SlideShare a Scribd company logo
Conversion of Waste Lube Oil to
Gasoline
Dr. John Lau Sie Yon Academic Advisor
Tan Et Kuan Industrial Advisor
Member (Group 6 Year 2015)
Yong Wan Wei Director 16311109
Alan Wong Chiew Wee Chief Environmental Officer 16530807
Colin Wong Lik Long Chief Financial Officer 16530849
Aaron Lim Chee Ren Chief Executive Officer 15410908
Chan Wai Mun Chief Safety Officer 16012114
Anavah Oil Corperation
Chemical Engineering Department
Presentation Outline
Part 1 Project Background (Chief Executive Officer)
• Objective
• Market Survey
• Process Selection
• Storage and Transport Requirements
• Site Selection
• Project Schedule
Part 2 Technical Aspect (Director and Chief Environmental Officer)
• PFD and Stream Table
• Materials and Energy Balance
• Major Utilities Specifications
• Process Optimization and Energy
Integration
• Preliminary Equipment Schedule
• Preliminary Piping Specifications
• Equipment and Plant Layout
• Preliminary Environment Impact
Assessment
Part 3 Process Control & Economic Analysis (Chief Safety Officer and Chief Financial Officer)
• Economic Assumptions and Methods
• Cost Summary
• Economic Analysis
• P&ID and Process Control Philosophy
• Plant Commissioning, Startup and
Shutdown
Objectives
Process 1
kilotonne waste
lube oil into
gasoline
95% purity
High
sustainability
Low
operational
risk
Low
environmental
impact
Constraints
Maximize
gasoline yield
HYSYS
Equipment
HYSYS
simulation
conversion
Introduction
Market Survey
 Target Market: Malaysia
 40% of Malaysia energy consumption comes from liquid fuel 1
 Average annual growth of gasoline: 6.7% 2
Source: EIA (2014); IndexMundi (n.d.)
0.37 MBD
Process Selection
Source: PETDER (2012); SENER (n.d); Paulik (2011); Özmen (2015)
Re-refining
• Acid/clay
Treatment
• Solvent Extraction
• Hydroprocessing
Cracking
• Hydrocracking
• Fluid Catalytic
Cracking
Fractionation
• Product quality
dependent of feed
• ↑ solvent cost
• Recoverable solvent
• ↑ asphalt
production
• ↑ product yield
and quality
• H2 gas recyclable
• ↑ operating
condition
• H2S removal
• ↓ product yield
• ↑ clay disposal
cost
• ↑ operating
condition
• Acid sludge
disposal problem
Acid/clay
Treatment
Solvent Extraction ✔ Hydroprocessing
Technical 
Economic 
Safety & 
Sustainability
Environment 
Waste Lube Oil
P-101A
K-101A
Hydrogen Gas
S-3
S-4
S-5
S-1
S-2
H2O S-18
S-19
H2 – Further Treatment
for Reuse
S-20 Sour Water
S-9
S-16
Light Ends
Gasoline
Diesel
Bottoms
LCO Steam
BottomsSteam
E-106A
E-105A
E-102A
E-104A
TT-101A
TT-102A
S-27
S-28
1000 kPa
37.78 °C
1379 kPa
65.56 °C
10340 kPa
38.93 °C
10340 kPa
421.2 °C
10340 kPa
200 °C
10310 kPa
200 °C
330 kPa
30 °C
338 kPa
30 °C
MIX-101
K-102A
S-13
S-15
S-21
S-22S-26
S-25
S-24
S-23
kPa
°C
10340 kPa
25 °C
10310 kPa
25.17 °C
10310 kPa
44.21 °C
10310 kPa
407.52 °C
1000 kPa
250 °C
1000 kPa
200 °C
1000 kPa
200 °C
330 kPa
51.05 °C
330 kPa
175.18°C
340 kPa
321.15 °C
kPa
°C
P-101B
K-101B
E-102B
E-104B
S-6
E-101A
10340 kPa
200 °C
E-101B
V-101
S-7
10310 kPa
200 °C
E-103A
E-103B
S-10
1000 kPa
250 °C
V-102
S-11
1000 kPa
250 °C
V-103
S-12
1000 kPa
26 °C
K-102B
S-8
10310 kPa
200 °C
S-17
10310 kPa
208.19 °C
T-100
FCC-100
R-100
Regenerator
T-101
E-105B
E-106B
TT-101B
TT-102B
Sour WaterS-14
1000 kPa
26 °C
Process Flow Diagram
Hydrogenation
Fractionation
Catalytic Cracking
• ↑ gasoline yield
• ↑ cost due to catalyst price
but can be regenerated
• Catalyst generable making
it cost effective
• Stripper used to remove
coke and impurities
• ↓ gasoline yield
• ↑ cost due to hydrogen
price
• ↑ operating condition
• Produces coke and
sulphur
Hydrocracking ✔ Fluid Catalytic Cracking
Material Storage
• API Standard 614Waste Lube Oil
• API Standard 620Hydrogen
• API Standard 650Gasoline
• Avoid dense population and
environmentally sensitive route
Waste Lube Oil
• Transport medium to include safety
valve
Hydrogen
• Transport through pipeline to
comply Petroleum Regulations 1985
Gasoline
Material Transportation
Source: Adenan (2005); Department of Labour (n.d.); OFA (2010)
Site Selection
Sipitang Oil and
Gas Industrial Park
Gebeng
Industrial Park
Pengerang
Integrated
Petroleum Complex
Pengerang
Integrated
Petroleum Complex
• Close to Singapore &
Malacca Straits
• 109.28 acres
Site
Characteristic
• Income tax exemption
on statutory income
for 15 years in
Tax Incentive
• Deepwater port
Facilities &
Infrastructure
• On-site 1300MW
power plant
• Dedicated sulphur
handling facilities
Utilities
• Numerous vocational
institute and
universities
Labour Market
• Relatively
unpopulated leading
to minimal relocation
Socio Impact
Project Schedule
Tasks
Aug Sept Oct
No
v
Wk
1
Wk
2
W
k 3
W
k 4
W
k 5
W
k 6
W
k 7
Wk
8
W
k 9
W
k
10
Wk
11
Wk
12
Overview research to gather required information
Task distribution
Company formation (logo, name)
Project background, constraints, objective, market survey, evaluation of
alternative process, construct block flow diagram
Justification on process selection, site selection and raw material selection
Product storage requirement, transportation requirements and memo 1
Memo 1 compiling and submission
Construct process flow diagram, specification of major utilities and process
optimisation
Equipment schedule, detail, sizing, specification on piping and construct plot
plan
Environmental impact assessment, process safety, hazards review and memo
2
Memo 2 compiling and submission
Estimation on capital, operating cost and plant process control philosophy
Key issues identification, equipment list for major, minor design study and
memo 3
Memo 3 compiling and submission
Design Project Presentation
Volume 1 compiling and submission
Memo 2 compiling and submission
Volume 2 compiling and submission
Final report
Design project presentation
Waste Lube Oil
P-101A
K-101A
Hydrogen Gas
S-3
S-4
S-5
S-1
S-2
H2O S-18
S-19
H2 – Further Treatment
for Reuse
S-20 Sour Water
S-9
S-16
Light Ends
Gasoline
Diesel
Bottoms
LCO Steam
BottomsSteam
E-106A
E-105A
E-102A
E-104A
TT-101A
TT-102A
S-27
S-28
1000 kPa
37.78 °C
1379 kPa
65.56 °C
10340 kPa
38.93 °C
10340 kPa
421.2 °C
10340 kPa
200 °C
10310 kPa
200 °C
330 kPa
30 °C
338 kPa
30 °C
MIX-101
K-102A
S-13
S-15
S-21
S-22S-26
S-25
S-24
S-23
kPa
°C
10340 kPa
25 °C
10310 kPa
25.17 °C
10310 kPa
44.21 °C
10310 kPa
407.52 °C
1000 kPa
250 °C
1000 kPa
200 °C
1000 kPa
200 °C
330 kPa
51.05 °C
330 kPa
175.18°C
340 kPa
321.15 °C
kPa
°C
P-101B
K-101B
E-102B
E-104B
S-6
E-101A
10340 kPa
200 °C
E-101B
V-101
S-7
10310 kPa
200 °C
E-103A
E-103B
S-10
1000 kPa
250 °C
V-102
S-11
1000 kPa
250 °C
V-103
S-12
1000 kPa
26 °C
K-102B
S-8
10310 kPa
200 °C
S-17
10310 kPa
208.19 °C
T-100
FCC-100
R-100
Regenerator
T-101
E-105B
E-106B
TT-101B
TT-102B
Sour WaterS-14
1000 kPa
26 °C
Node 1:
Knock-Out Drum, V-101,
V-102, V-103
Node 3:
Packed Bed Absorber, T-100
and Fractionator, T-101
Node 2:
Fluidized Bed Reactor, R-100
Initial Process Hazard and
Safety Review
Preliminary HAZOP Analysis
- This plant is divided into 3 nodes.Node 1
Node Parameter Guideword Possible Causes Consequences Safeguard Action required
Knock-
Out
Drum
Temperature High
- Poor insulation
- Heat tracing
- Thermal radiation
(Sun)
- Overpressurized
- Low mechanical
strength
- Loss of containment
(vaporization)
- Temperature control
system
- Thermal relief valve
- Mechanical integrity
- Temperature alarm system
- Regular inspection and maintenance
- Tanks coated with reflective paint
- Personal protective equipment
- Strict adherence to working procedure
Level
High
- Flooding
- Carryover
- Spillage of gas
- Overpressurized
- Drain valve
- Level indicator and alarm
- Alternative pipeline
- Ensure instruments are clearly labelled,
easy to view and designed to be easily
understand
- Personal protective equipment
Low
- Leakage
- Valve/controller failure
- Process disruption
- Financial loss
- Level indicator
- Level alarm
- Provide clear and correct instructions
- Regular inspection and maintenance
Pressure High
- Blockage
- Faulty of valves
- Thermal expansion
- Tank rupture
- Explosion
- Injuries and fatalities
- Pressure control system
- Pressure relief valve
- Vent valve
- Pressure alarms
- Vacuum break valve
- Regular inspection and maintenance
- Monitor the indicators frequently
Corrosion -
- Presence of impurities
- Lack of cleaning
- Deposition
- Porosity
- Anode installation
- Pre-coating
- Ensure pipe integrity
- Strict adherence to maintenance
schedule
Node 2
Node Parameter Guideword Possible Causes Consequences Safeguard Action required
Fluidized
Bed
Reactor
Temperature
High
- Faulty of heaters
- Presence of impurities
- Tube fouling
- Defect of control system
- Property damage and
explosion
- Side reaction
- Degradation of catalyst
- Low purity of product
- Temperature control system
- Thermal relief valve
- Mechanical integrity
- Temperature alarm system
- Regular inspection and maintenance
- Tanks coated with reflective paint
- Personal protective equipment
- Strict adherence to working procedure
Low
- Heat loss; vaporization
- Tube fouling
- Low conversion and
production
- Wax build up
- Temperature control system
- Temperature alarm system
- Regular inspection and maintenance
- Monitor the indicators frequently
Flow
High
- Reduced back pressure
- Controller failure
- Valve failures
- Pressure deviation
- Flooding in the reactor
- Spillage
- Loss of containment
- Financial loss
- Hand-operated valve
- Alternative pipeline
- Shutdown valve
- Flow control system
- Regular inspection and maintenance
- Ensure instruments are clearly labelled,
easy to view and designed to be easily
understand
Low
- Pipe leakage
- Partial blockage
- Sediment; cavitation
- Loss of containment
- Process disruption
- Pipe leak detector
- Schedule cleaning routine
- Flow control system
- Regular inspection and maintenance
- Ensure instruments are clearly labelled,
easy to view and designed to be easily
understand
No
- Closed/stuck valve
- Human error
- No production
- Financial loss
- Schedule cleaning routine
- Flow control system
- Regular inspection and maintenance
- Ensure sufficient feedstock
Reverse
- Check valve failure
- Wrong routing
- Poor isolation
- Overpressurized
- Produce impurities
- Process disruption
- Drain valve
- Alternative check valve
- Flow control system
- Authorized personnel to perform services
- Ensure instruments are clearly labelled,
easy to view and designed to be easily
understand
Pressure
High
- Excessive feed supplies
- Blockage of pipeline at
outlet stream
- Valves failure
- Pipe rupture
- Property damage and
explosion
- Degradation of catalyst
- Side reaction
- Pressure control system
(pressure gauge/transmitter)
- Pressure safety valve
- Vent or vacuum break valve
- Shutdown valve
- Pressure alarm system
- Firefighting system in case of emergency
- Well insulated reactor to reduce external
heat effects
- Trip valve to terminate operation at high
pressure
- Regular inspection and maintenance
Low
- Leakage of pipe or vessel
- Faulty of pressure
control system
- Malfunction of pumps
- Ineffective conversion
and production
- Vapour lock
- Low purity of product
- Install backup pumps
- Pressure control and alarm
system
- Vacuum break valve
- Monitor the indicators frequently
- Regular inspection and maintenance
- Ensure instruments are clearly labelled,
easy to view and designed to be easily
understand
Node 3
Node Parameter Guideword Possible Causes Consequences Safeguard Action required
Packed Bed
Absorber/
Fractionator
Temperature
High
- Malfunction of reboiler and
condenser
- Faulty of temperature control
system
- Thermal radiation
- Flare
- High consumption of energy
- Product impurities
- Inefficient separation
- Property damage and
explosion
- Injuries and fatalities
- Loss of containment
- Integrated control system
- Thermal relief valve
- Mechanical integrity
- Personal protective equipment
- Thorough working procedure
- Review the procedure, control system and
operating condition
- Regular inspection and maintenance
- Promote good communication within workers
- Provide clear and concise instruction
Low
- Malfunction of reboiler and
condenser
- Leakage of pipe or equipment
- Heat loss
- Poor insulation
- Low energy efficiency
- Low purity of product
- Inefficient separation
- Underpressurized
- Wax build up
- Integrated control system
- Thermal alarm system
- Mechanical integrity
- Personal protective equipment
- Monitor the indicators frequently
- Ensure instruments are clearly labelled, easy to
view and designed to be easily understand
- Strict adherence to rules and regulations
Flow
High
- Reduced back pressure
- Controller failure
- Valve failures
- Pressure deviation
- Low purity of desired product
- Flooding
- Spillage
- Column damage
- Hand-operated valve
- Alternative pipeline
- Shutdown valve
- Flow control system
- Regular inspection and maintenance
- Ensure instruments are clearly labelled, easy to
view and designed to be easily understand
Low
- Pipe leakage
- Partial blockage
- Sediment; cavitation
- Faulty of pump
- Low production
- Financial loss
- Process disruption
- Pipe leak detector
- Schedule cleaning routine
- Flow control system
- Backup pump
- Regular inspection and maintenance
- Ensure instruments are clearly labelled, easy to
view and designed to be easily understand
No
- Closed/stuck valve
- Pipe leakage/blockage
- No production
- Financial loss
- Schedule cleaning routine
- Flow control system
- Regular inspection and maintenance
- Ensure sufficient feedstock
Reverse
- Check valve failure
- Wrong routing
- Poor isolation
- Pump and column damage
- Overpressurized
- Produce impurities
- Drain valve
- Alternative check valve
- Flow control system
- Authorized personnel to perform services
- Regular inspection and maintenance
Pressure
High
- Excessive feed supplies
- Malfunction of condenser
- Valves failure
- Fouling of pipe
- Acceleration of flow
- Pipe rupture
- Property damage
- Vapour cloud explosion
- Injuries and fatalities
- Pressure control system
- Pressure relief valve
- Vent valve
- Pressure alarms
- Vacuum break valve
- Mechanical integrity
- Regular inspection and maintenance
- Ensure good communication between operators
- Provide clear, concise and correct instructions
- Ensure instruments are clearly labelled, easy to
view and designed to be easily understand
Low
- Possible occurrence of
vacuum
- Inadequate feedstream
- Pipeline rupture/blockage
- Process disruption
- Inefficient separation
- Low production
- Financial loss
- Pressure control system
- Pressure relief valve
- Pressure alarm
- Vacuum break valve
- Regular inspection and maintenance
- Provide clear, concise and correct instructions
- Ensure instruments are clearly labelled, easy to
view and designed to be easily understand
Preliminary Equipment Schedule
Equipment Unit Function
Operating
condition/capacity/size
Materials of
construction
Fluidized Bed Reactor,
R-100
1
- To react waste lube oil with hydrogen gas to produce
H2S which will be removed in treatment process
200oC; 27.36L; 4.6 m length, 1.5 m
diameter, 0.005m wall thickness
SS-309
Packed Bed Absorber,
T-100
1 - To remove H2S from H2 using water
25oC, 10000kPa; 88.36L; 1.5m
diameter
Water stream: SS-304
Column: SS-309
Regenerator, FCC-100 1 - To regenerate used catalyst back into riser
710oC, 370kPa; 16370L ; 4.5m height,
7.6m diameter
SS-309
Riser, FCC-100 1 - To crack heavy hydrocarbon to lighter hydrocarbon
540 oC, 340kPa; 16370L ; 36.5m
length, 1m diameter
SS-304
Fractionator, T-101 1
- To separate cracked hydrocarbons into separate
streams such as light ends, gasoline, diesel and bottoms
59-540oC, 330-1000kPa
SS-304
There are total of 5 major equipment:
Sources: Petrowiki (2013)
Preliminary Piping Specifications
Stream Material
Calculated Diameter
(mm)
Industrial inside
diameter, Di (mm)
Industrial outside
diameter, Do (mm)
Nominal Size,
(inch)
Thickness, tp
(mm)
Schedule No. No of Pipes
S1 ASME SA 106 Grade B 184.04 202.74 219.10 8 8.18 Sch 40 2
S2 ASME SA 106 Grade B 211.65 254.56 273.10 10 9.27 Sch 40 2
S3 SS-304 183.77 202.74 219.10 8 8.18 Sch 40 2
S4 SS-304 135.30 154.68 168.90 6 7.11 Sch 40 2
S5 SS-304 192.60 202.74 219.10 8 8.18 Sch 40 2
S6 SS-304 118.63 128.20 141.30 5 6.55 Sch 40 2
S7 Alloy 28 (N080208) 272.68 304.84 323.90 12 9.53 Sch 40 1
S8 Alloy 28 (N080208) 140.08 154.68 168.90 6 7.11 Sch 40 1
S9 Alloy 28 (N080208) 191.98 202.74 219.10 8 8.18 Sch 40 2
S10 Alloy 28 (N080208) 565.58 590.94 610.00 24 9.53 Sch 40 2
S11 Alloy 28 (N080208) 411.08 0.00 Sch 40 2
S12 SS-316 116.69 128.20 141.30 5 6.55 Sch 40 2
S13 SS-316 53.17 62.68 73.00 2.5 5.16 Sch 40 2
S14 SS-316 60.81 62.68 73.00 2.5 5.16 Sch 40 1
S15 Alloy 28 (N080208) 31.56 35.08 42.20 1.25 3.56 Sch 40 2
S16 SS- 183.48 202.74 219.10 8 8.18 Sch 40 1
S17 Alloy 28 (N080208) 143.61 154.68 168.90 6 7.11 Sch 40 1
S18 SS-304 158.95 202.74 219.10 8 8.18 Sch 40 1
S19 ASME SA 106 Grade B 99.44 102.26 114.30 4 6.02 Sch 40 1
S20 Alloy 28 (N080208) 161.58 202.74 219.10 8 8.18 Sch 40 1
S21 ASME SA 106 Grade B 60.00 62.68 73.00 2.5 5.16 Sch 40 1
S22 ASME SA 106 Grade B 60.00 62.68 73.00 2.5 5.16 Sch 40 1
S23 ASME SA 106 Grade B 725.73 730.24 762.00 30 15.88 Sch 30 1
S24 ASME SA 106 Grade B 116.83 128.20 141.30 5 6.55 Sch 40 2
S25 ASME SA 106 Grade B 32.42 40.94 48.30 1.5 3.68 Sch 40 2
S26 ASME SA 106 Grade B 12.42 15.76 21.30 0.5 2.77 Sch 40 1
S27 ASME SA 106 Grade B 109.47 128.20 141.30 5 6.55 Sch 40 2
S28 ASME SA 106 Grade B 29.32 35.08 42.20 1.25 3.56 Sch 40 2
There are total of 28 streams and 44 pipes:
1) The sizing of the piping connected to the major equipment are calculated based on the recommended safety factor of 1.2.
2) The internal pipe diameter ranging from 15 mm to 730 mm.
3) The outer pipe diameter ranging from 21 mm to 762 mm.
4) Materials chosen for the piping are carbon steel, stainless steel and alloy.
Plant Layout
Legend
A Security
B1, B2,
B3
Assembly Point 1, 2, 3
C1, C2 Car Parking Lot 1, 2
D1, D2 Bicycle Parking Lot 1, 2
E Admin Building
F Canteen
G Maintenance and Warehouse
H R&D Building
I Utility Room
J Control Room
K Fire Prevention Station
