SlideShare a Scribd company logo
1 of 9
RESOLUCION DE LA PRÁCTICA
VIRTUAL
Grupo 3
Echenique Garcia Brandon Eliel
Fernanadez Villegas Jeanpier
Inga Garcia Julio Esteban
Jaimes Leon erick Roy
Jaimes Plasencia Felipe
Ovalle Quispe Gerson Amadeus
Sanchez Casas Javier
PROBLEMA 10:
a) OBTENER LA SERIE DE FOURIER F(x)
    
 
/2
/2
0 0
0
/2
0
/2
0
/2
/2
1 0
0
2 2 ( cos(2 )) 2
(2 )
2
2
(2 )cos( 2 )
1
(1 )2 1 2
Cuando 1
1 1 1 1
(4 ) cos(4 ) (1 1) 0
4 4
Cuando 2,3,...,
cos (1 )21
(1
n
n
x
a sen x dx
a sen x n x dx
sen n x sen n x dx
n
a sen x dx x
n
n x
a






  


  


  
 
      

 
      
 


 




 
   
2
/2
0
0, n par
1 2 2 2
, n impar
2 1 1 ( 1)
cos (1 )2
)2 (1 )2
1 cos(1 ) 1 cos(1 )1
2 1 1
n n n
n x
n n
n n
n n

 
 

 
  
   
 
 
  
    
  
  

 

    
   
/2
0
/2
0
/2
/2 /2
1 0 0
0
/2
0
Analogamente
2
(2 ) ( 2 )
1
cos (1 )2 cos (1 )2
Cuando 1
1 1 1 (4 ) 1
cos(4 )
2 4 2
Cuando 2,3,...,
(1 )2 (1 )21
(1 )2 (1 )2
1
2
n
n
b sen x sen n x dx
n x n x dx
n
sen x
b dx x dx
n
sen n x sen n x
b
n n
sen



 



 



   

    

  
  
  



 
   (1 ) (1 )
0
1 1
n sen n
n n
   
  
  
2
1
De donde,
1 1 2 1 1
( ) (2 ) cos(4 ) cos(8 ) ... .
2 3 15
O tambien,
1 1 2 cos(2 2 )
( ) (2 )
2 4 1n
f x sen x x x
n x
f x sen x
n
 
 


 
     
 
  


b) Deducir la convergencia 2
1
1
4 1n n

 

Considerando el valor X0=0, en la cual f es continua,
se obtiene por convergencia puntual.
2
1
2
1
2
1
1 1 2 cos(2 2 )
(2 ) (0) 1
2 4 1
1 2 1
1
4 1
1 1
2 4 1
n
n
n
n x
sen x f
n
n
n
 
 







   

 







1
0
0 0
0 2
0
0
0
11. pulso triangular simetrìco de altura y ancho ajustable es descrito por:
f(x){ } si .
2 (1 cos )
)Muestre que los coeficientes de son: ,
2 ( )
1
x
a
x bb
x
n
t
Un
ab ab nb
a a a
nb
ax
a a dx
b
a a

 

 
    
 

 
 
 

0
0
0
2
0 0 02
2
0
0
0
1
1
1
2
2
b
b
b
b b
ax
dx dx
b
ax
a a dx
b
ax
a ax
b
ab
a ab
b
ab
a





  
  
  
 
  
 
 
  
 
 
  
 

 

0
0 0
0 0
0 0
0 0
0
1
( )cos
1
( )cos 0cos
1
cos cos
1
cos cos
1
cos
1
T
n
b
n
b b
n
b b
n
b b
n
n
ax
a a nxdx
b
ax
a a nxdx nxdx
b
ax
a a nxdx nxdx
b
ax
a a nxdx nxdx
b
ax sennx a sennx
a a nxdx dx
b n b n
asen
a
n







 
 
   
 
 
   
 
 
  
 
  
    
   


 
 
 
 
0 0
2 2
2
cos
(
1
( cos
2 (1 cos )
( )
b b b
n
n
sennx a nx
nx ax
n bn n
asennb sennb a a
a a nb
n n bn bn
ab nb
a
nb


 
   
 
     


