Sanjivani Rural Education Society's
Sanjivani College of Engineering, Kopargaon 423603.
Department of Civil Engineering
Course Title –Advance Analysis of Structures
T. Y.BTech Civil, Semester –II(CE313)
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- Numerical on Analysis of frame by Portal method
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- Numerical on Analysis of frame by Portal method
By,
Prof. Santosh. R. Nawale
(Assistant Professor)
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- 2) Numerical on Analysis of frame by Portal method.
 Determine the approximate values of moment, shear and Axial forces
In member of frame loaded and supported as shown in figure using
Portal Method of Analysis.
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- 2) Numerical on Analysis of frame by Portal method.
 Assume point of contra flexure at centre of Beam and columns.
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- 2) Numerical on Analysis of frame by Portal method.
 Consider Upper storey and Releasing frame from nodes 4,5,6,7.
 The Horizontal shear is divided among all the columns on the basis that each
interior columns takes twice as much as exterior column.



F =0.
X
H+2H+2H+H=30
H=5KN.
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- 2) Numerical on Analysis of frame by Portal method.
( +ve & -ve)
-
F =0.
X
H 5 +30=0
 


( +ve & -ve)
F =0.
X
H +25-10=0
 


1
1
1
1
+Ve & Anticlockwise -Ve
-
H 5 +30=0
H = 25KN.
M =0.
@I
V 1.75+5 1.5=0
V =4.28KN.
Clockwise
 



  




F =0.
Y
4
4
( +ve& -ve)
+4.28
=4.28
-V =0
V KN.
2
2
2
2
+Ve & Anticlockwise -Ve
H +25-10=0
H =15KN.
M =0.
@J
4.28 1.75 V 1.75 10 1.5=0
V =4.29KN.
Clockwise
 



     




F =0.
Y
5
5
( +ve& -ve)
+4.29-4.28
=0.01
V =0
V KN.
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- 2) Numerical on Analysis of frame by Portal method.
( +ve & -ve)
F =0.
X
15 10 H =0
 

    
F =0.
Y
( +ve& -ve)
-4.28
V =0
V KN.
3
3
3
3
+Ve & Anticlockwise -Ve
15 10 H =0
H =5KN.
M =0.
@K
4.29 1.75 V 1.75 10 1.5=0
V =4.28KN.
Clockwise
 
  


     




F =0.
Y
6
6
( +ve& -ve)
-4.29+4.28
=0.01
-V =0
V KN.
7
7
 


F =0.
Y
( +ve& -ve)
-4.28
=4.28
V =0
V KN.
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- 2) Numerical on Analysis of frame by Portal method.
 Consider lower storey and Releasing frame from nodes 11,12,13,14.
 The Horizontal shear is divided among all the columns on the basis that each
interior columns takes twice as much as exterior column.
( v e ; - v e )
  




F = 0 .
X
H + 2 H + 2 H + H = 2 5 + 5 0
6 H = 9 0 .
H = 1 5 K N .
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- 2) Numerical on Analysis of frame by Portal method.
( +ve & -ve)
=
F =0.
X
60 15 5 H 0
 

   
( +ve & -ve)
F =0.
X
50 10 30 H =0
 

   
8
8
8
8
+Ve & Anticlockwise -Ve
=
60 15 5 H 0
H = 50KN.
M =0.
@E
15 1.5 V 1.75+5 1.5=0
V = 17.14KN.
Clockwise
 
   


    




F =0.
Y
11
11
( +ve& -ve)
+4.28+17.14
=21.42
-V =0
V KN.
9
9
9
9
+Ve & Anticlockwise -Ve
50 10 30 H =0
H =30KN.
M =0.
@F
17.14 1.75 V 1.75 10 1.5 30 1.5=0
V = 17.14KN.
0.01 17.14
Clockwise
 
   


       


  

F =0.
Y
12
12
( +ve& -ve)
+17.14
=0.01
V =0
V KN.
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- 2) Numerical on Analysis of frame by Portal method.
( +ve & -ve)
=
F =0.
X
30 10 30 H 0
 

    F =0.
Y
( +ve& -ve)
10
10
10
10
+Ve & Anticlockwise -Ve
=
30 10 30 H 0
H = 10KN.
M =0.
@G
17.14 1.75 30 1.5 V 1.75+10 1.5=0
V = 17.14KN.
17.14
Clockwise
 
   


      


 

F =0.
Y
13
13
( +ve& -ve)
-0.01+17.14
=0.01
V =0
V KN.
17.14
 

 

F =0.
Y
14
14
( +ve& -ve)
-4.28
=21.42
V =0
V KN.
Unit-V – Approximate Analysis of Multistoried Frames.
Topic- 2) Numerical on Analysis of frame by Portal method.
Bending Moment Diagram
THANK YOU