L Boiler
M Fire Water Tank
N1, N2 By-product Storage Tank 1, 2
O1, O2 Product Storage Tank 1, 2
P Loading Area
Q Hydrogen Storage Tank
R Cooling Water Storage Tank
S Waste Lube Oil Storage Tank
T Plant
U Plant Expansion
V Generator
W Cooling Tower
X Waste Storage
Raw
Materials
Loading
Area
By-
product
Product
Waste
Storage
Plant
Expansion
Equipment
Plant
Waste
Product
12m
Equipment Layout
Legend
A Fluidized Bed Reactor
B, C, D Knock-Out Drum
E Packed Bed Absorber
F Hydrogen Treatment for
Reuse
G Fluid Catalytic Cracking
Colour
Pump
Compressor
Heat Exchanger
Cooler
Heater
Waste
Product
Sources: Group (2011), Xaloc (2011)
Preliminary Environmental Impact
Assessment (EIA)
Biophysical
Pollution
Social
Commissioning
Interrupt ecosystem of flora and
fauna during construction
Emission from plant deteriorate
the quality of air
Residents that reside close to
construction sites are prone to
detrimental health effects
Land Pollution
Conduct vegetation and wildlife
habitat assessment
Venting or flaring at the
allowable limits
Conduct Human Health and
Ecological Risk Assessment
Execute commissioning plan in
accordance with rules and
regulations
Mitigation MeasuresPotential Impacts
Effluent Disposal Plan
Effluent Source
Malaysia DOE
Standard
Management
Vapor Waste
Packed Bed Absorber, T-100
H2S for flaring: 5ppmv
- Flare to convert H2S to SOx.
- Scavenger system is used to
convert sulphide species to a more
inert state.
Aqueous Waste
Knock-Out Drum, V-101, V102,
V-103
- H2S: 5ppmv
- NH3: 50ppmv
Sent to sour water stripper to
remove phenol from the water.
Solid Waste
- Fluid Catalytic Cracking, FCC-
100
- Fluidized Bed Reactor, R-100
- Zeolite: 0.015g/kg
- Ni/Mo: 0.001g/kg
- Spent zeolite is regenerated.
- Ni/MO catalyst is recycled.
Sources: Flora and Fauna (2015), United States Environmental Protection Agency (2015), Prices (2015), MGID (2015), Waycuilis (2000), Li, Zhu and Zhang (2010), Environment (2007),
DOE (2010), Hughes (2011), IPIECA (2010), Varma (2015), Weebly (2015), Bios (2015), K. Caroline (2014)
Sustainable Development
Resource Utilization
- Recovery of unreacted
material
Economics
- By-product value
- Lower raw material cost
Social
- Employment opportunities
- Development of area
Environmental
- Hydrocarbon cracking
process
HYSYS Flowsheet
Fluid Package: Sour Peng-Robinson
Reaction Type: Heterogeneous Catalytic Reaction
Stream Table
Name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Vapour Fraction 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.4026 1.0000 0.0000 0.7607
Temperature [C] 37.78 65.56 38.93 421.20 200.00 200.00 200.00 200.00 200.00 250.00
Pressure [bar] 10.00 13.79 103.40 103.40 103.40 103.40 103.10 103.10 103.10 10.00
Molar Flow [kgmole/h] 369.41 209.20 369.41 209.20 369.41 209.20 571.47 230.08 341.39 341.39
Mass Flow [tonne/d] 1000.00 10.12 1000.00 10.12 1000.00 10.12 1010.12 27.62 982.50 982.50
Liquid Volume Flow [m3/h] 45.05 6.04 45.05 6.04 45.05 6.04 51.00 6.32 44.68 44.68
Heat Flow [MW] -43.80 0.07 -43.64 0.67 -38.98 0.30 -38.33 -2.03 -36.30 -32.54
Name S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
Vapour Fraction 1.0000 0.0390 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.9999 0.0000
Temperature [C] 250.00 26.00 26.00 26.00 407.52 250.00 208.19 25.00 25.17 44.21
Pressure [bar] 10.00 10.00 10.00 10.00 103.10 10.00 103.10 103.40 103.10 103.10
Molar Flow [kgmole/h] 259.68 259.68 10.13 249.55 10.13 81.71 240.21 1850.30 200.65 1889.86
Mass Flow [tonne/d] 112.27 112.27 0.62 111.65 0.62 870.23 28.24 800.00 9.83 818.41
Liquid Volume Flow [m3/h] 5.00 5.00 0.29 4.71 0.29 39.68 6.62 33.40 5.79 34.22
Heat Flow [MW] -16.13 -19.74 0.00 -19.73 0.03 -16.40 -2.00 -147.02 -0.01 -149.02
Name S21 S22 S23 S24 S25 S26 S27 S28
Vapour Fraction 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Temperature [C] 200.00 200.00 51.07 175.18 321.16 408.03 30.00 30.00
Pressure [bar] 10.00 10.00 3.30 3.30 3.40 3.50 3.30 3.38
Molar Flow [kgmole/h] 5.55 5.55 409.78 113.62 5.79 0.70 113.62 5.79
Mass Flow [tonne/d] 2.40 2.40 441.51 314.37 24.78 3.85 314.37 24.78
Liquid Volume Flow [m3/h] 0.10 0.10 34.25 16.30 1.05 0.14 16.30 1.05
Heat Flow [MW] -0.36 -0.36 -7.63 -6.75 -0.46 -0.07 -7.89 -0.63
Name
P-101-
Duty
K-101-
Duty
E-102-
Duty
PFR-101-
Duty
E-103-
Duty
E-104-
Duty
K-102-
Duty
E-105-
Duty
E-106-
Duty
E-101-
Duty
Heat Flow [MW] 0.159 0.605 4.662 -0.356 3.764 3.605 0.032 1.145 0.169 0.377
Name S1 S3 S2 S4 S7 S8 S9 S10 S11 S16 S12 S13 S14 S15 S17 S18 S19 S20 S5 S6 S23 S24 S25 S26 S27 S28 S21 S22
Hydrogen 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Nitrogen 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Oxygen 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Methane 0.000 0.000 0.000 0.000 0.009 0.016 0.004 0.004 0.005 0.000 0.005 0.015 0.005 0.015 0.016 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ethylene 0.000 0.000 1.000 1.000 0.352 0.830 0.029 0.029 0.038 0.001 0.038 0.981 0.000 0.981 0.836 0.000 1.000 0.000 0.000 1.000 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ethane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.171 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.073 0.000 0.000 0.000 0.000 0.000 0.000 0.000
H2S 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Propene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Propane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000
i-Butane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000
i-Butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.085 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1-Butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13-Butadiene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n-Butane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
cis2-Butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000
tr2-Butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000
i-Pentane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1-Pentene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2M-1-butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000
n-Pentane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3M-1-butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2M-2-butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2M-13-C4== 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000
tr2-Pentene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000
cis2-Pentene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cyclopentane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cyclopentene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
22-Mpropane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
33M-1-butene 0.771 0.771 0.000 0.000 0.498 0.150 0.733 0.733 0.950 0.043 0.950 0.003 0.989 0.003 0.143 1.000 0.000 0.997 0.771 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000
Ammonia 0.000 0.000 0.000 0.000 0.004 0.004 0.003 0.003 0.004 0.000 0.004 0.000 0.005 0.000 0.004 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
S_Liq_280 0.013 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
36-40* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
40-50* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50-60* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.064 0.002 0.000 0.000 0.002 0.000 0.000 0.000
60-70* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.027 0.005 0.000 0.000 0.005 0.000 0.000 0.000
70-80* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.028 0.000 0.000 0.028 0.000 0.000 0.000
80-90* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.075 0.000 0.000 0.075 0.000 0.000 0.000
90-100* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.073 0.000 0.000 0.073 0.000 0.000 0.000
100-110* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.079 0.000 0.000 0.079 0.000 0.000 0.000
110-120* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.087 0.000 0.000 0.087 0.000 0.000 0.000
120-130* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.094 0.000 0.000 0.094 0.000 0.000 0.000
130-140* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.000 0.001 0.100 0.000 0.000 0.000
140-150* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.000 0.001 0.103 0.000 0.000 0.000
150-160* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.097 0.001 0.001 0.097 0.001 0.000 0.000
160-170* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.084 0.002 0.002 0.084 0.002 0.000 0.000
170-180* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.008 0.004 0.103 0.008 0.000 0.000
180-190* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.003 0.001 0.013 0.003 0.000 0.000
190-200* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.008 0.001 0.013 0.008 0.000 0.000
200-210* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.031 0.003 0.019 0.031 0.000 0.000
210-220* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.059 0.004 0.014 0.059 0.000 0.000
220-230* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.055 0.003 0.005 0.055 0.000 0.000
230-240* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.066 0.003 0.003 0.066 0.000 0.000
240-250* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.098 0.006 0.002 0.098 0.000 0.000
250-260* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.112 0.010 0.002 0.112 0.000 0.000
260-270* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.087 0.011 0.001 0.087 0.000 0.000
270-280* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.069 0.013 0.000 0.069 0.000 0.000
280-290* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062 0.018 0.000 0.062 0.000 0.000
290-300* 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.084 0.038 0.000 0.084 0.000 0.000
300-310* 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.065 0.045 0.000 0.065 0.000 0.000
310-320* 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.058 0.063 0.000 0.058 0.000 0.000
320-330* 0.002 0.002 0.000 0.000 0.001 0.000 0.002 0.002 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.050 0.085 0.000 0.050 0.000 0.000
330-340* 0.002 0.002 0.000 0.000 0.001 0.000 0.002 0.002 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.041 0.109 0.000 0.041 0.000 0.000
340-350* 0.003 0.003 0.000 0.000 0.002 0.000 0.003 0.003 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.029 0.124 0.000 0.029 0.000 0.000
350-360* 0.003 0.003 0.000 0.000 0.002 0.000 0.003 0.003 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.002 0.016 0.000 0.002 0.000 0.000
360-370* 0.004 0.004 0.000 0.000 0.002 0.000 0.004 0.004 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.002 0.023 0.000 0.002 0.000 0.000
370-380* 0.004 0.004 0.000 0.000 0.003 0.000 0.005 0.005 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.002 0.028 0.000 0.002 0.000 0.000
380-390* 0.005 0.005 0.000 0.000 0.003 0.000 0.006 0.006 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.001 0.025 0.000 0.001 0.000 0.000
390-400* 0.006 0.006 0.000 0.000 0.004 0.000 0.007 0.007 0.000 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.001 0.024 0.000 0.001 0.000 0.000
400-410* 0.007 0.007 0.000 0.000 0.004 0.000 0.007 0.007 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.001 0.024 0.000 0.001 0.000 0.000
410-420* 0.008 0.008 0.000 0.000 0.005 0.000 0.009 0.009 0.000 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.000 0.000
420-430* 0.009 0.009 0.000 0.000 0.006 0.000 0.010 0.010 0.000 0.041 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.026 0.000 0.000 0.000 0.000
430-440* 0.010 0.010 0.000 0.000 0.007 0.000 0.011 0.011 0.000 0.046 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.029 0.000 0.000 0.000 0.000
440-450* 0.011 0.011 0.000 0.000 0.007 0.000 0.012 0.012 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000 0.000
450-460* 0.013 0.013 0.000 0.000 0.009 0.000 0.014 0.014 0.000 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.018 0.000 0.000 0.000 0.000
460-480* 0.029 0.029 0.000 0.000 0.019 0.000 0.032 0.032 0.000 0.132 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.000 0.000 0.000 0.000 0.084 0.000 0.000 0.000 0.000
480-500* 0.025 0.025 0.000 0.000 0.016 0.000 0.027 0.027 0.000 0.112 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.000 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.000
500-520* 0.016 0.016 0.000 0.000 0.011 0.000 0.018 0.018 0.000 0.075 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000
520-540* 0.016 0.016 0.000 0.000 0.010 0.000 0.017 0.017 0.000 0.071 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000
540-560* 0.013 0.013 0.000 0.000 0.008 0.000 0.014 0.014 0.000 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000
560-580* 0.010 0.010 0.000 0.000 0.006 0.000 0.010 0.010 0.000 0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.000 0.000
580-600* 0.006 0.006 0.000 0.000 0.004 0.000 0.007 0.007 0.000 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000
600-650* 0.006 0.006 0.000 0.000 0.004 0.000 0.006 0.006 0.000 0.026 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
650-700* 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mass Balance
Source: HimmeIblau and Riggs (2012), Mapior (2009), Towler and Sinnott (2012), Balabin, Syunyaev and Karpov (2007), Antos and Aitani (2004), Toolbox (2015), ChemTeam (2015),
Dutta (2007), Fahim, Al-Sahhaf and (Elkilan 2009)
Energy BalanceSummary of Mass Balance
Equipment P-
101
K-
101
E-
102
E-
101
V-101 E-103 V-
102
E-
104
V-103 K-
102
Mix-
101
T-100 FCC-
100
E-105 E-106
Stream S3 S4 S5 S6 S9 S10 S16 S12 S14_Sour
Water_1
S15 S17 S20_Sour
Water_2
Reactor
Effluent
S27_Gasoline
Product
S28_Diesel
Product
HYSYS
(kg/s)
11.57 0.12 11.57 0.12 11.37 11.37 10.07 1.30 1.29 0.01 0.33 9.47 9.48 3.63 0.29
Manual
(kg/s)
11.57 0.12 11.57 0.12 11.37 11.37 10.07 1.30 1.29 0.01 0.33 9.47 10.07 3.63 0.29
Error (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.23 0.00 0.00
Reaction Hydrodesulfurization in R-
100
Hydrodenitrogenation
in R-100
HYSYS (%)
Conversion
116.80 105.90
Literature
(%)
Conversion
98.00 95.00
Error (%) 16.10 10.29
Equipment FCC-100, Stream S16
HYSYS (%) Yield 36.08
Literature (%)
Yield
42.33
Error (%) 17.32
Source: Beltramone et al. (2008), Ferdous, Dalai and Adjaye (2003), Ahsan (2015)
Summary of Energy Balance
Equipment P-101 K-101 K-102 E-101 E-102 E-103 E-104 E-105 E-106 T-101
Duty
Stream
P-101-Duty K-101-Duty K-102-Duty E-101-Duty E-102-Duty E-103-Duty E-104-Duty E-105-Duty E-106-Duty Q-
Condenser
Manual
(MJ/h)
571.70 2216.09 115.35 1369.74 14726.07 5650.17 2204.75 4834.60 763.27 20144.73
HYSYS
(MJ/h)
571.68 2179.02 113.47 1357.01 16784.91 13550.27 12978.84 4117.99 608.73 24543.80
% Error 0.00 1.70 1.66 0.94 12.27 58.30 83.01 17.40 25.39 17.92
Equipment MIX-101 R-100
Stream S-17 S-7
Manual (°C) 210.06 201.52
HYSYS (°C) 208.19 200.00
% Error 0.90 0.76
Major Utilities Specifications
 Utilities Used:
 Electricity
 LP Steam
 Cooling Water
Duty Name P-101-
Duty
K-101-
Duty
E-102-
Duty
PFR-101-
Duty
E-103-
Duty
E-104-
Duty
K-102-
Duty
E-105-
Duty
E-106-
Duty
E-101-Duty
Equipment P-101 K-101 E-102 R-100 E-103 E-104 K-102 E-105 E-106 E-101
Heat Flow
(kJ/h)
5.72E+05 2.18E+06 1.68E+07 -1.28E+06 1.36E+07 1.30E+07 1.14E+05 4.12E+06 6.10E+05 1.36E+06
Utility Type Electricity Electricity LP Steam LP Steam LP Steam Cooling
Water
Electricity Cooling
Water
Cooling
Water
Cooling
Water
Mass Flow
(kg/s)
- - 2.12 0.16 1.71 172.40 - 54.76 8.10 18.02
Process Optimisation
Three Optimisation Methods:
 Change the route and equipment for removal of H2S from
waste lube oil
 Process screening for optimum amount of zeolite in FCC
 Use HYSYS Optimser
Before
After
Three Optimisation Methods:
 Change the route and equipment for removal of H2S from
waste lube oil
 Process screening for optimum amount of zeolite in FCC
 Use HYSYS Optimiser -10000
10000
30000
50000
70000
90000
110000
380000
390000
400000
410000
420000
430000
440000
450000
460000
250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420
CatalystCost(RM/day)
Profit(RM/day)
Zeolite loading (kg/day)
Profit vs Zeolite Loading
Net Profit
Catalyst cost
Optimum
point
Three Optimisation Methods:
 Change the route and equipment for removal of H2S from
waste lube oil
 Process screening for optimum amount of zeolite in FCC
 Use HYSYS Optimiser
Category Stream Name Unit Price
Total Amount Price (RM/day)
Difference
(%)Before
Optimization
After
Optimization
Before
Optimization
After
Optimization
Utilities (Cost)
Steam
S-31, S-32, E-102-
Duty, E-103-Duty
RM 70.10/ton
18607.20
ton/day
350.27ton/day 18607.20 24552.64 +31.95
Electricity
K-101-Duty, K-102-
Duty, P-101-Duty
RM 5.904/kW 12805.77 kW/day 795.60 kW/day 12805.77 4697.25 -63.32
Cooling water
PFR-100-Duty,
T-101-Condenser
Duty,
E-104-Duty,
E-105-Duty, E-106
Duty
RM 2.96/ton
88309.88
ton/day
23124.63 ton/day 88309.88 68448.91 -22.49
Raw Materials (Cost)
Waste lube oil
S-1_Waste Lube Oil
RM 0.055/kg
1000000.00
kg/day
1000000.00
kg/day
54992.46 54992.46 0.00
Hydrogen
S-2_Hydrogen Gas
RM 5.95/kg 24320.00 kg/day 10121.89 kg/day 144704.00 60225.26 -58.38
Process water
S-11_H2O-1, S-
19_H2O-2 RM 2.96/kg 6000.00 ton/day 800.00 ton/day 17760.00 2368.00 -86.67
Catalyst
Catalyst (Zeolite) in
FCC-100 RM 255.50/kg 270.00 kg/day 400.00 kg/day 68987.70 102204.00 +48.15
Catalyst
Catalyst (Ni/Mo) in
R-100 RM 10.63/kg 18.60 kg/day 18.60 kg/day 197.57 197.57 0.00
Product (Profit)
Gasoline S-37 RM 1935/m3 348.64 m3/day 396.40 m3/day 674632.10 766963.02 +13.69
Diesel S-38 RM 1845/m3 54.70 m3/day 25.41 m3/day 100929.21 46872.99 -53.56
Total Profit (Gasoline) 268267.47 449276.92 +67.47
Total Profit (Gasoline and Diesel) 369196.68 496149.91 +34.39
+67.47 %
Energy Integration
Pinch
Temperature
Minimum
Hot Utility
T* (°C) ΔT* (°C) ΣCPH-ΣCPC ΔH (MW)
Surplus/
Deficit
Infeasible
Heat
Cascade
(MW)
Feasible
Heat
Cascade
(MW)
41 6.20 0 0.0000 3.8402
31 6.1 0 1 00.1 0 0.001 7 0 0.1 7 06 Surplus 0.1 7 06 4.01 08
255.00 61 .1 0 0.00228 0.1 396 Surplus 0.31 02 4.1 504
245.00 1 0.00 -0.07 300 -0.7 300 Deficit -0.41 98 3.4204
205.00 40.00 -0.057 1 8 -2.287 0 Deficit -2.7 068 1 .1 334
1 95.00 1 0.00 -0.01 1 62 -0.1 1 62 Deficit -2.8230 1 .01 7 3