0 1 2 3 4 5
0
0
2
)Tome 1 y b= calcule y represente las cinco suma parciales
2
como b =0
1
( ) cos cos2 cos3 cos4 cos5
2
Remplezando los valores dados:
2
1
8
2 (1 cos )
( )
(1 cos )
2
(
2
n
n
n
b a
f t a a x a x a x a x a x
ab
a
a
ab nb
a
nb
n
a
n






     






2
0 1 2 3 4 5
2 2 2 2
)
1
( ) cos cos2 cos3 cos4 cos5
2
1 4 2 4 4
( ) cos cos2 cos3 cos5
8 9 25
f t a a x a x a x a x a x
f t x x x x
   
     
    
 
2
1
12) Sea la f una funcion dada por f(x) = 1+ ;x 1,1
) ( ).
1
) :
4 1n
x
a Obtener la serie de Fourier de f x
b Deducir la convergencia de la serie
n


 


 
0
1
1
1 1
1 1
1
1
, 0
4
an = 1,2,3,4.... an = ( )cos( )
4
1cos( )
1
n = 4 cos( ) cos( )
1 1
4 ( ) cos(
:
T
L
Como f x es una función par entonces bn y
f t nwt
T
x nwx dx
a x nwx dx nwx dx
an xsen nwx nwx
n n
uego
an

 




 
 



 



 
1 1
1 1
1
1
1
0
1
0
1 21
0 0
1
1
) ( )
8
4( )
32
n =
1
(1 )
1
2 (1 )
1
2 (1 )
1 1
2 ( )
1 2
3.
32
( ) 3 + cos( )
n
sen nwx
n
an
n
a
n
ao x dx
T
ao x dx
T
ao x dx
T
ao x x
ao
f t nwt
n
 



 
 
 

 
 
 
 






Deducirlaconvergencia 2
1
1
4 1n n

 

Considerandoel valorX0=0,enlacual f escontinua,
se obtiene porconvergenciapuntual.
2
1
2
1
2
1
1 1 2 cos(2 2 )
(2 ) (0) 1
2 4 1
1 2 1
1
4 1
1 1
2 4 1
n
n
n
n x
sen x f
n
n
n
 
 







   

 







13.-
a)Como f(x) esunafunciónimparan=0 ;n=0,1,2,3,..
0
0
1 2
( ) ( )
2 cos( )
n
n
b xsen n dx xsen n dx
x nx
b
n
 


 
 


 
 
   
 
2
; 1,3,5,...
2
; 2,4,6,...
n
n
b n
n
b n
n
 
  
Seriaigual a:
1 2
( 1)n
nb
n

 
Por lotanto:
1
1
( ) 2 3
( ) 2 ( 1) 2 ...
1 2 3
n
n
sen nx senx sen x sen x
f x
n



 
      

b)Aplicandolaidentidadde Parseval:
2
2 2 2
3 2
2
2
1
2
2
1
1 1 1 1
4 ...
1 2 3
1 1 1
4 4 3 6
1
6
n
n
x dx
x
x dx
n
n






 



 


 
     
  


 

C)      
2 22 2
0
1
1
( ) 2( )
L
n n
nL
f x dx a a b
L


   
 
2
2 1
1
3 1
2
1
3 1
2
1
1 2
2
1
1 2
( 1)
2
1 ( 1)
4
2 3
1 2 ( 1)
4
2 3
( 1)
12
n
n
n
n
n
n
n
n
x dx
n
x
n
n
n













 




 
   











More Related Content

What's hot

Kalkulus modul 3a turunan fungsi revisi
Kalkulus modul 3a turunan fungsi revisiKalkulus modul 3a turunan fungsi revisi
Kalkulus modul 3a turunan fungsi revisiPrayudi MT
 
Luonggiac chuong2
Luonggiac chuong2Luonggiac chuong2
Luonggiac chuong2Huynh ICT
 
Formulario Derivadas e Integrales
Formulario Derivadas e IntegralesFormulario Derivadas e Integrales
Formulario Derivadas e IntegralesEFRAIN APLIKA2
 
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)Kelinci Coklat
 
Integral tak tentu
Integral tak tentuIntegral tak tentu
Integral tak tentunovivia44
 
