Trigonometria –
Funções seno e cosseno

Aula 1

1. a) f ( x ) = − sen x

x

− sen x

0
π
2
π
3π
2
2π

0
−1
0
1
0
f(x)
1

_

2p

_
3p
_
2

_ p __
p
2

p
_
2
0

p

3p
_
2

2p

x

_1

b) f ( x ) = − cos x

x

− cos x

0
π
2

−1

π
3π
2

1

0

2π

0
−1
f(x)
1

_

_
3p
_
2
2p

_p

__
p
2

p
_
2

0
_1

1.1
em21.202

p

3p
_
2

2p
x
c) f ( x ) = | sen x |
⎧sen x , se sen x ≥ 0 (0 ≤ x ≤ π )
f (x ) = ⎨
⎩ − sen x , se sen x < 0 ( π < x < 2π )

x

sen x

x

− sen x

0
π
2

0

π
3π
2

0

1

π

0

1

2π

0

f(x)
1

_

_
3p
_
2

2p

_p

__
p
2

p
_
2

0

p

3p
_
2

2p

x

d) f ( x ) = sen | x |
⎧sen x , se x ≥ 0
⎧sen x , se x ≥ 0
f (x ) = ⎨
⇒ f (x ) = ⎨
⎩ − sen x , se x < 0
⎩sen( −x ), se x < 0
− sen x

x

sen x

−1

0

0

−π

0

π
2

1

π
2

1

π

0

3π
2

−1

x
3π
2

−

−

f(x)

1
_ 2p

_
3p
__
2

_p

_p
_

0

2
_1

2.2
em21.202

p
_
2

p

3p
__
2

2p
x
e) f ( x ) = 3 cos x

x
0
π
2

cos x 3 cos x
1

3

0

0

π
3π
2

−1

−3

0

0

2π

1

3
f(x)
3

_ 2p _ 3p
__
2

_p

__
p

p
_
2

0

2

_

3

f) f ( x ) = 2 + cos x

x

cos x 2 + cos x

0
π
2

1

3

0

2

π
3π
2

−1

1

0

2

2π

1

3

3.3
em21.202

p
3p
__
2

2p

x
f(x)

3

1
_p

_ 2p

p

0

2p

x

π⎞
⎛
2. a) f ( x ) = sen⎜ x + ⎟
⎝
2⎠

x
−2π
3π
2

−

−π
−

π
2
3π
−
2
2π
= π
2
π
−
2

π⎞
⎛
sen⎜ x + ⎟
⎝
2⎠

0

0

π
2

1

x +

π
2
0
π
2
π

3π
2
2π

1
0
−1

2π
= π
2
3π
2
4π
= 2π
2
5π
2

0
−1
0
1
f(x)
1

_ 2p _ 3p
_
2

_p

__
p
2

0

p
_
2

_1

4.4
em21.202

p

3p
_
2

2p

x
π⎞
⎛
b) g ( x ) = cos⎜ x − ⎟
⎝
2⎠
π
2
5π
−
2
4π
−
= −2 π
2
3π
−
2
2π
−
= −π
2
π
−
2

π⎞
⎛
cos⎜ x − ⎟
⎝
2⎠

π
2

0

1

π

π
2

0

x −

x
−2π
3π
2

−

−π
−

π
2
0

3π
2
2π

0
1
0
−1
0

2π
= π
2
3π
2

−1
0

g(x)
1
_ 2p

_ 3p
_
2

_p

__
p
2
0
_1

5.5
em21.202

p
_
2

p

3p
_
2

2p

x

Exercícios de Trigonometria Resolvidos

  • 1.
    Trigonometria – Funções senoe cosseno Aula 1 1. a) f ( x ) = − sen x x − sen x 0 π 2 π 3π 2 2π 0 −1 0 1 0 f(x) 1 _ 2p _ 3p _ 2 _ p __ p 2 p _ 2 0 p 3p _ 2 2p x _1 b) f ( x ) = − cos x x − cos x 0 π 2 −1 π 3π 2 1 0 2π 0 −1 f(x) 1 _ _ 3p _ 2 2p _p __ p 2 p _ 2 0 _1 1.1 em21.202 p 3p _ 2 2p x
  • 2.
    c) f (x ) = | sen x | ⎧sen x , se sen x ≥ 0 (0 ≤ x ≤ π ) f (x ) = ⎨ ⎩ − sen x , se sen x < 0 ( π < x < 2π ) x sen x x − sen x 0 π 2 0 π 3π 2 0 1 π 0 1 2π 0 f(x) 1 _ _ 3p _ 2 2p _p __ p 2 p _ 2 0 p 3p _ 2 2p x d) f ( x ) = sen | x | ⎧sen x , se x ≥ 0 ⎧sen x , se x ≥ 0 f (x ) = ⎨ ⇒ f (x ) = ⎨ ⎩ − sen x , se x < 0 ⎩sen( −x ), se x < 0 − sen x x sen x −1 0 0 −π 0 π 2 1 π 2 1 π 0 3π 2 −1 x 3π 2 − − f(x) 1 _ 2p _ 3p __ 2 _p _p _ 0 2 _1 2.2 em21.202 p _ 2 p 3p __ 2 2p x
  • 3.
    e) f (x ) = 3 cos x x 0 π 2 cos x 3 cos x 1 3 0 0 π 3π 2 −1 −3 0 0 2π 1 3 f(x) 3 _ 2p _ 3p __ 2 _p __ p p _ 2 0 2 _ 3 f) f ( x ) = 2 + cos x x cos x 2 + cos x 0 π 2 1 3 0 2 π 3π 2 −1 1 0 2 2π 1 3 3.3 em21.202 p 3p __ 2 2p x
  • 4.
    f(x) 3 1 _p _ 2p p 0 2p x π⎞ ⎛ 2. a)f ( x ) = sen⎜ x + ⎟ ⎝ 2⎠ x −2π 3π 2 − −π − π 2 3π − 2 2π = π 2 π − 2 π⎞ ⎛ sen⎜ x + ⎟ ⎝ 2⎠ 0 0 π 2 1 x + π 2 0 π 2 π 3π 2 2π 1 0 −1 2π = π 2 3π 2 4π = 2π 2 5π 2 0 −1 0 1 f(x) 1 _ 2p _ 3p _ 2 _p __ p 2 0 p _ 2 _1 4.4 em21.202 p 3p _ 2 2p x
  • 5.
    π⎞ ⎛ b) g (x ) = cos⎜ x − ⎟ ⎝ 2⎠ π 2 5π − 2 4π − = −2 π 2 3π − 2 2π − = −π 2 π − 2 π⎞ ⎛ cos⎜ x − ⎟ ⎝ 2⎠ π 2 0 1 π π 2 0 x − x −2π 3π 2 − −π − π 2 0 3π 2 2π 0 1 0 −1 0 2π = π 2 3π 2 −1 0 g(x) 1 _ 2p _ 3p _ 2 _p __ p 2 0 _1 5.5 em21.202 p _ 2 p 3p _ 2 2p x