1 7 0.20 24.80 -0.01 332 -0.3303 Deficit -3.1 533 0.6869
43.93 1 26.27 -0.00544 -0.6869 Deficit -3.8402 0.0000
25.00 1 8.93 0.02428 0.4596 Surplus -3.3806 0.4596
1 5.00 1 0.00 0.01 582 0.1 582 Surplus -3.2224 0.61 7 8
CP=0.02972MW/°C
CP=0.01582MW/°C
CP=0.07528MW/°C
CP=0.007879MW/°C
CP=0.0005807MW/°C
CP=0.001704MW/°C
Minimum
Cold Utility
Energy integration Before After Savings (%)
Hot utility (MW) 8.551 3.840 55.09
Cold utility (MW) 5.329 0.618 88.41
SUMMARY
•4 Heat Exchangers
• 3 Coolers
• 2 Heaters
Objective : Minimise Utility Usage
Targeting Tool : Problem Table Algorithm (PTA)
∆Tmin :10°C
Process & Instrumentation Diagram (P&ID)
FCC-100
P-101A
R-100
S-3
S-1
H2OS-18S-19
H2 – Further Treatment
for Reuse
S-20Sour Water
T-101
S-16
Light Ends
Gasoline
Diesel
Bottoms
E-102A
TT-101A
S-21
S-22S-26
S-25
S-23
P-101B
E-102B
Condenser
M
M
FSV-1
FSV-2
MIA
moisture
ASC
PT
FT
ASV
PICA
SDV
SDV
1
PZA HH
LL
SIS
S-4
S-2
M
M
FSV-3
FSV-4
MIA
moisture
ASC
PT
FT
ASV
PICA
SDV
SDV
PZA HH
LL
SIS
K-101A
K-101B
H
L
H
L
PCV
PRV Set@
113.8 bar
Set@
103.1 bar
BDV SIS
SIS
TZA HH
TE
TT
TICA
L
H
QA
TZA HH
LL
TZA HH
LL
PDIA
TT
SIS
TE
FT
PT
TZAHH
LL
PZA HH
LL
MH
PG
TEMPC
PG
V-101
SDV
SIS
SDV
SIS
SDV
SIS
PICA H
L
PCV
PRV Set@
113.8 bar
Set@
103.1 bar
BDV SIS
PT
HH
LL
PZA
LG LT
LICA H
L
LCV
V
D
HH
LL
LZA
SDV
9
SIS
TZA HH
LL
V-102
PICA H
L
PCVSet@
10 bar
PT
HH
LL
PZA
LG LT
LICA H
L
LCV
V
D
HH
LL
LZA
SDV
SIS
SDV SIS
SDV SIS
E-104A
E-104B
TT
TICA H
L
TZA HH
LL
V-103
5
PICA H
L
PCVSet@
10 bar
PT
HH
LL
PZA
LG LT
LICA H
L
LCV
V
D
HH
LL
LZA
SDV SIS
SDV
SIS
SDV
SIS
Waste Lube Oil
Hydrogen
M
M
FSV-5
FSV-6
MIA
moisture
ASC
FT
ASV
K-102A
K-102B
PT
PICA H
L
PT
PT
PT
T-100
PICA H
L
PCV
PRV
Set@
113.8 bar
Set@
103.1 bar
BDVSIS
PT
SDVSIS QA
LT
H
L
LCV
V
D
HH
LL
LZA
HH
LL
PZA
SDVSIS
PG
PG
TE
TE
SDV SIS FCV
FICA
Regenerator
PDT
LT
TT
MPC
PG
PG
PZA HH
LL
PZA HH
LL
PG
TE TE
TE
TE
PG
LG
V
D
HH
LL
LZA
PDIA
TZA HH
LL
TZA HH
LL
TT
TICA
L
H
PT
PICA H
L
PCV
PRV
Set@
113.8 bar
Set@
103.1 bar
BDVSIS
SDVSIS
PICA H
L
PCV
PT
Condenser
Tank
LT
LICA H
L
LCV
TT
H
L
TICA
MH
MH MH
MH
LICA
LG
L
E-105A
E-105B
TT
TICAH
L
TZA HH
LL
TT-102A
E-106A
E-106B
TT
TICAH
L
TZA HH
LL
S-28
PG
PG
S-5
S-6
S-7
S-8
S-9
S-11
S-12
S-16
S-13
S-17
Sour Water
TT H
L
TICA
TCV
TT H
L
TICA
PZA HH
LL
PZA HH
LL
PZA HH
LL
PG
PG
PG
TE
TE
TE
TZA HH
LL
TZA HH
LL
TZA HH
LL
SDV SIS
SDV
SIS
S-27
SDV
S-24
FCV
H
L
FICA
FT
FCV
H
L
FICA
FT
1
1
11
1
1
1 3
3
TCV
1
1
1
1
5
2
2
2
2
2
4 2
1
2
1
1
1
2 2
4
FCV
1
3
6
FCV
2
1 2
1
34
2 3
25
3
1
7
6
3
2
2
2
1 1
1
1
1
5 10
2 2
2
2
2
5
7
4
3
11
3
4
TCV
4
6
12
3 3
3
3
3
13
6
8
4
3
946
10
3
3
14
S-14
4 4
4
4
4
4
5
4 3
7
1
3
118
6
4
4
217
18
5 5
5
2
8
7
5
6
7
5
6
12
1
10
7
5
5
89
8
7
9
8
139
8
LCV
5
LCV
6
19
7 5
TCV
7
10
9
9
10
10
11
11
10
11
12 11
12
8 6
8
TCV
10
FCV
H
L
FICA
FT
6
5
7
10
8
23
8
7
6
4
3
2
6
5
4
11
9
TCV
11
22
14
13
12
9
7
TCV
9
21
12
SIS
SDV
20
SIS
MH
MH
MH
MH
MH
Flaring
Flaring
Flaring
Flaring
Flaring
Flaring
Flaring
Flaring
Flaring
Flaring
Flaring
PICAH
L
PCV
PRVSet@
113.8 bar
Set@
103.1 bar
BDVSIS
5
3
3
Flaring
Flaring
Flaring
S-15
SDV SIS
8
E-103A
E-103B
TT
TICA H
L
TCV
3
2
3
Flaring
Flaring
Flaring
FT
5
H
L
S-10
TCV
2
7
15
16
TCV
5
6
4
4
TCV
6
TT-101B
PG
15
TT-102B
PG
13
HotHot
Hot
Hot
Hot
Hot
Hot
Hot
Hot
Hot
Hot
Hot
Hot
Hot
Hot
Cold
Cold
Cold
Cold
Cold
Cold
Cold
Cold
Cold
Cold
Cold
Cold
Cold
Cold
Cold
Cold
E-109B
Hot
E-109A
E-108B
E-108A
E-110A
E-110B
E-107A
E-107B
11
PICAH
L
PCV Set@
3.3 bar
PT
14
9
Flaring
V
LG
6
D
LG
4
V
D
LG
7
V
D
LG
8
V
D
LG
9
V
D
Fractionator
Distillation Column Fluidized Catalytic
Cracking Unit
✓ One control valves per process line
✓ Placement of valves follow API RP 553
✓ Design of control instrumentation based on API RP 14C and API RP 554
✓ Degree of Freedom = 33
Control Philosophy
T-101
Light Ends
Gasoline
Diesel
Bottoms
S-21
S-22S-26
S-25
S-23 Condenser
Condenser
Tank
LT
LICA H
L
LCV
TT
H
L
TICA
TT H
L
TICA
TCV
TT H
L
TICA
PZA HH
LL
PZA HH
LL
PZA HH
LL
PG
PG
PG
TE
TE
TE
TZA HH
LL
TZA HH
LL
TZA HH
LL
SDV SIS
FCV
H
L
FICA
FT
FCV
H
L
FICA
FT
7 5
TCV
7
10
9
9
10
10
11
11
10
11
12 11
12
8 6
8
TCV
10
FCV
H
L
FICA
FT
6
5
7
10
8
23
8
7
6
4
3
2
6
5
4
SDV
20
SIS
MH
MH
MH
Hot
11
PICAH
L
PCV Set@
3.3 bar
PT
14
9
Flaring
Fractionation
Distillation Column
 Pressure Control: Maintain vessel
pressure by controlling amount of excess
gas to flaring
 Level Control: Maintain liquid level in
condenser tank by controlling reflux rate
 Flowrate Control: Control the flowrate
of each product stream
 Temperature Control: Control the
amount of top and bottom steam to
maintain vessel temperature
 Emergency Safeguard: Temperature
and Pressure Trips and Shutdown Valve
Fluidized Catalytic Cracking
FCC-100
S-16
SDV SIS
Regenerator
PDT
LT
TT
MPC
PG
PG
PZA HH
LL
PZA HH
LL
PG
TE TE
TE
TE
PG
LG
V
D
HH
LL
LZA
PDIA
TZA HH
LL
TZA HH
LL
TT
TICA
L
H
PT
PICA H
L
PCV
PRV
Set@
113.8 bar
BDVSIS
SDVSIS
PICA H
L
PCV
PT
18
5 5
5
2
8
7
5
6
7
5
6
12
1
10
7
5
5
89
8
7
9
8
139
8
LCV
5
LCV
6
19
MH
MH
Flaring
Flaring
Flaring
TCV
5
6
4
TCV
6
QA
2
 Pressure Control: Maintain reactor
pressure by controlling amount of gas
to flaring
 Model Predictive Control:
Optimize the system and
simultaneously control the
temperature and liquid level
 Composition Analyzer: Monitor the
composition of product using Gas
Chromatography
 Pressure Relief Valve: Startup /
Pressure control fails
 Emergency Safeguard: Level,
Pressure and Temperature Trips,
Blowdown Valve and Shutdown Valve
Control Logic Diagram for FCC unit
FCC-100 Temperature high
TCV
5
Valve closeMore steam enters
FCC-100 Temperature low
TCV
5
Valve openLess steam enters
A
A
OR
FCC-100 Pressure high
PCV
7 Valve closeLess gas to flaring
FCC-100 Pressure low
PCV
7 Valve openMore gas to flaring
A
A
OR
FCC-100 Liquid level high
LCV
5 Valve open
More liquid leaves
FCC to Regenerator
A
A
OR
LCV
6 Valve closeLess liquid enters FCC
from Regenerator
FCC-100 Liquid level low
LCV
5
Valve open
Less liquid leaves
FCC to Regenerator
LCV
6
Valve closeMore liquid enters
FCC from Regenerator
OR
FCC cyclone on auto
FCC cyclone on
A
OR
Operate FCC
L
Green
Light
Initiate Unit
Shutdown for FCCL
OR
PZA HH
LL8
Pressure Trip activated
TZA HH
LL7
Temperature Trip activated
LZA HH
LL5
Level Trip activated
Pressure too high or too low
Temperature too high or too low
Level too high or too low
FCC cyclone off
FCC cyclone overload
SDV
18
Initiate Shutdown Valve
for FCC inlet
SDV
19
Initiate Shutdown Valve
for FCC outlet
BDV
5
Initiate Blowdown Valve
Prevent product outlet to next operation
Excess trapped gas will be sent to flaring
Prevent product inlet to FCC
Red
Light
A
Supervisory Control and Data Acquisition (SCADA)
Area 1
Raw Materials
Area 2
Hydrogenating
Area 3
Separating
Area 4
Absorbing
Area 5
Cracking
Plant
Areas
Area 6
Process Utilities
Area 7
Product Storage
P
I
D
P
I
D
P
I
D
P
I
D
P
I
D
P
I
D
P
I
D
Remote
I/O
Main
PLC-1
Main
PLC-2
Backup
PLC-1
Backup
PLC-2
Operator
Terminal
Supervisor
Terminal
Supervisory
Computer
Computer
Terminal
Host
Computer
Spare
PLC-1
Industrial
Terminal
LDT
Terminal
Engineering
Terminal
System Control RoomCentral Control Room Plant
Sources: Aronson (2013), Dreamstime (2015), Gibson (2008), Goh (2015), Liptak (2005), VividCortex (2015)
Plant Pre-Startup, Commissioning and Startup
Preparation and Planning
Mechanical Completion and
Integrity Checking
Pre-Commissioning and
Operational Testing
Startup and Initial Operation
Performance and Acceptance
Testing
Post Commissioning
Plant Shutdown
Sources: AcornStairlift (2015), Allcheck (2015), Boultton (2013), Coelho (2007), Kleiman (2011), “Wave Control” (2015)
Economic Analysis
Assumptions
1 USD= RM 4.25 Linear
Depreciation
Construction
Period: 2 Years
25 Years of
Project Life
No Additives Added in the Gasoline
Produced. Thus, 10% Margin of Actual
Petrol Price (RON 95) is taken.
Source: Peters and Timmerhaus (1991), McMahon (2015)
Method Used
Percentage of
Purchased Eqpt. Cost
Literature Review;
CEPCI
Gasoline Price and
Utilities Cost are
based in Malaysia
Total Capital Cost
Direct Cost
Extra Cost
Indirect Cost
Parameters RM (Million)
Land 123.77
Purchased Equipment 47.12
Process Instrumentation and Control 3.30
Purchased Equipment Installation 11.78
Piping (include installation) 21.21
Electrical Equipment and Materials 4.71
Buildings (including services) 18.85
Yard Improvement 4.71
Service facilities 28.27
Indirect Cost
Parameters RM (Million)
Engineering and Supervision 14.14
Construction expenses 16.02
Extra Cost
Parameters RM (Million)
Legal expenses 2.94
Contractor’s fee 5.27
Contingency 29.39
Direct Cost + +
Fixed Capital Cost
RM 351.38 Million
Ratio Factor of Fluid Plant Total Capital Cost
RM 413.94 Million
+
Working Capital
RM 41.39 Million
Cumulative Capital Cost
RM 455.34 Million
Inclusive 6% GST
Total Production Cost
Manufacturing Cost General Expenses
Parameters RM (Million)
Raw Material 61.63
Operating Labor 1.83
Utilities 34.87
Direct Supervisory 0.18
Maintenance & Repairs 7.03
Operating Supplies 1.05
Laboratory charges 0.18
Patents and Royalties 2.28
Catalyst and solvents 22.83
Insurance 3.51
Parameters RM (Million)
Administrative 0.27
Distribution & marketing 3.04
Research & Development 6.32
Financing 12.42
Contingency 2.28
+
Cumulative
Production Cost
RM 159.75 Million
Break-even Graph
104 ktonne/year of Gasoline Produced by Anavah
Linear Approximation
Cumulative Cash Flow Diagram
USD 333.57 Million = RM 1,417.66 Million
Parameters Base
Total Annual Revenue, RM (Million) 253.10
Gross profit, RM (Million) 93.35
Corporate tax rate (%) 24
Salvage, RM (Million) 41.39
Total depreciable cost, RM (Million) 413.94
Average depreciation, RM (Million) 16.56
Turnover ratio 0.72
Annual net profit, RM (Million) 58.36
Net cash flow, RM (Million) 74.92
Return on Investment, % 14.10
Acceptable Rate of Return, % 8
Payback/payout period (years) 6.08
Reference Payback period 0.74
Venture profit, RM (Million) 21.94
Discounted factor, DF 0.15
Asset/book value, RM (Million) 41.39
Present Worth Factor 10.67
Present worth, RM (Million) 829.92
Net Present Worth, RM (Million) 374.58
Internal rate of return 29%
Cumulative cash position, RM (Million) 1,417.66
Economic AnalysisScenario Analysis
Manipulated
Variables
Corporate Tax
Base
24%
Best
7%
Base
30%
Gasoline Price After 10% Margin
Base
RM 1.94/liter
Best
RM 2.07/liter
Base
RM 1.62/liter
10 Years of
Historical Petrol Price
Summary of Base, Best & Worst
Parameters Base Best Worst
Total Annual Revenue, RM (Million) 253.10 270.76 211.90
Gross profit, RM (Million) 93.35 111.01 52.15
Corporate tax rate (%) 24 7 30
Salvage, RM (Million) 41.39 41.39 41.39
Total depreciable cost, RM (Million) 413.94 413.94 413.94
Average depreciation, RM (Million) 16.56 16.56 16.56
Turnover ratio 0.72 0.77 0.60
Annual net profit, RM (Million) 58.36 87.65 24.91
Net cash flow, RM (Million) 74.92 104.21 41.47
Return on Investment, % 14.10 21.17 6.02
Acceptable Rate of Return, % 8 8 8
Payback/payout period (years) 6.08 4.37 10.98
Reference Payback period 0.74 0.74 0.74
Venture profit, RM (Million) 21.94 51.22 (11.51)
Discounted factor, DF 0.15 0.15 0.15
Asset/book value, RM (Million) 41.39 41.39 41.39
Present Worth Factor 10.67 10.67 10.67
Present worth, RM (Million) 829.92 1,142.56 472.86
Net Present Worth, RM (Million) 374.58 687.22 17.52
Internal rate of return 29% 34% 24%
Cumulative cash position, RM (Million) 1,417.66 2,149.86 581.44
By Selling
Gasoline Only
Base Case
Best Case
Worst Case
Annual
Net
Profit RM 58.36 Million
RM 87.65 Million
RM 24.91 Million
+ 50 %
- 57 %
Base, Best & Worst Case
Payback
Period
6 Years
4 Years
11 Years
Cumulative
Cash RM 1,417.66 Million
RM 2,149.86 Million
RM 581.44 Million
+ 52 %
- 59 %
Worst Case Scenario
Parameters Worst
(Gasoline Only)
Total Annual Revenue, RM (Million) 211.90
Gross profit, RM (Million) 52.15
Corporate tax rate (%) 30
Salvage, RM (Million) 41.39
Total depreciable cost, RM (Million) 413.94
Average depreciation, RM (Million) 16.56
Turnover ratio 0.60
Annual net profit, RM (Million) 24.91
Net cash flow, RM (Million) 41.47
Return on Investment, % 6.02
Acceptable Rate of Return, % 8
Payback/payout period (years) 10.98
Reference Payback period 0.74
Venture profit, RM (Million) (11.51)
Discounted factor, DF 0.15
Asset/book value, RM (Million) 41.39
Present Worth Factor 10.67
Present worth, RM (Million) 472.86
Net Present Worth, RM (Million) 17.52
Internal rate of return 24%
Cumulative cash position, RM (Million) 581.44
Worst
(Gasoline & All By-products)
238.71
78.97
30
41.39
413.94
16.56
0.68
43.69
60.24
10.55
8
7.56
0.74
7.26
0.15
41.39
10.67
673.25
217.91
27%
1,050.76
Venture profit, RM (Million) (11.51) 7.26
Payback/payout period (years) 10.98 7.56
Cumulative cash position, RM (Million) 581.44 1050.76
Source: Crystal Graphics (2015), Cohen (2013)
Conclusion
Hydroprocessing & Fluid Catalytic Cracking
Mass and Energy Balance
✓
✓
HAZOP, SCADA and Logic Control ✓
95% Purity of Gasoline
RM 58 Million of Annual Net Profit;
6 Years of Payback Period
✓
✓
Source: Crystal Graphics (2015), Cohen (2013)
References
AcornStairlift. 2015. "Stair Lift Installation: Important Points to Consider." Accessed 2nd October 2015: http://www.acornstairliftsguide.com/installation-repair-
service/stair-lift-installation-important-points-to-consider.html.
Adenan, Haji. 2005. Environmental Quality Act 1974. Accessed September 30, 2015.
http://www.env.go.jp/en/recycle/asian_net/Country_Information/Law_N_Regulation/Malaysia/Malaysia%20EQA%20Scheduled%20Waste%202005.pdf.
Ahsan, M. 2015. "Prediction of Gasoline Yield in a Fluid Catalytic Cracking (Fcc) Riser Using K-Epsilon Turbulence and 4-Lump Kinetic Models: A Computational Fluid
Dynamics (Cfd) Approach." Journal of King Saud University - Engineering Sciences 27 (2): 130-136.
Allcheck. 2015. "Building Maintenance Inspection." Accessed 2nd October 2015: http://www.allcheck.com.au/building-maintenance-inspections/.
Antos, G.J., and A.M. Aitani. 2004. Catalytic Naphtha Reforming, Revised and Expanded: CRC Press.
Aronson, Emily. 2013. "Princeton Cuts Energy Use, Costs through Projects Big and Small." Princeton University. Accessed 2nd October 2015:
http://www.princeton.edu/main/news/archive/S36/31/04A54/index.xml?section=featured.
Balabin, Roman M., Rustem Z. Syunyaev, and Sergey A. Karpov. 2007. "Molar Enthalpy of Vaporization of Ethanol–Gasoline Mixtures and Their Colloid State." Fuel 86 (3):
323-327. doi: http://dx.doi.org/10.1016/j.fuel.2006.08.008.Bios, Ki. 2015. Employment Opportunities. Accessed October 1,
http://www.kibois.org/home_employment.html.
Beltramone, A.R., S. Crossley, D.E. Resasco, W.E. Alvarez, and T.V. Choudhary. 2008. "Inhibition of the Hydrogenation and Hydrodesulfurization Reactions by Nitrogen
Compounds over Nimo/Al2o3." Catal Lett 123: 181-185.
Boultton, Scott. 2013. "10 Easy (No/Low Cost) New Years Resolutions for Managers." Accessed 2nd October 2015: https://scottboulton.wordpress.com/2013/0/.
ChemTeam. 2015. Molar Heat of Vaporization. Accessed September 9, http://www.chemteam.info/Thermochem/Molar-Heat-Vaporization.html.Coelho, Everado. 2007.
"Crystal Project Shutdown." Accessed 2nd October 2015: https://commons.wikimedia.org/wiki/File:Crystal_Project_Shutdown.png.
Cohen, D. 2013. Green Thumb? Facebook Uses Green Like Button When Users Were Invited to Like Pages By Friends. Adweek. Accessed October 2015,
http://www.adweek.com/socialtimes/green-like-button/429561
Crystal Graphics. 2015. Dislike Icon Images, Pictures & Photos. Crystal Graphics Inc. Accessed October 2015,
http://www.crystalgraphics.com/powerpictures/images.photos.asp?ss=dislike+icon
Department of Labour. n.d. Occupational Safety & Health Administration. Accessed September 30, 2015.
https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9749.DOE. 2010. Environmental Requirements: A Guide for
Investors. (11) Accessed 24 August 2015, http://www.doe.gov.my/eia/wp-content/uploads/2012/03/A-Guide-For-Investors1.pdf.
Dreamstime. 2015. "Printer." Accessed 2nd October 2015: http://www.dreamstime.com/illustration/printer.html.
Dutta, B.K. 2007. Principles of Mass Transfer and Separation Processes. 1st ed. India: Prentice-Hall of India Private Limited.Environment, Minister of. 2007. Draft Guidelines
for an Environmental Impact Assessment: Petroleum Refinery (Project Eider Rock). Province of New Brunswick.
EIA. 2014. Malaysia. Accessed September 29, 2015. http://www.eia.gov/beta/international/analysis.cfm?iso=MYS.
Fahim, M.A., T.A. Al-Sahhaf, and A. Elkilan. 2009. Fundamentals of Petroleum Refining: Elsevier.
Ferdous, D., A.K. Dalai, and J. Adjaye. 2003. "Comparison of Hydrodenitrogenation of Model Basic and Nonbasic Nitrogen Species in a Trickle Bed Reactor Using
Commercial Nimo/Al2o3 Catalyst." Energy & Fuels 17: 164-171.
Flora and Fauna. 2015. A Doe, a Deer. Accessed October 1, http://www.fanpop.com/clubs/flora-and-fauna/images/18591410/title/doe-deer-wallpaper.
Gibson, David. 2008. "Making Signal Systems Work for Cyclists." Accessed 2nd October 2015: https://www.fhwa.dot.gov/publications/publicroads/08may/02.cfm.
Goh, Melissa. 2015. "Sleek Usb Hub Comes with Multiple Ports for Single-Port New Macbook." Accessed 2nd October 2015: http://designtaxi.com/news/375495/Sleek-USB-
Hub-Comes-With-Multiple-Ports-For-Single-Port-New-MacBook/.
Group, KLM Technology. 2011. "Layout and Spacing (Project Standards and Specifications)." 54. Accessed 17:
http://webcache.googleusercontent.com/search?q=cache:vyT4JhYDTyEJ:kolmetz.com/pdf/ess/PROJECT_STANDARDS_AND_SPECIFICATIONS_layout_and_
spacing_Rev1.0.pdf+&cd=1&hl=en&ct=clnk.
HimmeIblau, D.M., and J.B. Riggs. 2012. Basic Principles and Calculations in Chemical Engineering. 8th ed. United State: Pearson Education, Inc.Hughes, Baker. 2011.
Hydrogen Sulfide Management: Mitigation Options in Petroleum Refining, Storage and Transportation. Accessed 22 August 2015,
http://assets.cmp.bh.mxmcloud.com/system/423d7d28b39df28c79a3819b9039d5fa_28859-sulfix-h2s-white-paper-print-0311.pdf.
IndexMundi. n.d. Malaysia Motor Gasoline Consumption Annual Growth Rate. Accessed September 30, 2015.
Q & A