Chuyên đề 6 góc lượng giác và công thức lượng giác
Chuyên đề 6 góc lượng giác và công thức lượng giácChuyên đề 6 góc lượng giác và công thức lượng giác
Chuyên đề 6 góc lượng giác và công thức lượng giácphamchidac
 
Bài tập tích phân- nguyên hàm
Bài tập tích phân- nguyên hàmBài tập tích phân- nguyên hàm
Bài tập tích phân- nguyên hàmdiemthic3
 
Tabela de identidades trigonométricas
Tabela de identidades trigonométricasTabela de identidades trigonométricas
Tabela de identidades trigonométricasAnderson de Almeida
 
Problemas resueltos ecuaciones diferenciales.
Problemas resueltos ecuaciones diferenciales.Problemas resueltos ecuaciones diferenciales.
Problemas resueltos ecuaciones diferenciales.JAVIERTELLOCAMPOS
 
Ejercicio 11 - Mat. I
Ejercicio 11 - Mat. IEjercicio 11 - Mat. I
Ejercicio 11 - Mat. Ijoey200905
 
Solusi ukk mat ips 2015 2016
Solusi ukk mat ips 2015 2016Solusi ukk mat ips 2015 2016
Solusi ukk mat ips 2015 2016Al Frilantika
 
Idoc.vn luong giac-ly-thuyet-bai-tap-co-loi-giai
Idoc.vn luong giac-ly-thuyet-bai-tap-co-loi-giaiIdoc.vn luong giac-ly-thuyet-bai-tap-co-loi-giai
Idoc.vn luong giac-ly-thuyet-bai-tap-co-loi-giailinh98
 

What's hot (18)

Kalkulus modul 3a turunan fungsi revisi
Kalkulus modul 3a turunan fungsi revisiKalkulus modul 3a turunan fungsi revisi
Kalkulus modul 3a turunan fungsi revisi
 
Luonggiac chuong2
Luonggiac chuong2Luonggiac chuong2
Luonggiac chuong2
 
Formulario Derivadas e Integrales
Formulario Derivadas e IntegralesFormulario Derivadas e Integrales
Formulario Derivadas e Integrales
 
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)
Fungsi Gamma dan Beta (Kalkulus Peubah Banyak)
 
Bài tập nguyên hàm tích phân
Bài tập nguyên hàm tích phânBài tập nguyên hàm tích phân
Bài tập nguyên hàm tích phân
 
Examen on line
Examen on lineExamen on line
Examen on line
 
Integral definida clase2
Integral definida clase2Integral definida clase2
Integral definida clase2
 
Integral tak tentu
Integral tak tentuIntegral tak tentu
Integral tak tentu
 
Chuyên đề 6 góc lượng giác và công thức lượng giác
Chuyên đề 6 góc lượng giác và công thức lượng giácChuyên đề 6 góc lượng giác và công thức lượng giác
Chuyên đề 6 góc lượng giác và công thức lượng giác
 
Bài tập tích phân- nguyên hàm
Bài tập tích phân- nguyên hàmBài tập tích phân- nguyên hàm
Bài tập tích phân- nguyên hàm
 
Tabela de identidades trigonométricas
Tabela de identidades trigonométricasTabela de identidades trigonométricas
Tabela de identidades trigonométricas
 
Successive differentiation
Successive differentiationSuccessive differentiation
Successive differentiation
 
Int.coord.polares
Int.coord.polaresInt.coord.polares
Int.coord.polares
 
2. successive differentiation
2. successive differentiation2. successive differentiation
2. successive differentiation
 
Problemas resueltos ecuaciones diferenciales.
Problemas resueltos ecuaciones diferenciales.Problemas resueltos ecuaciones diferenciales.
Problemas resueltos ecuaciones diferenciales.
 
