sectional area shown in Fig. 6 within the limit of compensation boundary) may provide adequate compensation. SECTION I ASME Section I, paragraph PG-32 "Openings in Shells, Headers and Heads" contains rules to be applied to maintain the vessel pressure boundary. Paragraph PG-32.1.1 states that paragraphs PG-32 to PG-39 shall apply to all openings (except for flanged-in manholes as stated in paragraph PG-29) and to tube holes in a definite pattern that are designed according to paragraph PG-52. Paragraph PG-32.1.2 provides the rules for openings that do not require reinforcement calculations, providing the diameter of the opening does not exceed that permitted by the chart in Fig. PG-32. Conforms with the 2004 ASME Extract • Revised 03/06
  • 37. Chapter 1 • ASME Code Calculations: Cylindrical Components 37 To determine if reinforcement is required, the value K is calculated from the formula PD K = 5.1 1.82St Using the chart in Fig. PG-32, the value for the x-axis is calculated from the shell diameter times the shell thickness. The point where the x-axis value meets the K value curve is read to the y-axis and gives the maximum diameter of the opening, allowed without reinforcement. Example 18: reinforcement of nozzle abutting vessel Determine if reinforcement is required for a 100 mm I.D. nozzle located in a cylindrical boiler shell. The nozzle abuts the vessel wall and is attached by a full- penetration weld. The O.D. of the shell is 1000 mm. The thickness of the shell wall is 25.4 mm. The thickness of the nozzle wall is 10 mm. The shell material is SA-515-60 and the nozzle material is SA-192. The maximum allowable working pressure is 4500 kPa, and the design temperature is not to exceed 200°C. All joint efficiencies E = 1.0. Solution As this is a boiler shell, ASME Section I rules apply. (See PG-32.1.2.) Use equation 5.1 to calculate the K value. PD K = 1.82St Where P = 4.5 MPa D = 1000 mm S = 118 MPa t = 25.4 mm PD K = 1.82St 4.5 × 1000 = 1.82 (118 × 25.4 ) = 0.825 Using Fig. PG-32, calculate the x-axis value. Shell diameter × shell thickness = 1000 × 25.4 = 25400 mm 2 Conforms with the 2004 ASME Extract • Revised 03/06
  • 38. 38 Revised Second Class Course • Section A1 • SI Units The intersection of the x-axis value (2540) and the K value curve (0.825) give a y- axis value of approximately 134 mm. Therefore, no additional reinforcement is required (Ans.) for an opening of 100 mm diameter. SECTION VIII-1 Section VIII-1 requires all openings in pressure vessels, not subjected to rapid fluctuations, to use reinforcement calculations in paragraph UG-37, unless certain dimensional requirements are met as listed in paragraph UG-36(c)(3). Example 19: reinforcement of nozzle abutting vessel Determine the reinforcement requirements for a 60 mm I.D. nozzle located in a cylindrical shell. The nozzle abuts the vessel wall and is attached by a full- penetration weld. The O.D. of the shell is 1000 mm. The thickness of the shell wall is 25.4 mm, and the thickness of the nozzle wall is 10 mm. The shell material is SA-516-60 and the nozzle is SA-192. The maximum allowable working pressure is 4500 kPa, and the design temperature is not to exceed 200°C. All joint efficiencies E = 1.0 Solution As this is a not a boiler shell, ASME Section VIII-1 rules apply. (See UG-36(c)(3).) UG-36(c)(3) states that reinforcement is not required if (a)the opening is not larger than 89 mm diameter and the shell is 10 mm thick or less; or (b) the opening is not larger than 60 mm diameter and the shell thickness is greater than 10 mm. In this example, the nozzle diameter is 60 mm This falls within the second condition, i.e. not larger than 60 mm in a shell that is thicker than 10 mm. Therefore, no reinforcement is required (Ans.). Conforms with the 2004 ASME Extract • Revised 03/06
  • 39. Chapter 1 • ASME Code Calculations: Cylindrical Components 39 OBJECTIVE 6 Calculate the compensation required to reinforce an opening in a cylindrical shell, header, or head. SECTION I ASME Section I, paragraph PG-33, "Compensation required for openings in shells and formed heads", states the rules for compensation. Paragraph PG-33.2 states that the total cross-sectional area of compensation required in any given plane for a vessel under internal pressure shall not be less than A as defined in PG-33.1, shown in Fig. 7. For an opening in a shell with a nozzle abutting the shell wall (such as an opening for a safety valve), the requirements are illustrated in Fig. 7. FIGURE 7 Nozzle Wall Abutting Vessel Wall Dp tn Rn tr n rn A B WL1 te smaller of WL2 2.5t or 2.5tn + t e tr t smaller of d 2.5t or 2.5tn ABCD = Limits of reinforcement C d or d or D Rn + t n + t Rn + t n + t Use larger value Use larger value NOZZLE WALL ABUTTING VESSEL WALL Conforms with the 2004 ASME Extract • Revised 03/06