More Related Content

What's hot

Boiler Operation and Maintenance Experiences
Boiler Operation and Maintenance ExperiencesBoiler Operation and Maintenance Experiences
Boiler Operation and Maintenance Experiences
National Productivity Council, Hyderabad, India
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
Gerard B. Hawkins
 
Bachir Bella - Emerson Climate Technologies - REFRIGERANTI A BASSO GWP IN APP...
Bachir Bella - Emerson Climate Technologies - REFRIGERANTI A BASSO GWP IN APP...Bachir Bella - Emerson Climate Technologies - REFRIGERANTI A BASSO GWP IN APP...
Bachir Bella - Emerson Climate Technologies - REFRIGERANTI A BASSO GWP IN APP...
Centro Studi Galileo
 
Ai Ch E Overpressure Protection Training
Ai Ch E Overpressure Protection TrainingAi Ch E Overpressure Protection Training
Ai Ch E Overpressure Protection Training
ernestvictor
 
Naphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolNaphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with Methanol
Gerard B. Hawkins
 
Shaft Couplings for Special Purpose Rotary Machines
Shaft Couplings for Special Purpose Rotary MachinesShaft Couplings for Special Purpose Rotary Machines
Shaft Couplings for Special Purpose Rotary Machines
Gerard B. Hawkins
 
TPI - Example Report.
TPI - Example Report.TPI - Example Report.
TPI - Example Report.
Ryan Gillespie
 
JPE.doc
JPE.docJPE.doc
JPE.doc
joseph rajan
 
VULCAN Series A2ST Advanced Alumina Support Technology
VULCAN Series A2ST Advanced Alumina Support TechnologyVULCAN Series A2ST Advanced Alumina Support Technology
VULCAN Series A2ST Advanced Alumina Support Technology
Gerard B. Hawkins
 