Ejercicio 11 - Mat. I
Ejercicio 11 - Mat. IEjercicio 11 - Mat. I
Ejercicio 11 - Mat. I
 
Solusi ukk mat ips 2015 2016
Solusi ukk mat ips 2015 2016Solusi ukk mat ips 2015 2016
Solusi ukk mat ips 2015 2016
 
Idoc.vn luong giac-ly-thuyet-bai-tap-co-loi-giai
Idoc.vn luong giac-ly-thuyet-bai-tap-co-loi-giaiIdoc.vn luong giac-ly-thuyet-bai-tap-co-loi-giai
Idoc.vn luong giac-ly-thuyet-bai-tap-co-loi-giai
 

Viewers also liked

Present simple1 [recuperado]
Present simple1 [recuperado]Present simple1 [recuperado]
Present simple1 [recuperado]yoyaca
 
Simple Present Tense
Simple Present TenseSimple Present Tense
Simple Present TensePaulina Lobos
 
Present simple versus present continuous
Present simple versus present continuousPresent simple versus present continuous
Present simple versus present continuouslunanueva30
 
Lesson plan present simple tense
Lesson plan present simple tense Lesson plan present simple tense
Lesson plan present simple tense Xenni Dil Muhammad
 
Present simple explanation + exercises
Present simple explanation + exercisesPresent simple explanation + exercises
Present simple explanation + exercisesTeba Hernández
 
Simple present tense
Simple present tenseSimple present tense
Simple present tensemilyrichi
 

Viewers also liked (9)

Simple Present Tense
Simple Present TenseSimple Present Tense
Simple Present Tense
 
Present simple1 [recuperado]
Present simple1 [recuperado]Present simple1 [recuperado]
Present simple1 [recuperado]
 
Simple Present Tense
Simple Present TenseSimple Present Tense
Simple Present Tense
 
Present simple versus present continuous
Present simple versus present continuousPresent simple versus present continuous
Present simple versus present continuous
 
Present simple Tense
Present simple TensePresent simple Tense
Present simple Tense
 
simple present tense
simple present tensesimple present tense
simple present tense
 
Lesson plan present simple tense
Lesson plan present simple tense Lesson plan present simple tense
Lesson plan present simple tense
 
Present simple explanation + exercises
Present simple explanation + exercisesPresent simple explanation + exercises
Present simple explanation + exercises
 
Simple present tense
Simple present tenseSimple present tense
Simple present tense
 