  • 40. 40 Revised Second Class Course • Section A1 • SI Units Where (a) The area to be replaced A (shown as the cross-hatched area) = dtrF where F is taken from the chart Fig. PG-33 (b) The area in the shell wall thickness available to be used as compensation A1 (shown as the forward sloped hatched areas on either side of the opening) = the larger of d(t – Ftr) or 2(t + tn)(t – Ftr) (c) The area in the nozzle wall thickness available to be used as compensation A2 (shown as the backward sloped hatched area on either side of the nozzle) = the smaller of 2(tn – trn)(2.5tfr1) or 2(tn – trn)(2.5tn + te)fr1 where fr1 is the ratio of Snozzle/Sshell (d) The area available from the nozzle to the reinforcement plate welds A41 = (WL1)2 × fr1 where fr1 is the ratio of the lesser of Snozzle or Splate / Sshell (e) The area available from the reinforcement plate to shell weld A42 = (WL2)2fr3 (f) The area available in the reinforcement plate (shown as herring-bone brick hatch) A5 = (Dp – d – 2tn)te/fr3 `Where fr3 is Splate/Sshell If A1 + A2 + A41 > A The opening is adequately reinforced. If A1 + A2 + A41 < A The opening is not adequately reinforced, and reinforcing elements (reinforcement plate and welds) must be added and/or the thickness must be increased. Therefore, if A1 + A2 + A41 +A42 + A5 > A The opening is adequately reinforced. Example 20: reinforcement of nozzle abutting vessel Determine the reinforcement requirements for a 100 mm I.D. nozzle located in a cylindrical boiler shell. The nozzle abuts the vessel wall and is attached by a full- penetration weld. The O.D. of the shell is 1000 mm. The thickness of the shell wall is 22.5 mm and the thickness of the nozzle wall is 8 mm. The nozzle fillet welds are 5 mm wide. The shell material is SA-516-60 and the nozzle is SA-192. The maximum allowable working pressure is 4900 kPa, and the design Conforms with the 2004 ASME Extract • Revised 03/06
  • 41. Chapter 1 • ASME Code Calculations: Cylindrical Components 41 temperature is not to exceed 200°C. All joint efficiencies E = 1.0. The reinforcement plate (if required) shall be of SA-192 material and 18 mm thick. Solution As this is a boiler shell, ASME Section I rules apply. Use equation 5.1. (See PG-32.1.2.) PD K = 1.82St Where P = 4.9 MPa D = 1000 mm S = 118 MPa t = 22.5 mm 4.9 × 1000 K = 1.82 (118 × 22.5 ) = 1.014 ASME Section I, Fig. PG-32, "General Notes," states that K is limited to a value of 0.99. Therefore PG-32.1.2 cannot be used. Allowable tensile stress for SA-516-60 is 118 MPa and for SA-192 is 92.4 MPa. Therefore: 118 f r1 = 92.4 = 1.28 Use equation 2.3 to determine the minimum required shell thickness (additional thickness may be used towards reinforcement requirements). (See PG-27.2.2) Where P = 4.5 MPa R = 500 – 22.5 = 477.5 mm S = 118 MPa E = 1 y = 0.4 (see PG-27.4, note 6) C = 0 (see PG-27.4, note 3) Conforms with the 2004 ASME Extract • Revised 03/06
  • 42. 42 Revised Second Class Course • Section A1 • SI Units PR tr = +C SE - (1 - y ) P 4.5 × 477.5 = +0 (118 × 1) - (1 - 0.4)4.5 = 20.408 mm Therefore tr = 20.408 mm and t = 22.5 mm Use equation 1.1 to determine the minimum required nozzle thickness. (See PG-27.2.1) Where P = 4.5 MPa D = 100 + (2 x 8) = 116 mm S = 92.4 MPa e = 0 (see PG-27.4, note 4) PD t = + 0.005D + e 2S + P 4.5 × 116 = + 0.005 (116 ) + 0 2 ( 92.4 ) + 4.5 522 = + 0.58 189.3 = 3.3375 mm Therefore tr n = 3.3375 mm and tn = 8 mm Limit of compensation parallel to shell surface X = d or X = (0.5d + tn + t), whichever is larger X = 100 or X = (0.5 ×100 + 8 + 22.5) = 80.5 Therefore X = 100 mm Limit perpendicular to the shell surface Y = 2.5t or Y = (2.5tn + te), whichever is smaller Y = 2.5 × 22.5 = 56.25 or Y = (2.5 × 8 + 18) = 38 Therefore Y = 38 mm (a) Reinforcement area required A (according to Fig. PG-33.1) A = dtrF (where F is taken from the chart Fig. PG-33.3, F=1) Ar = 100 ×20.408 ×1 = 2040.8 mm2 Conforms with the 2004 ASME Extract • Revised 03/06