Catalytic Reforming: Catalyst, Process Technology and Operations Overview
Catalytic Reforming:  Catalyst, Process Technology and Operations OverviewCatalytic Reforming:  Catalyst, Process Technology and Operations Overview
Catalytic Reforming: Catalyst, Process Technology and Operations Overview
Gerard B. Hawkins
 
CV Dian Risdiana
CV Dian RisdianaCV Dian Risdiana
CV Dian Risdiana
dian risdiana
 
SPD12 Pipeline Dynamic Simulation
SPD12 Pipeline Dynamic SimulationSPD12 Pipeline Dynamic Simulation
SPD12 Pipeline Dynamic Simulation
Saleh Lari Mojarrad
 
SMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case StudySMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case Study
Gerard B. Hawkins
 
BP_Waterline Hydrostatic
BP_Waterline HydrostaticBP_Waterline Hydrostatic
BP_Waterline Hydrostatic
Scott Nunn
 
A practical approach to pharmaceutical HVAC energy reduction
A practical approach to pharmaceutical HVAC energy reductionA practical approach to pharmaceutical HVAC energy reduction
A practical approach to pharmaceutical HVAC energy reduction
EECO2
 
Troubleshooting in Distillation Columns
Troubleshooting in Distillation ColumnsTroubleshooting in Distillation Columns
Troubleshooting in Distillation Columns
Gerard B. Hawkins
 
API 622, API 624 and API 641 for Fugitive Emissions
API 622, API 624 and API 641 for Fugitive EmissionsAPI 622, API 624 and API 641 for Fugitive Emissions
API 622, API 624 and API 641 for Fugitive Emissions
PGE India - PILOT Gaskets
 
Mind map the_9_key_elements_video_05_pre-commissioning
Mind map the_9_key_elements_video_05_pre-commissioningMind map the_9_key_elements_video_05_pre-commissioning
Mind map the_9_key_elements_video_05_pre-commissioning
sakol kai
 
Cast White Metal Bearings
Cast White Metal BearingsCast White Metal Bearings
Cast White Metal Bearings
Gerard B. Hawkins
 
Principles & Practices to Manage Cl lon Stabilizer
Principles & Practices to Manage Cl lon StabilizerPrinciples & Practices to Manage Cl lon Stabilizer
Principles & Practices to Manage Cl lon Stabilizer
Gerard B. Hawkins
 

What's hot (20)

Boiler Operation and Maintenance Experiences
Boiler Operation and Maintenance ExperiencesBoiler Operation and Maintenance Experiences
Boiler Operation and Maintenance Experiences
 
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND  PRELIMINARY ENGINEER...
PRACTICAL GUIDE TO DEVELOPING PROCESS FLOW DIAGRAMS AND PRELIMINARY ENGINEER...
 
Bachir Bella - Emerson Climate Technologies - REFRIGERANTI A BASSO GWP IN APP...
Bachir Bella - Emerson Climate Technologies - REFRIGERANTI A BASSO GWP IN APP...Bachir Bella - Emerson Climate Technologies - REFRIGERANTI A BASSO GWP IN APP...
Bachir Bella - Emerson Climate Technologies - REFRIGERANTI A BASSO GWP IN APP...
 
Ai Ch E Overpressure Protection Training
Ai Ch E Overpressure Protection TrainingAi Ch E Overpressure Protection Training
Ai Ch E Overpressure Protection Training
 
Naphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with MethanolNaphtha Steam Reforming Catalyst Reduction with Methanol
Naphtha Steam Reforming Catalyst Reduction with Methanol
 
Shaft Couplings for Special Purpose Rotary Machines
Shaft Couplings for Special Purpose Rotary MachinesShaft Couplings for Special Purpose Rotary Machines
Shaft Couplings for Special Purpose Rotary Machines
 
TPI - Example Report.
TPI - Example Report.TPI - Example Report.
TPI - Example Report.
 
JPE.doc
JPE.docJPE.doc
JPE.doc
 
VULCAN Series A2ST Advanced Alumina Support Technology
VULCAN Series A2ST Advanced Alumina Support TechnologyVULCAN Series A2ST Advanced Alumina Support Technology
VULCAN Series A2ST Advanced Alumina Support Technology
 
Catalytic Reforming: Catalyst, Process Technology and Operations Overview
Catalytic Reforming:  Catalyst, Process Technology and Operations OverviewCatalytic Reforming:  Catalyst, Process Technology and Operations Overview
Catalytic Reforming: Catalyst, Process Technology and Operations Overview
 
CV Dian Risdiana
CV Dian RisdianaCV Dian Risdiana
CV Dian Risdiana
 
SPD12 Pipeline Dynamic Simulation
SPD12 Pipeline Dynamic SimulationSPD12 Pipeline Dynamic Simulation
SPD12 Pipeline Dynamic Simulation
 
SMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case StudySMR PRE-REFORMER DESIGN: Case Study
SMR PRE-REFORMER DESIGN: Case Study
 
BP_Waterline Hydrostatic
BP_Waterline HydrostaticBP_Waterline Hydrostatic
BP_Waterline Hydrostatic
 
A practical approach to pharmaceutical HVAC energy reduction
A practical approach to pharmaceutical HVAC energy reductionA practical approach to pharmaceutical HVAC energy reduction
A practical approach to pharmaceutical HVAC energy reduction
 
Troubleshooting in Distillation Columns
Troubleshooting in Distillation ColumnsTroubleshooting in Distillation Columns
Troubleshooting in Distillation Columns
 
API 622, API 624 and API 641 for Fugitive Emissions
API 622, API 624 and API 641 for Fugitive EmissionsAPI 622, API 624 and API 641 for Fugitive Emissions
API 622, API 624 and API 641 for Fugitive Emissions
 
Mind map the_9_key_elements_video_05_pre-commissioning
Mind map the_9_key_elements_video_05_pre-commissioningMind map the_9_key_elements_video_05_pre-commissioning
Mind map the_9_key_elements_video_05_pre-commissioning
 
Cast White Metal Bearings
Cast White Metal BearingsCast White Metal Bearings
Cast White Metal Bearings
 
Principles & Practices to Manage Cl lon Stabilizer
Principles & Practices to Manage Cl lon StabilizerPrinciples & Practices to Manage Cl lon Stabilizer
Principles & Practices to Manage Cl lon Stabilizer
 

Similar to Anavah corporation Group 6 2015 Design Project Presentation

New Microsoft PowerPoint Presentation
New Microsoft PowerPoint PresentationNew Microsoft PowerPoint Presentation
New Microsoft PowerPoint Presentation
ebbin daniel
 
Brent Goliath NCPC-SA
Brent Goliath NCPC-SABrent Goliath NCPC-SA
Brent Goliath NCPC-SA
7391456
 
Optimization of H2 Production in a Hydrogen Generation Unit
Optimization of H2 Production in a Hydrogen Generation UnitOptimization of H2 Production in a Hydrogen Generation Unit
Optimization of H2 Production in a Hydrogen Generation Unit
Márcio Garcia
 
Product
ProductProduct
Product
CASAIRCO
 
POX O2 Spargers- Report Summary2 Next STEP
POX O2 Spargers- Report Summary2 Next STEPPOX O2 Spargers- Report Summary2 Next STEP
POX O2 Spargers- Report Summary2 Next STEP
Chris Galeotti
 
P&ID and PFD Training for chemical eng.pdf
P&ID and PFD Training for chemical eng.pdfP&ID and PFD Training for chemical eng.pdf
P&ID and PFD Training for chemical eng.pdf
RiswandaHimawan3
 
Alco general presentation
Alco general presentationAlco general presentation
Alco general presentation
AlexandraPopa46
 
CatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentationCatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentation
Thomas Holcombe
 
Vibrations analysis Infrared Ultrasonic Integrations marine industry-rev - Co...
Vibrations analysis Infrared Ultrasonic Integrations marine industry-rev - Co...Vibrations analysis Infrared Ultrasonic Integrations marine industry-rev - Co...
Vibrations analysis Infrared Ultrasonic Integrations marine industry-rev - Co...
BharathwajanTS
 
Boiler Controls and Instrumentation
Boiler Controls and InstrumentationBoiler Controls and Instrumentation
Boiler Controls and Instrumentation
Dell Technologies
 
Butterfly Valve Technique Catalogue
Butterfly Valve Technique CatalogueButterfly Valve Technique Catalogue
Butterfly Valve Technique Catalogue
Zhao Shannon
 
ProcessInstrumentationandControlSystem.ppt
ProcessInstrumentationandControlSystem.pptProcessInstrumentationandControlSystem.ppt
ProcessInstrumentationandControlSystem.ppt
Agam Wira Sani
 
design_fyp_slide.ppt
design_fyp_slide.pptdesign_fyp_slide.ppt
design_fyp_slide.ppt
Ahmad Firdaus
 
Reavell 20 100 hp water cooled reciprocating compressor
Reavell 20 100 hp water cooled reciprocating compressorReavell 20 100 hp water cooled reciprocating compressor
Reavell 20 100 hp water cooled reciprocating compressor
Mazen Rabah
 
KEMET Webinar - C4AQ/C4AF power box film capacitors
KEMET Webinar -  C4AQ/C4AF power box film capacitorsKEMET Webinar -  C4AQ/C4AF power box film capacitors
KEMET Webinar - C4AQ/C4AF power box film capacitors
Ivana Ivanovska
 
Lean Six Sigma Project.pptx
Lean Six Sigma Project.pptxLean Six Sigma Project.pptx
Lean Six Sigma Project.pptx
SatyendraYadav199402
 
ABB CEMS Datasheet ABB cems solution and products information
ABB CEMS Datasheet ABB cems solution and products informationABB CEMS Datasheet ABB cems solution and products information
ABB CEMS Datasheet ABB cems solution and products information
ENVIMART
 
Catalytic Reforming Technology - Infographics
Catalytic Reforming Technology - InfographicsCatalytic Reforming Technology - Infographics
Catalytic Reforming Technology - Infographics
Gerard B. Hawkins
 
Training presentation
Training presentation Training presentation
Training presentation
Keyur Patel
 
FYP presentation
FYP presentationFYP presentation
FYP presentation
Osama Ahmed
 

Similar to Anavah corporation Group 6 2015 Design Project Presentation (20)

New Microsoft PowerPoint Presentation
New Microsoft PowerPoint PresentationNew Microsoft PowerPoint Presentation
New Microsoft PowerPoint Presentation
 
Brent Goliath NCPC-SA
Brent Goliath NCPC-SABrent Goliath NCPC-SA
Brent Goliath NCPC-SA
 
Optimization of H2 Production in a Hydrogen Generation Unit
Optimization of H2 Production in a Hydrogen Generation UnitOptimization of H2 Production in a Hydrogen Generation Unit
Optimization of H2 Production in a Hydrogen Generation Unit
 
Product
ProductProduct
Product
 
POX O2 Spargers- Report Summary2 Next STEP
POX O2 Spargers- Report Summary2 Next STEPPOX O2 Spargers- Report Summary2 Next STEP
POX O2 Spargers- Report Summary2 Next STEP
 
P&ID and PFD Training for chemical eng.pdf
P&ID and PFD Training for chemical eng.pdfP&ID and PFD Training for chemical eng.pdf
P&ID and PFD Training for chemical eng.pdf
 
Alco general presentation
Alco general presentationAlco general presentation
Alco general presentation
 
CatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentationCatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentation
 
Vibrations analysis Infrared Ultrasonic Integrations marine industry-rev - Co...
Vibrations analysis Infrared Ultrasonic Integrations marine industry-rev - Co...Vibrations analysis Infrared Ultrasonic Integrations marine industry-rev - Co...
Vibrations analysis Infrared Ultrasonic Integrations marine industry-rev - Co...
 
Boiler Controls and Instrumentation
Boiler Controls and InstrumentationBoiler Controls and Instrumentation
Boiler Controls and Instrumentation
 
Butterfly Valve Technique Catalogue
Butterfly Valve Technique CatalogueButterfly Valve Technique Catalogue
Butterfly Valve Technique Catalogue
 
ProcessInstrumentationandControlSystem.ppt
ProcessInstrumentationandControlSystem.pptProcessInstrumentationandControlSystem.ppt
ProcessInstrumentationandControlSystem.ppt
 
design_fyp_slide.ppt
design_fyp_slide.pptdesign_fyp_slide.ppt
design_fyp_slide.ppt
 
Reavell 20 100 hp water cooled reciprocating compressor
Reavell 20 100 hp water cooled reciprocating compressorReavell 20 100 hp water cooled reciprocating compressor
Reavell 20 100 hp water cooled reciprocating compressor
 
KEMET Webinar - C4AQ/C4AF power box film capacitors
KEMET Webinar -  C4AQ/C4AF power box film capacitorsKEMET Webinar -  C4AQ/C4AF power box film capacitors
KEMET Webinar - C4AQ/C4AF power box film capacitors
 
Lean Six Sigma Project.pptx
Lean Six Sigma Project.pptxLean Six Sigma Project.pptx
Lean Six Sigma Project.pptx
 
ABB CEMS Datasheet ABB cems solution and products information
ABB CEMS Datasheet ABB cems solution and products informationABB CEMS Datasheet ABB cems solution and products information
ABB CEMS Datasheet ABB cems solution and products information
 
Catalytic Reforming Technology - Infographics
Catalytic Reforming Technology - InfographicsCatalytic Reforming Technology - Infographics
Catalytic Reforming Technology - Infographics
 
Training presentation
Training presentation Training presentation
Training presentation
 