Pv2 grupo3

  • 1. RESOLUCION DE LA PRÁCTICA VIRTUAL Grupo 3 Echenique Garcia Brandon Eliel Fernanadez Villegas Jeanpier Inga Garcia Julio Esteban Jaimes Leon erick Roy Jaimes Plasencia Felipe Ovalle Quispe Gerson Amadeus Sanchez Casas Javier
  • 2. PROBLEMA 10: a) OBTENER LA SERIE DE FOURIER F(x)        /2 /2 0 0 0 /2 0 /2 0 /2 /2 1 0 0 2 2 ( cos(2 )) 2 (2 ) 2 2 (2 )cos( 2 ) 1 (1 )2 1 2 Cuando 1 1 1 1 1 (4 ) cos(4 ) (1 1) 0 4 4 Cuando 2,3,..., cos (1 )21 (1 n n x a sen x dx a sen x n x dx sen n x sen n x dx n a sen x dx x n n x a                                                       2 /2 0 0, n par 1 2 2 2 , n impar 2 1 1 ( 1) cos (1 )2 )2 (1 )2 1 cos(1 ) 1 cos(1 )1 2 1 1 n n n n x n n n n n n                                     
  • 3.          /2 0 /2 0 /2 /2 /2 1 0 0 0 /2 0 Analogamente 2 (2 ) ( 2 ) 1 cos (1 )2 cos (1 )2 Cuando 1 1 1 1 (4 ) 1 cos(4 ) 2 4 2 Cuando 2,3,..., (1 )2 (1 )21 (1 )2 (1 )2 1 2 n n b sen x sen n x dx n x n x dx n sen x b dx x dx n sen n x sen n x b n n sen                                          (1 ) (1 ) 0 1 1 n sen n n n           2 1 De donde, 1 1 2 1 1 ( ) (2 ) cos(4 ) cos(8 ) ... . 2 3 15 O tambien, 1 1 2 cos(2 2 ) ( ) (2 ) 2 4 1n f x sen x x x n x f x sen x n                     
  • 4. b) Deducir la convergencia 2 1 1 4 1n n     Considerando el valor X0=0, en la cual f es continua, se obtiene por convergencia puntual. 2 1 2 1 2 1 1 1 2 cos(2 2 ) (2 ) (0) 1 2 4 1 1 2 1 1 4 1 1 1 2 4 1 n n n n x sen x f n n n                         
  • 5. 1 0 0 0 0 2 0 0 0 11. pulso triangular simetrìco de altura y ancho ajustable es descrito por: f(x){ } si . 2 (1 cos ) )Muestre que los coeficientes de son: , 2 ( ) 1 x a x bb x n t Un ab ab nb a a a nb ax a a dx b a a                      0 0 0 2 0 0 02 2 0 0 0 1 1 1 2 2 b b b b b ax dx dx b ax a a dx b ax a ax b ab a ab b ab a                                        0 0 0 0 0 0 0 0 0 0 1 ( )cos 1 ( )cos 0cos 1 cos cos 1 cos cos 1 cos 1 T n b n b b n b b n b b n n ax a a nxdx b ax a a nxdx nxdx b ax a a nxdx nxdx b ax a a nxdx nxdx b ax sennx a sennx a a nxdx dx b n b n asen a n                                                       0 0 2 2 2 cos ( 1 ( cos 2 (1 cos ) ( ) b b b n n sennx a nx nx ax n bn n asennb sennb a a a a nb n n bn bn ab nb a nb                  
  • 6. 0 1 2 3 4 5 0 0 2 )Tome 1 y b= calcule y represente las cinco suma parciales 2 como b =0 1 ( ) cos cos2 cos3 cos4 cos5 2 Remplezando los valores dados: 2 1 8 2 (1 cos ) ( ) (1 cos ) 2 ( 2 n n n b a f t a a x a x a x a x a x ab a a ab nb a nb n a n                   2 0 1 2 3 4 5 2 2 2 2 ) 1 ( ) cos cos2 cos3 cos4 cos5 2 1 4 2 4 4 ( ) cos cos2 cos3 cos5 8 9 25 f t a a x a x a x a x a x f t x x x x               
  • 7.   2 1 12) Sea la f una funcion dada por f(x) = 1+ ;x 1,1 ) ( ). 1 ) : 4 1n x a Obtener la serie de Fourier de f x b Deducir la convergencia de la serie n         0 1 1 1 1 1 1 1 1 , 0 4 an = 1,2,3,4.... an = ( )cos( ) 4 1cos( ) 1 n = 4 cos( ) cos( ) 1 1 4 ( ) cos( : T L Como f x es una función par entonces bn y f t nwt T x nwx dx a x nwx dx nwx dx an xsen nwx nwx n n uego an                      1 1 1 1 1 1 1 0 1 0 1 21 0 0 1 1 ) ( ) 8 4( ) 32 n = 1 (1 ) 1 2 (1 ) 1 2 (1 ) 1 1 2 ( ) 1 2 3. 32 ( ) 3 + cos( ) n sen nwx n an n a n ao x dx T ao x dx T ao x dx T ao x x ao f t nwt n                          
  • 8. Deducirlaconvergencia 2 1 1 4 1n n     Considerandoel valorX0=0,enlacual f escontinua, se obtiene porconvergenciapuntual. 2 1 2 1 2 1 1 1 2 cos(2 2 ) (2 ) (0) 1 2 4 1 1 2 1 1 4 1 1 1 2 4 1 n n n n x sen x f n n n                         
  • 9. 13.- a)Como f(x) esunafunciónimparan=0 ;n=0,1,2,3,.. 0 0 1 2 ( ) ( ) 2 cos( ) n n b xsen n dx xsen n dx x nx b n                     2 ; 1,3,5,... 2 ; 2,4,6,... n n b n n b n n      Seriaigual a: 1 2 ( 1)n nb n    Por lotanto: 1 1 ( ) 2 3 ( ) 2 ( 1) 2 ... 1 2 3 n n sen nx senx sen x sen x f x n              b)Aplicandolaidentidadde Parseval: 2 2 2 2 3 2 2 2 1 2 2 1 1 1 1 1 4 ... 1 2 3 1 1 1 4 4 3 6 1 6 n n x dx x x dx n n                                C)       2 22 2 0 1 1 ( ) 2( ) L n n nL f x dx a a b L         2 2 1 1 3 1 2 1 3 1 2 1 1 2 2 1 1 2 ( 1) 2 1 ( 1) 4 2 3 1 2 ( 1) 4 2 3 ( 1) 12 n n n n n n n n x dx n x n n n                                   