Approximate Analysis of Multistoried frame by Portal method

  • 1.
    Sanjivani Rural EducationSociety's Sanjivani College of Engineering, Kopargaon 423603. Department of Civil Engineering Course Title –Advance Analysis of Structures T. Y.BTech Civil, Semester –II(CE313) Unit-V – Approximate Analysis of Multistoried Frames. Topic- Numerical on Analysis of frame by Portal method Unit-V – Approximate Analysis of Multistoried Frames. Topic- Numerical on Analysis of frame by Portal method By, Prof. Santosh. R. Nawale (Assistant Professor)
  • 2.
    Unit-V – ApproximateAnalysis of Multistoried Frames. Topic- 2) Numerical on Analysis of frame by Portal method.  Determine the approximate values of moment, shear and Axial forces In member of frame loaded and supported as shown in figure using Portal Method of Analysis.
  • 3.
    Unit-V – ApproximateAnalysis of Multistoried Frames. Topic- 2) Numerical on Analysis of frame by Portal method.  Assume point of contra flexure at centre of Beam and columns.
  • 4.
    Unit-V – ApproximateAnalysis of Multistoried Frames. Topic- 2) Numerical on Analysis of frame by Portal method.  Consider Upper storey and Releasing frame from nodes 4,5,6,7.  The Horizontal shear is divided among all the columns on the basis that each interior columns takes twice as much as exterior column.    F =0. X H+2H+2H+H=30 H=5KN.
  • 5.
    Unit-V – ApproximateAnalysis of Multistoried Frames. Topic- 2) Numerical on Analysis of frame by Portal method. ( +ve & -ve) - F =0. X H 5 +30=0     ( +ve & -ve) F =0. X H +25-10=0     1 1 1 1 +Ve & Anticlockwise -Ve - H 5 +30=0 H = 25KN. M =0. @I V 1.75+5 1.5=0 V =4.28KN. Clockwise             F =0. Y 4 4 ( +ve& -ve) +4.28 =4.28 -V =0 V KN. 2 2 2 2 +Ve & Anticlockwise -Ve H +25-10=0 H =15KN. M =0. @J 4.28 1.75 V 1.75 10 1.5=0 V =4.29KN. Clockwise                F =0. Y 5 5 ( +ve& -ve) +4.29-4.28 =0.01 V =0 V KN.
  • 6.
    Unit-V – ApproximateAnalysis of Multistoried Frames. Topic- 2) Numerical on Analysis of frame by Portal method. ( +ve & -ve) F =0. X 15 10 H =0         F =0. Y ( +ve& -ve) -4.28 V =0 V KN. 3 3 3 3 +Ve & Anticlockwise -Ve 15 10 H =0 H =5KN. M =0. @K 4.29 1.75 V 1.75 10 1.5=0 V =4.28KN. Clockwise                  F =0. Y 6 6 ( +ve& -ve) -4.29+4.28 =0.01 -V =0 V KN. 7 7     F =0. Y ( +ve& -ve) -4.28 =4.28 V =0 V KN.
  • 7.
    Unit-V – ApproximateAnalysis of Multistoried Frames. Topic- 2) Numerical on Analysis of frame by Portal method.  Consider lower storey and Releasing frame from nodes 11,12,13,14.  The Horizontal shear is divided among all the columns on the basis that each interior columns takes twice as much as exterior column. ( v e ; - v e )        F = 0 . X H + 2 H + 2 H + H = 2 5 + 5 0 6 H = 9 0 . H = 1 5 K N .
  • 8.
    Unit-V – ApproximateAnalysis of Multistoried Frames. Topic- 2) Numerical on Analysis of frame by Portal method. ( +ve & -ve) = F =0. X 60 15 5 H 0        ( +ve & -ve) F =0. X 50 10 30 H =0        8 8 8 8 +Ve & Anticlockwise -Ve = 60 15 5 H 0 H = 50KN. M =0. @E 15 1.5 V 1.75+5 1.5=0 V = 17.14KN. Clockwise                  F =0. Y 11 11 ( +ve& -ve) +4.28+17.14 =21.42 -V =0 V KN. 9 9 9 9 +Ve & Anticlockwise -Ve 50 10 30 H =0 H =30KN. M =0. @F 17.14 1.75 V 1.75 10 1.5 30 1.5=0 V = 17.14KN. 0.01 17.14 Clockwise                       F =0. Y 12 12 ( +ve& -ve) +17.14 =0.01 V =0 V KN.
  • 9.
    Unit-V – ApproximateAnalysis of Multistoried Frames. Topic- 2) Numerical on Analysis of frame by Portal method. ( +ve & -ve) = F =0. X 30 10 30 H 0        F =0. Y ( +ve& -ve) 10 10 10 10 +Ve & Anticlockwise -Ve = 30 10 30 H 0 H = 10KN. M =0. @G 17.14 1.75 30 1.5 V 1.75+10 1.5=0 V = 17.14KN. 17.14 Clockwise                     F =0. Y 13 13 ( +ve& -ve) -0.01+17.14 =0.01 V =0 V KN. 17.14       F =0. Y 14 14 ( +ve& -ve) -4.28 =21.42 V =0 V KN.
  • 10.
    Unit-V – ApproximateAnalysis of Multistoried Frames. Topic- 2) Numerical on Analysis of frame by Portal method. Bending Moment Diagram
  • 11.