FYP presentation
FYP presentationFYP presentation
FYP presentation
 

Anavah corporation Group 6 2015 Design Project Presentation

  • 1. Conversion of Waste Lube Oil to Gasoline Dr. John Lau Sie Yon Academic Advisor Tan Et Kuan Industrial Advisor Member (Group 6 Year 2015) Yong Wan Wei Director 16311109 Alan Wong Chiew Wee Chief Environmental Officer 16530807 Colin Wong Lik Long Chief Financial Officer 16530849 Aaron Lim Chee Ren Chief Executive Officer 15410908 Chan Wai Mun Chief Safety Officer 16012114 Anavah Oil Corperation Chemical Engineering Department
  • 2. Presentation Outline Part 1 Project Background (Chief Executive Officer) • Objective • Market Survey • Process Selection • Storage and Transport Requirements • Site Selection • Project Schedule Part 2 Technical Aspect (Director and Chief Environmental Officer) • PFD and Stream Table • Materials and Energy Balance • Major Utilities Specifications • Process Optimization and Energy Integration • Preliminary Equipment Schedule • Preliminary Piping Specifications • Equipment and Plant Layout • Preliminary Environment Impact Assessment Part 3 Process Control & Economic Analysis (Chief Safety Officer and Chief Financial Officer) • Economic Assumptions and Methods • Cost Summary • Economic Analysis • P&ID and Process Control Philosophy • Plant Commissioning, Startup and Shutdown
  • 3. Objectives Process 1 kilotonne waste lube oil into gasoline 95% purity High sustainability Low operational risk Low environmental impact Constraints Maximize gasoline yield HYSYS Equipment HYSYS simulation conversion Introduction
  • 4. Market Survey  Target Market: Malaysia  40% of Malaysia energy consumption comes from liquid fuel 1  Average annual growth of gasoline: 6.7% 2 Source: EIA (2014); IndexMundi (n.d.) 0.37 MBD
  • 5. Process Selection Source: PETDER (2012); SENER (n.d); Paulik (2011); Özmen (2015) Re-refining • Acid/clay Treatment • Solvent Extraction • Hydroprocessing Cracking • Hydrocracking • Fluid Catalytic Cracking Fractionation • Product quality dependent of feed • ↑ solvent cost • Recoverable solvent • ↑ asphalt production • ↑ product yield and quality • H2 gas recyclable • ↑ operating condition • H2S removal • ↓ product yield • ↑ clay disposal cost • ↑ operating condition • Acid sludge disposal problem Acid/clay Treatment Solvent Extraction ✔ Hydroprocessing Technical  Economic  Safety &  Sustainability Environment  Waste Lube Oil P-101A K-101A Hydrogen Gas S-3 S-4 S-5 S-1 S-2 H2O S-18 S-19 H2 – Further Treatment for Reuse S-20 Sour Water S-9 S-16 Light Ends Gasoline Diesel Bottoms LCO Steam BottomsSteam E-106A E-105A E-102A E-104A TT-101A TT-102A S-27 S-28 1000 kPa 37.78 °C 1379 kPa 65.56 °C 10340 kPa 38.93 °C 10340 kPa 421.2 °C 10340 kPa 200 °C 10310 kPa 200 °C 330 kPa 30 °C 338 kPa 30 °C MIX-101 K-102A S-13 S-15 S-21 S-22S-26 S-25 S-24 S-23 kPa °C 10340 kPa 25 °C 10310 kPa 25.17 °C 10310 kPa 44.21 °C 10310 kPa 407.52 °C 1000 kPa 250 °C 1000 kPa 200 °C 1000 kPa 200 °C 330 kPa 51.05 °C 330 kPa 175.18°C 340 kPa 321.15 °C kPa °C P-101B K-101B E-102B E-104B S-6 E-101A 10340 kPa 200 °C E-101B V-101 S-7 10310 kPa 200 °C E-103A E-103B S-10 1000 kPa 250 °C V-102 S-11 1000 kPa 250 °C V-103 S-12 1000 kPa 26 °C K-102B S-8 10310 kPa 200 °C S-17 10310 kPa 208.19 °C T-100 FCC-100 R-100 Regenerator T-101 E-105B E-106B TT-101B TT-102B Sour WaterS-14 1000 kPa 26 °C Process Flow Diagram Hydrogenation Fractionation Catalytic Cracking • ↑ gasoline yield • ↑ cost due to catalyst price but can be regenerated • Catalyst generable making it cost effective • Stripper used to remove coke and impurities • ↓ gasoline yield • ↑ cost due to hydrogen price • ↑ operating condition • Produces coke and sulphur Hydrocracking ✔ Fluid Catalytic Cracking
  • 6. Material Storage • API Standard 614Waste Lube Oil • API Standard 620Hydrogen • API Standard 650Gasoline • Avoid dense population and environmentally sensitive route Waste Lube Oil • Transport medium to include safety valve Hydrogen • Transport through pipeline to comply Petroleum Regulations 1985 Gasoline Material Transportation Source: Adenan (2005); Department of Labour (n.d.); OFA (2010)
  • 7. Site Selection Sipitang Oil and Gas Industrial Park Gebeng Industrial Park Pengerang Integrated Petroleum Complex Pengerang Integrated Petroleum Complex • Close to Singapore & Malacca Straits • 109.28 acres Site Characteristic • Income tax exemption on statutory income for 15 years in Tax Incentive • Deepwater port Facilities & Infrastructure • On-site 1300MW power plant • Dedicated sulphur handling facilities Utilities • Numerous vocational institute and universities Labour Market • Relatively unpopulated leading to minimal relocation Socio Impact
  • 8. Project Schedule Tasks Aug Sept Oct No v Wk 1 Wk 2 W k 3 W k 4 W k 5 W k 6 W k 7 Wk 8 W k 9 W k 10 Wk 11 Wk 12 Overview research to gather required information Task distribution Company formation (logo, name) Project background, constraints, objective, market survey, evaluation of alternative process, construct block flow diagram Justification on process selection, site selection and raw material selection Product storage requirement, transportation requirements and memo 1 Memo 1 compiling and submission Construct process flow diagram, specification of major utilities and process optimisation Equipment schedule, detail, sizing, specification on piping and construct plot plan Environmental impact assessment, process safety, hazards review and memo 2 Memo 2 compiling and submission Estimation on capital, operating cost and plant process control philosophy Key issues identification, equipment list for major, minor design study and memo 3 Memo 3 compiling and submission Design Project Presentation Volume 1 compiling and submission Memo 2 compiling and submission Volume 2 compiling and submission Final report Design project presentation
  • 9. Waste Lube Oil P-101A K-101A Hydrogen Gas S-3 S-4 S-5 S-1 S-2 H2O S-18 S-19 H2 – Further Treatment for Reuse S-20 Sour Water S-9 S-16 Light Ends Gasoline Diesel Bottoms LCO Steam BottomsSteam E-106A E-105A E-102A E-104A TT-101A TT-102A S-27 S-28 1000 kPa 37.78 °C 1379 kPa 65.56 °C 10340 kPa 38.93 °C 10340 kPa 421.2 °C 10340 kPa 200 °C 10310 kPa 200 °C 330 kPa 30 °C 338 kPa 30 °C MIX-101 K-102A S-13 S-15 S-21 S-22S-26 S-25 S-24 S-23 kPa °C 10340 kPa 25 °C 10310 kPa 25.17 °C 10310 kPa 44.21 °C 10310 kPa 407.52 °C 1000 kPa 250 °C 1000 kPa 200 °C 1000 kPa 200 °C 330 kPa 51.05 °C 330 kPa 175.18°C 340 kPa 321.15 °C kPa °C P-101B K-101B E-102B E-104B S-6 E-101A 10340 kPa 200 °C E-101B V-101 S-7 10310 kPa 200 °C E-103A E-103B S-10 1000 kPa 250 °C V-102 S-11 1000 kPa 250 °C V-103 S-12 1000 kPa 26 °C K-102B S-8 10310 kPa 200 °C S-17 10310 kPa 208.19 °C T-100 FCC-100 R-100 Regenerator T-101 E-105B E-106B TT-101B TT-102B Sour WaterS-14 1000 kPa 26 °C Node 1: Knock-Out Drum, V-101, V-102, V-103 Node 3: Packed Bed Absorber, T-100 and Fractionator, T-101 Node 2: Fluidized Bed Reactor, R-100 Initial Process Hazard and Safety Review Preliminary HAZOP Analysis - This plant is divided into 3 nodes.Node 1 Node Parameter Guideword Possible Causes Consequences Safeguard Action required Knock- Out Drum Temperature High - Poor insulation - Heat tracing - Thermal radiation (Sun) - Overpressurized - Low mechanical strength - Loss of containment (vaporization) - Temperature control system - Thermal relief valve - Mechanical integrity - Temperature alarm system - Regular inspection and maintenance - Tanks coated with reflective paint - Personal protective equipment - Strict adherence to working procedure Level High - Flooding - Carryover - Spillage of gas - Overpressurized - Drain valve - Level indicator and alarm - Alternative pipeline - Ensure instruments are clearly labelled, easy to view and designed to be easily understand - Personal protective equipment Low - Leakage - Valve/controller failure - Process disruption - Financial loss - Level indicator - Level alarm - Provide clear and correct instructions - Regular inspection and maintenance Pressure High - Blockage - Faulty of valves - Thermal expansion - Tank rupture - Explosion - Injuries and fatalities - Pressure control system - Pressure relief valve - Vent valve - Pressure alarms - Vacuum break valve - Regular inspection and maintenance - Monitor the indicators frequently Corrosion - - Presence of impurities - Lack of cleaning - Deposition - Porosity - Anode installation - Pre-coating - Ensure pipe integrity - Strict adherence to maintenance schedule Node 2 Node Parameter Guideword Possible Causes Consequences Safeguard Action required Fluidized Bed Reactor Temperature High - Faulty of heaters - Presence of impurities - Tube fouling - Defect of control system - Property damage and explosion - Side reaction - Degradation of catalyst - Low purity of product - Temperature control system - Thermal relief valve - Mechanical integrity - Temperature alarm system - Regular inspection and maintenance - Tanks coated with reflective paint - Personal protective equipment - Strict adherence to working procedure Low - Heat loss; vaporization - Tube fouling - Low conversion and production - Wax build up - Temperature control system - Temperature alarm system - Regular inspection and maintenance - Monitor the indicators frequently Flow High - Reduced back pressure - Controller failure - Valve failures - Pressure deviation - Flooding in the reactor - Spillage - Loss of containment - Financial loss - Hand-operated valve - Alternative pipeline - Shutdown valve - Flow control system - Regular inspection and maintenance - Ensure instruments are clearly labelled, easy to view and designed to be easily understand Low - Pipe leakage - Partial blockage - Sediment; cavitation - Loss of containment - Process disruption - Pipe leak detector - Schedule cleaning routine - Flow control system - Regular inspection and maintenance - Ensure instruments are clearly labelled, easy to view and designed to be easily understand No - Closed/stuck valve - Human error - No production - Financial loss - Schedule cleaning routine - Flow control system - Regular inspection and maintenance - Ensure sufficient feedstock Reverse - Check valve failure - Wrong routing - Poor isolation - Overpressurized - Produce impurities - Process disruption - Drain valve - Alternative check valve - Flow control system - Authorized personnel to perform services - Ensure instruments are clearly labelled, easy to view and designed to be easily understand Pressure High - Excessive feed supplies - Blockage of pipeline at outlet stream - Valves failure - Pipe rupture - Property damage and explosion - Degradation of catalyst - Side reaction - Pressure control system (pressure gauge/transmitter) - Pressure safety valve - Vent or vacuum break valve - Shutdown valve - Pressure alarm system - Firefighting system in case of emergency - Well insulated reactor to reduce external heat effects - Trip valve to terminate operation at high pressure - Regular inspection and maintenance Low - Leakage of pipe or vessel - Faulty of pressure control system - Malfunction of pumps - Ineffective conversion and production - Vapour lock - Low purity of product - Install backup pumps - Pressure control and alarm system - Vacuum break valve - Monitor the indicators frequently - Regular inspection and maintenance - Ensure instruments are clearly labelled, easy to view and designed to be easily understand Node 3 Node Parameter Guideword Possible Causes Consequences Safeguard Action required Packed Bed Absorber/ Fractionator Temperature High - Malfunction of reboiler and condenser - Faulty of temperature control system - Thermal radiation - Flare - High consumption of energy - Product impurities - Inefficient separation - Property damage and explosion - Injuries and fatalities - Loss of containment - Integrated control system - Thermal relief valve - Mechanical integrity - Personal protective equipment - Thorough working procedure - Review the procedure, control system and operating condition - Regular inspection and maintenance - Promote good communication within workers - Provide clear and concise instruction Low - Malfunction of reboiler and condenser - Leakage of pipe or equipment - Heat loss - Poor insulation - Low energy efficiency - Low purity of product - Inefficient separation - Underpressurized - Wax build up - Integrated control system - Thermal alarm system - Mechanical integrity - Personal protective equipment - Monitor the indicators frequently - Ensure instruments are clearly labelled, easy to view and designed to be easily understand - Strict adherence to rules and regulations Flow High - Reduced back pressure - Controller failure - Valve failures - Pressure deviation - Low purity of desired product - Flooding - Spillage - Column damage - Hand-operated valve - Alternative pipeline - Shutdown valve - Flow control system - Regular inspection and maintenance - Ensure instruments are clearly labelled, easy to view and designed to be easily understand Low - Pipe leakage - Partial blockage - Sediment; cavitation - Faulty of pump - Low production - Financial loss - Process disruption - Pipe leak detector - Schedule cleaning routine - Flow control system - Backup pump - Regular inspection and maintenance - Ensure instruments are clearly labelled, easy to view and designed to be easily understand No - Closed/stuck valve - Pipe leakage/blockage - No production - Financial loss - Schedule cleaning routine - Flow control system - Regular inspection and maintenance - Ensure sufficient feedstock Reverse - Check valve failure - Wrong routing - Poor isolation - Pump and column damage - Overpressurized - Produce impurities - Drain valve - Alternative check valve - Flow control system - Authorized personnel to perform services - Regular inspection and maintenance Pressure High - Excessive feed supplies - Malfunction of condenser - Valves failure - Fouling of pipe - Acceleration of flow - Pipe rupture - Property damage - Vapour cloud explosion - Injuries and fatalities - Pressure control system - Pressure relief valve - Vent valve - Pressure alarms - Vacuum break valve - Mechanical integrity - Regular inspection and maintenance - Ensure good communication between operators - Provide clear, concise and correct instructions - Ensure instruments are clearly labelled, easy to view and designed to be easily understand Low - Possible occurrence of vacuum - Inadequate feedstream - Pipeline rupture/blockage - Process disruption - Inefficient separation - Low production - Financial loss - Pressure control system - Pressure relief valve - Pressure alarm - Vacuum break valve - Regular inspection and maintenance - Provide clear, concise and correct instructions - Ensure instruments are clearly labelled, easy to view and designed to be easily understand