  • 43. Chapter 1 • ASME Code Calculations: Cylindrical Components 43 (b) Reinforcement area available in the shell (X replaces d in the equation) A1 = X(t – Ftr) A1 = 100(22.5 – 1 x 20.408) = 209.2 Therefore A1 =209.2 mm2 (c) Reinforcement area available in the nozzle Y replaces (2.5tn + te) in the equation A2 = 2(tn - trn)(Y)fr1 A2 = 2(8 - 3.3375)(38) × 1.17 = 414.59 Therefore A2 = 414.59 mm2 (d) Reinforcement area available in the nozzle weld A41 = (WL1)2fr2 where fr2 = Sn/Ss A41 = (5)2 × 92.4/118 = 19.58 Therefore A41 = 19.58 mm2 Total area available from shell, nozzle, and nozzle weld Ar = A1 + A2 + A41 Ar = 209.2 + 414.59 + 19.58 = 643.37 mm2 (e) Area provided by the reinforcement plate weld A42 = (WL2)2Fr3 A42 = (5)2 × 92.4/118 = 19.58 Therefore A42 = 19.58 mm2 Area required by reinforcement pad A5 = A – (Ar + A42) A5 = 2040.8 - (643.37 + 19.58) = 1377.85 Therefore A5 = 1377.85 mm2 (f) Diameter of the reinforcement pad A5 = ( D p - d - 2tn )te f r 3 92.4 1377.85 = ( D p - 100 - 2 × 8) × 18 × 118 1377.85 ( D p - 100 - 16) = 14.095 Dp = 97.75 + 100 + 16 = 213.75 mm ( Ans.) Conforms with the 2004 ASME Extract • Revised 03/06
  • 44. 44 Revised Second Class Course • Section A1 • SI Units Thus, a reinforcing pad 213.75 mm diameter and 18 mm thick is required to carry the tensile stress and maintain the vessel pressure boundary. This pad size falls within the limits of compensation. SECTION VIII-1 The limits of compensation stated in paragraph UG-40 (b) and (c) are the same used in Section I, except that the vessel shell and nozzle must be treated as being in a corroded condition. Therefore, the limit of compensation parallel to the shell surface X = diameter of the finished opening in corroded condition Or X = radius of the finished opening in corroded condition + shell wall thickness+ nozzle wall thickness Whichever is larger The limit of compensation normal to the shell surface Y = 2.5 × nominal shell thickness less the corrosion allowance Or Y = 2.5 × nozzle wall thickness + the thickness of the reinforcing plate (te) Whichever is smaller Conforms with the 2004 ASME Extract • Revised 03/06
  • 45. Chapter 1 • ASME Code Calculations: Cylindrical Components 45 CHAPTER QUESTIONS The following questions provide candidates with experience using the ASME Codes. 1. Calculate the minimum required wall thickness of a watertube boiler tube 75 mm O.D. that is strength welded in place in a boiler drum. The tube will be in the furnace area of the boiler and have an average wall temperature of 350°C. The maximum allowable working pressure is 3500 kPa. The tube material is SA-192. 2. Calculate the required shell thickness for a hydraulic cylinder with a design pressure of 62 000 kPa. The cylinder has an internal diameter of 36 cm, S = 142 MPa, and E = 1.0. Assume no corrosion allowance for this cylinder. 3. Calculate the thickness of a boiler steam header designed with a seamless, unstayed, full hemispherical head, with pressure on the concave side. The inside radius of the header and the radius to which the head is dished is 304 mm, MAWP is 6205 kPa, and the header and head material is SA-204-A. The average temperature of the header is 400°C. The header has a flanged-in circular inspection opening 100 mm diameter. 4. An air receiver pressure vessel is constructed from SA-204-A with an inside diameter of 1830 mm. The design pressure is 1034 kPa at 200°C. The corrosion allowance is 4 mm, and the joint efficiency is 0.85. What is the required thickness of the hemispherical heads if the allowable stress is 147.5 MPa? 5. Using the rules in Section VIII-1, determine the minimum required thickness of the flat end plate of a rectangular box header 200 mm by 400 mm with an internal pressure of 2500 kPa. The material used has a stress value of 103 MPa. The plate is integrally welded into place as per Fig UG-34(h). There is no corrosion allowance and no butt-welded joints in the plate. 6. Using the rules in Section I, calculate the reinforcement requirements for a 150 mm I.D. nozzle located in a cylindrical boiler drum. The nozzle abuts the vessel wall and is attached by a full-penetration weld. The I.D. of the drum is 780 mm. The thickness of the drum is 28.575 mm. The nozzle wall thickness is 35 mm. The drum material is SA-516-60, and the nozzle material is SA- 209-T1. The maximum allowable working pressure is 6000 kPa, and the design temperature is 250°C. All joint efficiencies E = 1. The reinforcement plate material (if required) is of SA-515-55 and 10 mm thick. Conforms with the 2004 ASME Extract • Revised 03/06