  • 10. Preliminary Equipment Schedule Equipment Unit Function Operating condition/capacity/size Materials of construction Fluidized Bed Reactor, R-100 1 - To react waste lube oil with hydrogen gas to produce H2S which will be removed in treatment process 200oC; 27.36L; 4.6 m length, 1.5 m diameter, 0.005m wall thickness SS-309 Packed Bed Absorber, T-100 1 - To remove H2S from H2 using water 25oC, 10000kPa; 88.36L; 1.5m diameter Water stream: SS-304 Column: SS-309 Regenerator, FCC-100 1 - To regenerate used catalyst back into riser 710oC, 370kPa; 16370L ; 4.5m height, 7.6m diameter SS-309 Riser, FCC-100 1 - To crack heavy hydrocarbon to lighter hydrocarbon 540 oC, 340kPa; 16370L ; 36.5m length, 1m diameter SS-304 Fractionator, T-101 1 - To separate cracked hydrocarbons into separate streams such as light ends, gasoline, diesel and bottoms 59-540oC, 330-1000kPa SS-304 There are total of 5 major equipment: Sources: Petrowiki (2013) Preliminary Piping Specifications Stream Material Calculated Diameter (mm) Industrial inside diameter, Di (mm) Industrial outside diameter, Do (mm) Nominal Size, (inch) Thickness, tp (mm) Schedule No. No of Pipes S1 ASME SA 106 Grade B 184.04 202.74 219.10 8 8.18 Sch 40 2 S2 ASME SA 106 Grade B 211.65 254.56 273.10 10 9.27 Sch 40 2 S3 SS-304 183.77 202.74 219.10 8 8.18 Sch 40 2 S4 SS-304 135.30 154.68 168.90 6 7.11 Sch 40 2 S5 SS-304 192.60 202.74 219.10 8 8.18 Sch 40 2 S6 SS-304 118.63 128.20 141.30 5 6.55 Sch 40 2 S7 Alloy 28 (N080208) 272.68 304.84 323.90 12 9.53 Sch 40 1 S8 Alloy 28 (N080208) 140.08 154.68 168.90 6 7.11 Sch 40 1 S9 Alloy 28 (N080208) 191.98 202.74 219.10 8 8.18 Sch 40 2 S10 Alloy 28 (N080208) 565.58 590.94 610.00 24 9.53 Sch 40 2 S11 Alloy 28 (N080208) 411.08 0.00 Sch 40 2 S12 SS-316 116.69 128.20 141.30 5 6.55 Sch 40 2 S13 SS-316 53.17 62.68 73.00 2.5 5.16 Sch 40 2 S14 SS-316 60.81 62.68 73.00 2.5 5.16 Sch 40 1 S15 Alloy 28 (N080208) 31.56 35.08 42.20 1.25 3.56 Sch 40 2 S16 SS- 183.48 202.74 219.10 8 8.18 Sch 40 1 S17 Alloy 28 (N080208) 143.61 154.68 168.90 6 7.11 Sch 40 1 S18 SS-304 158.95 202.74 219.10 8 8.18 Sch 40 1 S19 ASME SA 106 Grade B 99.44 102.26 114.30 4 6.02 Sch 40 1 S20 Alloy 28 (N080208) 161.58 202.74 219.10 8 8.18 Sch 40 1 S21 ASME SA 106 Grade B 60.00 62.68 73.00 2.5 5.16 Sch 40 1 S22 ASME SA 106 Grade B 60.00 62.68 73.00 2.5 5.16 Sch 40 1 S23 ASME SA 106 Grade B 725.73 730.24 762.00 30 15.88 Sch 30 1 S24 ASME SA 106 Grade B 116.83 128.20 141.30 5 6.55 Sch 40 2 S25 ASME SA 106 Grade B 32.42 40.94 48.30 1.5 3.68 Sch 40 2 S26 ASME SA 106 Grade B 12.42 15.76 21.30 0.5 2.77 Sch 40 1 S27 ASME SA 106 Grade B 109.47 128.20 141.30 5 6.55 Sch 40 2 S28 ASME SA 106 Grade B 29.32 35.08 42.20 1.25 3.56 Sch 40 2 There are total of 28 streams and 44 pipes: 1) The sizing of the piping connected to the major equipment are calculated based on the recommended safety factor of 1.2. 2) The internal pipe diameter ranging from 15 mm to 730 mm. 3) The outer pipe diameter ranging from 21 mm to 762 mm. 4) Materials chosen for the piping are carbon steel, stainless steel and alloy.
  • 11. Plant Layout Legend A Security B1, B2, B3 Assembly Point 1, 2, 3 C1, C2 Car Parking Lot 1, 2 D1, D2 Bicycle Parking Lot 1, 2 E Admin Building F Canteen G Maintenance and Warehouse H R&D Building I Utility Room J Control Room K Fire Prevention Station L Boiler M Fire Water Tank N1, N2 By-product Storage Tank 1, 2 O1, O2 Product Storage Tank 1, 2 P Loading Area Q Hydrogen Storage Tank R Cooling Water Storage Tank S Waste Lube Oil Storage Tank T Plant U Plant Expansion V Generator W Cooling Tower X Waste Storage Raw Materials Loading Area By- product Product Waste Storage Plant Expansion Equipment Plant Waste Product 12m Equipment Layout Legend A Fluidized Bed Reactor B, C, D Knock-Out Drum E Packed Bed Absorber F Hydrogen Treatment for Reuse G Fluid Catalytic Cracking Colour Pump Compressor Heat Exchanger Cooler Heater Waste Product Sources: Group (2011), Xaloc (2011)
  • 12. Preliminary Environmental Impact Assessment (EIA) Biophysical Pollution Social Commissioning Interrupt ecosystem of flora and fauna during construction Emission from plant deteriorate the quality of air Residents that reside close to construction sites are prone to detrimental health effects Land Pollution Conduct vegetation and wildlife habitat assessment Venting or flaring at the allowable limits Conduct Human Health and Ecological Risk Assessment Execute commissioning plan in accordance with rules and regulations Mitigation MeasuresPotential Impacts Effluent Disposal Plan Effluent Source Malaysia DOE Standard Management Vapor Waste Packed Bed Absorber, T-100 H2S for flaring: 5ppmv - Flare to convert H2S to SOx. - Scavenger system is used to convert sulphide species to a more inert state. Aqueous Waste Knock-Out Drum, V-101, V102, V-103 - H2S: 5ppmv - NH3: 50ppmv Sent to sour water stripper to remove phenol from the water. Solid Waste - Fluid Catalytic Cracking, FCC- 100 - Fluidized Bed Reactor, R-100 - Zeolite: 0.015g/kg - Ni/Mo: 0.001g/kg - Spent zeolite is regenerated. - Ni/MO catalyst is recycled. Sources: Flora and Fauna (2015), United States Environmental Protection Agency (2015), Prices (2015), MGID (2015), Waycuilis (2000), Li, Zhu and Zhang (2010), Environment (2007), DOE (2010), Hughes (2011), IPIECA (2010), Varma (2015), Weebly (2015), Bios (2015), K. Caroline (2014) Sustainable Development Resource Utilization - Recovery of unreacted material Economics - By-product value - Lower raw material cost Social - Employment opportunities - Development of area Environmental - Hydrocarbon cracking process
  • 13. HYSYS Flowsheet Fluid Package: Sour Peng-Robinson Reaction Type: Heterogeneous Catalytic Reaction Stream Table Name S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Vapour Fraction 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.4026 1.0000 0.0000 0.7607 Temperature [C] 37.78 65.56 38.93 421.20 200.00 200.00 200.00 200.00 200.00 250.00 Pressure [bar] 10.00 13.79 103.40 103.40 103.40 103.40 103.10 103.10 103.10 10.00 Molar Flow [kgmole/h] 369.41 209.20 369.41 209.20 369.41 209.20 571.47 230.08 341.39 341.39 Mass Flow [tonne/d] 1000.00 10.12 1000.00 10.12 1000.00 10.12 1010.12 27.62 982.50 982.50 Liquid Volume Flow [m3/h] 45.05 6.04 45.05 6.04 45.05 6.04 51.00 6.32 44.68 44.68 Heat Flow [MW] -43.80 0.07 -43.64 0.67 -38.98 0.30 -38.33 -2.03 -36.30 -32.54 Name S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 Vapour Fraction 1.0000 0.0390 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 0.9999 0.0000 Temperature [C] 250.00 26.00 26.00 26.00 407.52 250.00 208.19 25.00 25.17 44.21 Pressure [bar] 10.00 10.00 10.00 10.00 103.10 10.00 103.10 103.40 103.10 103.10 Molar Flow [kgmole/h] 259.68 259.68 10.13 249.55 10.13 81.71 240.21 1850.30 200.65 1889.86 Mass Flow [tonne/d] 112.27 112.27 0.62 111.65 0.62 870.23 28.24 800.00 9.83 818.41 Liquid Volume Flow [m3/h] 5.00 5.00 0.29 4.71 0.29 39.68 6.62 33.40 5.79 34.22 Heat Flow [MW] -16.13 -19.74 0.00 -19.73 0.03 -16.40 -2.00 -147.02 -0.01 -149.02 Name S21 S22 S23 S24 S25 S26 S27 S28 Vapour Fraction 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Temperature [C] 200.00 200.00 51.07 175.18 321.16 408.03 30.00 30.00 Pressure [bar] 10.00 10.00 3.30 3.30 3.40 3.50 3.30 3.38 Molar Flow [kgmole/h] 5.55 5.55 409.78 113.62 5.79 0.70 113.62 5.79 Mass Flow [tonne/d] 2.40 2.40 441.51 314.37 24.78 3.85 314.37 24.78 Liquid Volume Flow [m3/h] 0.10 0.10 34.25 16.30 1.05 0.14 16.30 1.05 Heat Flow [MW] -0.36 -0.36 -7.63 -6.75 -0.46 -0.07 -7.89 -0.63 Name P-101- Duty K-101- Duty E-102- Duty PFR-101- Duty E-103- Duty E-104- Duty K-102- Duty E-105- Duty E-106- Duty E-101- Duty Heat Flow [MW] 0.159 0.605 4.662 -0.356 3.764 3.605 0.032 1.145 0.169 0.377 Name S1 S3 S2 S4 S7 S8 S9 S10 S11 S16 S12 S13 S14 S15 S17 S18 S19 S20 S5 S6 S23 S24 S25 S26 S27 S28 S21 S22 Hydrogen 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Nitrogen 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CO 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Oxygen 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Methane 0.000 0.000 0.000 0.000 0.009 0.016 0.004 0.004 0.005 0.000 0.005 0.015 0.005 0.015 0.016 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ethylene 0.000 0.000 1.000 1.000 0.352 0.830 0.029 0.029 0.038 0.001 0.038 0.981 0.000 0.981 0.836 0.000 1.000 0.000 0.000 1.000 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Ethane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.171 0.000 0.000 0.000 0.000 0.000 0.000 0.000 CO2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.073 0.000 0.000 0.000 0.000 0.000 0.000 0.000 H2S 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.063 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Propene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.126 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Propane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 i-Butane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.000 i-Butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.085 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1-Butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13-Butadiene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Butane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 cis2-Butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 tr2-Butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 i-Pentane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1-Pentene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2M-1-butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 n-Pentane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 H2O 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3M-1-butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2M-2-butene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2M-13-C4== 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 tr2-Pentene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 cis2-Pentene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cyclopentane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cyclopentene 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 22-Mpropane 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 33M-1-butene 0.771 0.771 0.000 0.000 0.498 0.150 0.733 0.733 0.950 0.043 0.950 0.003 0.989 0.003 0.143 1.000 0.000 0.997 0.771 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 Ammonia 0.000 0.000 0.000 0.000 0.004 0.004 0.003 0.003 0.004 0.000 0.004 0.000 0.005 0.000 0.004 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 S_Liq_280 0.013 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 36-40* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 40-50* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 50-60* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.064 0.002 0.000 0.000 0.002 0.000 0.000 0.000 60-70* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.027 0.005 0.000 0.000 0.005 0.000 0.000 0.000 70-80* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.028 0.000 0.000 0.028 0.000 0.000 0.000 80-90* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.075 0.000 0.000 0.075 0.000 0.000 0.000 90-100* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.073 0.000 0.000 0.073 0.000 0.000 0.000 100-110* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.079 0.000 0.000 0.079 0.000 0.000 0.000 110-120* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.087 0.000 0.000 0.087 0.000 0.000 0.000 120-130* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.094 0.000 0.000 0.094 0.000 0.000 0.000 130-140* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 0.000 0.001 0.100 0.000 0.000 0.000 140-150* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.000 0.001 0.103 0.000 0.000 0.000 150-160* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.097 0.001 0.001 0.097 0.001 0.000 0.000 160-170* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.084 0.002 0.002 0.084 0.002 0.000 0.000 170-180* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.008 0.004 0.103 0.008 0.000 0.000 180-190* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.003 0.001 0.013 0.003 0.000 0.000 190-200* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.008 0.001 0.013 0.008 0.000 0.000 200-210* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.031 0.003 0.019 0.031 0.000 0.000 210-220* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.014 0.059 0.004 0.014 0.059 0.000 0.000 220-230* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.055 0.003 0.005 0.055 0.000 0.000 230-240* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.066 0.003 0.003 0.066 0.000 0.000 240-250* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.098 0.006 0.002 0.098 0.000 0.000 250-260* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.112 0.010 0.002 0.112 0.000 0.000 260-270* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.087 0.011 0.001 0.087 0.000 0.000 270-280* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.069 0.013 0.000 0.069 0.000 0.000 280-290* 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.062 0.018 0.000 0.062 0.000 0.000 290-300* 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.084 0.038 0.000 0.084 0.000 0.000 300-310* 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.065 0.045 0.000 0.065 0.000 0.000 310-320* 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.058 0.063 0.000 0.058 0.000 0.000 320-330* 0.002 0.002 0.000 0.000 0.001 0.000 0.002 0.002 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.050 0.085 0.000 0.050 0.000 0.000 330-340* 0.002 0.002 0.000 0.000 0.001 0.000 0.002 0.002 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.041 0.109 0.000 0.041 0.000 0.000 340-350* 0.003 0.003 0.000 0.000 0.002 0.000 0.003 0.003 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.029 0.124 0.000 0.029 0.000 0.000 350-360* 0.003 0.003 0.000 0.000 0.002 0.000 0.003 0.003 0.000 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.002 0.016 0.000 0.002 0.000 0.000 360-370* 0.004 0.004 0.000 0.000 0.002 0.000 0.004 0.004 0.000 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.002 0.023 0.000 0.002 0.000 0.000 370-380* 0.004 0.004 0.000 0.000 0.003 0.000 0.005 0.005 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.002 0.028 0.000 0.002 0.000 0.000 380-390* 0.005 0.005 0.000 0.000 0.003 0.000 0.006 0.006 0.000 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.001 0.025 0.000 0.001 0.000 0.000 390-400* 0.006 0.006 0.000 0.000 0.004 0.000 0.007 0.007 0.000 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.001 0.024 0.000 0.001 0.000 0.000 400-410* 0.007 0.007 0.000 0.000 0.004 0.000 0.007 0.007 0.000 0.031 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.001 0.024 0.000 0.001 0.000 0.000 410-420* 0.008 0.008 0.000 0.000 0.005 0.000 0.009 0.009 0.000 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.024 0.000 0.000 0.000 0.000 420-430* 0.009 0.009 0.000 0.000 0.006 0.000 0.010 0.010 0.000 0.041 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 0.026 0.000 0.000 0.000 0.000 430-440* 0.010 0.010 0.000 0.000 0.007 0.000 0.011 0.011 0.000 0.046 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.029 0.000 0.000 0.000 0.000 440-450* 0.011 0.011 0.000 0.000 0.007 0.000 0.012 0.012 0.000 0.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.028 0.000 0.000 0.000 0.000 450-460* 0.013 0.013 0.000 0.000 0.009 0.000 0.014 0.014 0.000 0.060 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.018 0.000 0.000 0.000 0.000 460-480* 0.029 0.029 0.000 0.000 0.019 0.000 0.032 0.032 0.000 0.132 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029 0.000 0.000 0.000 0.000 0.084 0.000 0.000 0.000 0.000 480-500* 0.025 0.025 0.000 0.000 0.016 0.000 0.027 0.027 0.000 0.112 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 0.000 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.000 500-520* 0.016 0.016 0.000 0.000 0.011 0.000 0.018 0.018 0.000 0.075 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.009 0.000 0.000 0.000 0.000 520-540* 0.016 0.016 0.000 0.000 0.010 0.000 0.017 0.017 0.000 0.071 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 540-560* 0.013 0.013 0.000 0.000 0.008 0.000 0.014 0.014 0.000 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 560-580* 0.010 0.010 0.000 0.000 0.006 0.000 0.010 0.010 0.000 0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.022 0.000 0.000 0.000 0.000 580-600* 0.006 0.006 0.000 0.000 0.004 0.000 0.007 0.007 0.000 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 600-650* 0.006 0.006 0.000 0.000 0.004 0.000 0.006 0.006 0.000 0.026 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 650-700* 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
  • 14. Mass Balance Source: HimmeIblau and Riggs (2012), Mapior (2009), Towler and Sinnott (2012), Balabin, Syunyaev and Karpov (2007), Antos and Aitani (2004), Toolbox (2015), ChemTeam (2015), Dutta (2007), Fahim, Al-Sahhaf and (Elkilan 2009) Energy BalanceSummary of Mass Balance Equipment P- 101 K- 101 E- 102 E- 101 V-101 E-103 V- 102 E- 104 V-103 K- 102 Mix- 101 T-100 FCC- 100 E-105 E-106 Stream S3 S4 S5 S6 S9 S10 S16 S12 S14_Sour Water_1 S15 S17 S20_Sour Water_2 Reactor Effluent S27_Gasoline Product S28_Diesel Product HYSYS (kg/s) 11.57 0.12 11.57 0.12 11.37 11.37 10.07 1.30 1.29 0.01 0.33 9.47 9.48 3.63 0.29 Manual (kg/s) 11.57 0.12 11.57 0.12 11.37 11.37 10.07 1.30 1.29 0.01 0.33 9.47 10.07 3.63 0.29 Error (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.23 0.00 0.00 Reaction Hydrodesulfurization in R- 100 Hydrodenitrogenation in R-100 HYSYS (%) Conversion 116.80 105.90 Literature (%) Conversion 98.00 95.00 Error (%) 16.10 10.29 Equipment FCC-100, Stream S16 HYSYS (%) Yield 36.08 Literature (%) Yield 42.33 Error (%) 17.32 Source: Beltramone et al. (2008), Ferdous, Dalai and Adjaye (2003), Ahsan (2015) Summary of Energy Balance Equipment P-101 K-101 K-102 E-101 E-102 E-103 E-104 E-105 E-106 T-101 Duty Stream P-101-Duty K-101-Duty K-102-Duty E-101-Duty E-102-Duty E-103-Duty E-104-Duty E-105-Duty E-106-Duty Q- Condenser Manual (MJ/h) 571.70 2216.09 115.35 1369.74 14726.07 5650.17 2204.75 4834.60 763.27 20144.73 HYSYS (MJ/h) 571.68 2179.02 113.47 1357.01 16784.91 13550.27 12978.84 4117.99 608.73 24543.80 % Error 0.00 1.70 1.66 0.94 12.27 58.30 83.01 17.40 25.39 17.92 Equipment MIX-101 R-100 Stream S-17 S-7 Manual (°C) 210.06 201.52 HYSYS (°C) 208.19 200.00 % Error 0.90 0.76 Major Utilities Specifications  Utilities Used:  Electricity  LP Steam  Cooling Water Duty Name P-101- Duty K-101- Duty E-102- Duty PFR-101- Duty E-103- Duty E-104- Duty K-102- Duty E-105- Duty E-106- Duty E-101-Duty Equipment P-101 K-101 E-102 R-100 E-103 E-104 K-102 E-105 E-106 E-101 Heat Flow (kJ/h) 5.72E+05 2.18E+06 1.68E+07 -1.28E+06 1.36E+07 1.30E+07 1.14E+05 4.12E+06 6.10E+05 1.36E+06 Utility Type Electricity Electricity LP Steam LP Steam LP Steam Cooling Water Electricity Cooling Water Cooling Water Cooling Water Mass Flow (kg/s) - - 2.12 0.16 1.71 172.40 - 54.76 8.10 18.02
  • 15. Process Optimisation Three Optimisation Methods:  Change the route and equipment for removal of H2S from waste lube oil  Process screening for optimum amount of zeolite in FCC  Use HYSYS Optimser Before After Three Optimisation Methods:  Change the route and equipment for removal of H2S from waste lube oil  Process screening for optimum amount of zeolite in FCC  Use HYSYS Optimiser -10000 10000 30000 50000 70000 90000 110000 380000 390000 400000 410000 420000 430000 440000 450000 460000 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 CatalystCost(RM/day) Profit(RM/day) Zeolite loading (kg/day) Profit vs Zeolite Loading Net Profit Catalyst cost Optimum point Three Optimisation Methods:  Change the route and equipment for removal of H2S from waste lube oil  Process screening for optimum amount of zeolite in FCC  Use HYSYS Optimiser Category Stream Name Unit Price Total Amount Price (RM/day) Difference (%)Before Optimization After Optimization Before Optimization After Optimization Utilities (Cost) Steam S-31, S-32, E-102- Duty, E-103-Duty RM 70.10/ton 18607.20 ton/day 350.27ton/day 18607.20 24552.64 +31.95 Electricity K-101-Duty, K-102- Duty, P-101-Duty RM 5.904/kW 12805.77 kW/day 795.60 kW/day 12805.77 4697.25 -63.32 Cooling water PFR-100-Duty, T-101-Condenser Duty, E-104-Duty, E-105-Duty, E-106 Duty RM 2.96/ton 88309.88 ton/day 23124.63 ton/day 88309.88 68448.91 -22.49 Raw Materials (Cost) Waste lube oil S-1_Waste Lube Oil RM 0.055/kg 1000000.00 kg/day 1000000.00 kg/day 54992.46 54992.46 0.00 Hydrogen S-2_Hydrogen Gas RM 5.95/kg 24320.00 kg/day 10121.89 kg/day 144704.00 60225.26 -58.38 Process water S-11_H2O-1, S- 19_H2O-2 RM 2.96/kg 6000.00 ton/day 800.00 ton/day 17760.00 2368.00 -86.67 Catalyst Catalyst (Zeolite) in FCC-100 RM 255.50/kg 270.00 kg/day 400.00 kg/day 68987.70 102204.00 +48.15 Catalyst Catalyst (Ni/Mo) in R-100 RM 10.63/kg 18.60 kg/day 18.60 kg/day 197.57 197.57 0.00 Product (Profit) Gasoline S-37 RM 1935/m3 348.64 m3/day 396.40 m3/day 674632.10 766963.02 +13.69 Diesel S-38 RM 1845/m3 54.70 m3/day 25.41 m3/day 100929.21 46872.99 -53.56 Total Profit (Gasoline) 268267.47 449276.92 +67.47 Total Profit (Gasoline and Diesel) 369196.68 496149.91 +34.39 +67.47 % Energy Integration Pinch Temperature Minimum Hot Utility T* (°C) ΔT* (°C) ΣCPH-ΣCPC ΔH (MW) Surplus/ Deficit Infeasible Heat Cascade (MW) Feasible Heat Cascade (MW) 41 6.20 0 0.0000 3.8402 31 6.1 0 1 00.1 0 0.001 7 0 0.1 7 06 Surplus 0.1 7 06 4.01 08 255.00 61 .1 0 0.00228 0.1 396 Surplus 0.31 02 4.1 504 245.00 1 0.00 -0.07 300 -0.7 300 Deficit -0.41 98 3.4204 205.00 40.00 -0.057 1 8 -2.287 0 Deficit -2.7 068 1 .1 334 1 95.00 1 0.00 -0.01 1 62 -0.1 1 62 Deficit -2.8230 1 .01 7 3 1 7 0.20 24.80 -0.01 332 -0.3303 Deficit -3.1 533 0.6869 43.93 1 26.27 -0.00544 -0.6869 Deficit -3.8402 0.0000 25.00 1 8.93 0.02428 0.4596 Surplus -3.3806 0.4596 1 5.00 1 0.00 0.01 582 0.1 582 Surplus -3.2224 0.61 7 8 CP=0.02972MW/°C CP=0.01582MW/°C CP=0.07528MW/°C CP=0.007879MW/°C CP=0.0005807MW/°C CP=0.001704MW/°C Minimum Cold Utility Energy integration Before After Savings (%) Hot utility (MW) 8.551 3.840 55.09 Cold utility (MW) 5.329 0.618 88.41 SUMMARY •4 Heat Exchangers • 3 Coolers • 2 Heaters Objective : Minimise Utility Usage Targeting Tool : Problem Table Algorithm (PTA) ∆Tmin :10°C
  • 16. Process & Instrumentation Diagram (P&ID) FCC-100 P-101A R-100 S-3 S-1 H2OS-18S-19 H2 – Further Treatment for Reuse S-20Sour Water T-101 S-16 Light Ends Gasoline Diesel Bottoms E-102A TT-101A S-21 S-22S-26 S-25 S-23 P-101B E-102B Condenser M M FSV-1 FSV-2 MIA moisture ASC PT FT ASV PICA SDV SDV 1 PZA HH LL SIS S-4 S-2 M M FSV-3 FSV-4 MIA moisture ASC PT FT ASV PICA SDV SDV PZA HH LL SIS K-101A K-101B H L H L PCV PRV Set@ 113.8 bar Set@ 103.1 bar BDV SIS SIS TZA HH TE TT TICA L H QA TZA HH LL TZA HH LL PDIA TT SIS TE FT PT TZAHH LL PZA HH LL MH PG TEMPC PG V-101 SDV SIS SDV SIS SDV SIS PICA H L PCV PRV Set@ 113.8 bar Set@ 103.1 bar BDV SIS PT HH LL PZA LG LT LICA H L LCV V D HH LL LZA SDV 9 SIS TZA HH LL V-102 PICA H L PCVSet@ 10 bar PT HH LL PZA LG LT LICA H L LCV V D HH LL LZA SDV SIS SDV SIS SDV SIS E-104A E-104B TT TICA H L TZA HH LL V-103 5 PICA H L PCVSet@ 10 bar PT HH LL PZA LG LT LICA H L LCV V D HH LL LZA SDV SIS SDV SIS SDV SIS Waste Lube Oil Hydrogen M M FSV-5 FSV-6 MIA moisture ASC FT ASV K-102A K-102B PT PICA H L PT PT PT T-100 PICA H L PCV PRV Set@ 113.8 bar Set@ 103.1 bar BDVSIS PT SDVSIS QA LT H L LCV V D HH LL LZA HH LL PZA SDVSIS PG PG TE TE SDV SIS FCV FICA Regenerator PDT LT TT MPC PG PG PZA HH LL PZA HH LL PG TE TE TE TE PG LG V D HH LL LZA PDIA TZA HH LL TZA HH LL TT TICA L H PT PICA H L PCV PRV Set@ 113.8 bar Set@ 103.1 bar BDVSIS SDVSIS PICA H L PCV PT Condenser Tank LT LICA H L LCV TT H L TICA MH MH MH MH LICA LG L E-105A E-105B TT TICAH L TZA HH LL TT-102A E-106A E-106B TT TICAH L TZA HH LL S-28 PG PG S-5 S-6 S-7 S-8 S-9 S-11 S-12 S-16 S-13 S-17 Sour Water TT H L TICA TCV TT H L TICA PZA HH LL PZA HH LL PZA HH LL PG PG PG TE TE TE TZA HH LL TZA HH LL TZA HH LL SDV SIS SDV SIS S-27 SDV S-24 FCV H L FICA FT FCV H L FICA FT 1 1 11 1 1 1 3 3 TCV 1 1 1 1 5 2 2 2 2 2 4 2 1 2 1 1 1 2 2 4 FCV 1 3 6 FCV 2 1 2 1 34 2 3 25 3 1 7 6 3 2 2 2 1 1 1 1 1 5 10 2 2 2 2 2 5 7 4 3 11 3 4 TCV 4 6 12 3 3 3 3 3 13 6 8 4 3 946 10 3 3 14 S-14 4 4 4 4 4 4 5 4 3 7 1 3 118 6 4 4 217 18 5 5 5 2 8 7 5 6 7 5 6 12 1 10 7 5 5 89 8 7 9 8 139 8 LCV 5 LCV 6 19 7 5 TCV 7 10 9 9 10 10 11 11 10 11 12 11 12 8 6 8 TCV 10 FCV H L FICA FT 6 5 7 10 8 23 8 7 6 4 3 2 6 5 4 11 9 TCV 11 22 14 13 12 9 7 TCV 9 21 12 SIS SDV 20 SIS MH MH MH MH MH Flaring Flaring Flaring Flaring Flaring Flaring Flaring Flaring Flaring Flaring Flaring PICAH L PCV PRVSet@ 113.8 bar Set@ 103.1 bar BDVSIS 5 3 3 Flaring Flaring Flaring S-15 SDV SIS 8 E-103A E-103B TT TICA H L TCV 3 2 3 Flaring Flaring Flaring FT 5 H L S-10 TCV 2 7 15 16 TCV 5 6 4 4 TCV 6 TT-101B PG 15 TT-102B PG 13 HotHot Hot Hot Hot Hot Hot Hot Hot Hot Hot Hot Hot Hot Hot Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold Cold E-109B Hot E-109A E-108B E-108A E-110A E-110B E-107A E-107B 11 PICAH L PCV Set@ 3.3 bar PT 14 9 Flaring V LG 6 D LG 4 V D LG 7 V D LG 8 V D LG 9 V D Fractionator Distillation Column Fluidized Catalytic Cracking Unit ✓ One control valves per process line ✓ Placement of valves follow API RP 553 ✓ Design of control instrumentation based on API RP 14C and API RP 554 ✓ Degree of Freedom = 33
  • 17. Control Philosophy T-101 Light Ends Gasoline Diesel Bottoms S-21 S-22S-26 S-25 S-23 Condenser Condenser Tank LT LICA H L LCV TT H L TICA TT H L TICA TCV TT H L TICA PZA HH LL PZA HH LL PZA HH LL PG PG PG TE TE TE TZA HH LL TZA HH LL TZA HH LL SDV SIS FCV H L FICA FT FCV H L FICA FT 7 5 TCV 7 10 9 9 10 10 11 11 10 11 12 11 12 8 6 8 TCV 10 FCV H L FICA FT 6 5 7 10 8 23 8 7 6 4 3 2 6 5 4 SDV 20 SIS MH MH MH Hot 11 PICAH L PCV Set@ 3.3 bar PT 14 9 Flaring Fractionation Distillation Column  Pressure Control: Maintain vessel pressure by controlling amount of excess gas to flaring  Level Control: Maintain liquid level in condenser tank by controlling reflux rate  Flowrate Control: Control the flowrate of each product stream  Temperature Control: Control the amount of top and bottom steam to maintain vessel temperature  Emergency Safeguard: Temperature and Pressure Trips and Shutdown Valve Fluidized Catalytic Cracking FCC-100 S-16 SDV SIS Regenerator PDT LT TT MPC PG PG PZA HH LL PZA HH LL PG TE TE TE TE PG LG V D HH LL LZA PDIA TZA HH LL TZA HH LL TT TICA L H PT PICA H L PCV PRV Set@ 113.8 bar BDVSIS SDVSIS PICA H L PCV PT 18 5 5 5 2 8 7 5 6 7 5 6 12 1 10 7 5 5 89 8 7 9 8 139 8 LCV 5 LCV 6 19 MH MH Flaring Flaring Flaring TCV 5 6 4 TCV 6 QA 2  Pressure Control: Maintain reactor pressure by controlling amount of gas to flaring  Model Predictive Control: Optimize the system and simultaneously control the temperature and liquid level  Composition Analyzer: Monitor the composition of product using Gas Chromatography  Pressure Relief Valve: Startup / Pressure control fails  Emergency Safeguard: Level, Pressure and Temperature Trips, Blowdown Valve and Shutdown Valve
  • 18. Control Logic Diagram for FCC unit FCC-100 Temperature high TCV 5 Valve closeMore steam enters FCC-100 Temperature low TCV 5 Valve openLess steam enters A A OR FCC-100 Pressure high PCV 7 Valve closeLess gas to flaring FCC-100 Pressure low PCV 7 Valve openMore gas to flaring A A OR FCC-100 Liquid level high LCV 5 Valve open More liquid leaves FCC to Regenerator A A OR LCV 6 Valve closeLess liquid enters FCC from Regenerator FCC-100 Liquid level low LCV 5 Valve open Less liquid leaves FCC to Regenerator LCV 6 Valve closeMore liquid enters FCC from Regenerator OR FCC cyclone on auto FCC cyclone on A OR Operate FCC L Green Light Initiate Unit Shutdown for FCCL OR PZA HH LL8 Pressure Trip activated TZA HH LL7 Temperature Trip activated LZA HH LL5 Level Trip activated Pressure too high or too low Temperature too high or too low Level too high or too low FCC cyclone off FCC cyclone overload SDV 18 Initiate Shutdown Valve for FCC inlet SDV 19 Initiate Shutdown Valve for FCC outlet BDV 5 Initiate Blowdown Valve Prevent product outlet to next operation Excess trapped gas will be sent to flaring Prevent product inlet to FCC Red Light A Supervisory Control and Data Acquisition (SCADA) Area 1 Raw Materials Area 2 Hydrogenating Area 3 Separating Area 4 Absorbing Area 5 Cracking Plant Areas Area 6 Process Utilities Area 7 Product Storage P I D P I D P I D P I D P I D P I D P I D Remote I/O Main PLC-1 Main PLC-2 Backup PLC-1 Backup PLC-2 Operator Terminal Supervisor Terminal Supervisory Computer Computer Terminal Host Computer Spare PLC-1 Industrial Terminal LDT Terminal Engineering Terminal System Control RoomCentral Control Room Plant Sources: Aronson (2013), Dreamstime (2015), Gibson (2008), Goh (2015), Liptak (2005), VividCortex (2015)
  • 19. Plant Pre-Startup, Commissioning and Startup Preparation and Planning Mechanical Completion and Integrity Checking Pre-Commissioning and Operational Testing Startup and Initial Operation Performance and Acceptance Testing Post Commissioning Plant Shutdown Sources: AcornStairlift (2015), Allcheck (2015), Boultton (2013), Coelho (2007), Kleiman (2011), “Wave Control” (2015)
  • 20. Economic Analysis Assumptions 1 USD= RM 4.25 Linear Depreciation Construction Period: 2 Years 25 Years of Project Life No Additives Added in the Gasoline Produced. Thus, 10% Margin of Actual Petrol Price (RON 95) is taken. Source: Peters and Timmerhaus (1991), McMahon (2015) Method Used Percentage of Purchased Eqpt. Cost Literature Review; CEPCI Gasoline Price and Utilities Cost are based in Malaysia Total Capital Cost Direct Cost Extra Cost Indirect Cost Parameters RM (Million) Land 123.77 Purchased Equipment 47.12 Process Instrumentation and Control 3.30 Purchased Equipment Installation 11.78 Piping (include installation) 21.21 Electrical Equipment and Materials 4.71 Buildings (including services) 18.85 Yard Improvement 4.71 Service facilities 28.27 Indirect Cost Parameters RM (Million) Engineering and Supervision 14.14 Construction expenses 16.02 Extra Cost Parameters RM (Million) Legal expenses 2.94 Contractor’s fee 5.27 Contingency 29.39 Direct Cost + + Fixed Capital Cost RM 351.38 Million Ratio Factor of Fluid Plant Total Capital Cost RM 413.94 Million + Working Capital RM 41.39 Million Cumulative Capital Cost RM 455.34 Million Inclusive 6% GST Total Production Cost Manufacturing Cost General Expenses Parameters RM (Million) Raw Material 61.63 Operating Labor 1.83 Utilities 34.87 Direct Supervisory 0.18 Maintenance & Repairs 7.03 Operating Supplies 1.05 Laboratory charges 0.18 Patents and Royalties 2.28 Catalyst and solvents 22.83 Insurance 3.51 Parameters RM (Million) Administrative 0.27 Distribution & marketing 3.04 Research & Development 6.32 Financing 12.42 Contingency 2.28 + Cumulative Production Cost RM 159.75 Million
  • 21. Break-even Graph 104 ktonne/year of Gasoline Produced by Anavah Linear Approximation Cumulative Cash Flow Diagram USD 333.57 Million = RM 1,417.66 Million Parameters Base Total Annual Revenue, RM (Million) 253.10 Gross profit, RM (Million) 93.35 Corporate tax rate (%) 24 Salvage, RM (Million) 41.39 Total depreciable cost, RM (Million) 413.94 Average depreciation, RM (Million) 16.56 Turnover ratio 0.72 Annual net profit, RM (Million) 58.36 Net cash flow, RM (Million) 74.92 Return on Investment, % 14.10 Acceptable Rate of Return, % 8 Payback/payout period (years) 6.08 Reference Payback period 0.74 Venture profit, RM (Million) 21.94 Discounted factor, DF 0.15 Asset/book value, RM (Million) 41.39 Present Worth Factor 10.67 Present worth, RM (Million) 829.92 Net Present Worth, RM (Million) 374.58 Internal rate of return 29% Cumulative cash position, RM (Million) 1,417.66 Economic AnalysisScenario Analysis Manipulated Variables Corporate Tax Base 24% Best 7% Base 30% Gasoline Price After 10% Margin Base RM 1.94/liter Best RM 2.07/liter Base RM 1.62/liter 10 Years of Historical Petrol Price Summary of Base, Best & Worst Parameters Base Best Worst Total Annual Revenue, RM (Million) 253.10 270.76 211.90 Gross profit, RM (Million) 93.35 111.01 52.15 Corporate tax rate (%) 24 7 30 Salvage, RM (Million) 41.39 41.39 41.39 Total depreciable cost, RM (Million) 413.94 413.94 413.94 Average depreciation, RM (Million) 16.56 16.56 16.56 Turnover ratio 0.72 0.77 0.60 Annual net profit, RM (Million) 58.36 87.65 24.91 Net cash flow, RM (Million) 74.92 104.21 41.47 Return on Investment, % 14.10 21.17 6.02 Acceptable Rate of Return, % 8 8 8 Payback/payout period (years) 6.08 4.37 10.98 Reference Payback period 0.74 0.74 0.74 Venture profit, RM (Million) 21.94 51.22 (11.51) Discounted factor, DF 0.15 0.15 0.15 Asset/book value, RM (Million) 41.39 41.39 41.39 Present Worth Factor 10.67 10.67 10.67 Present worth, RM (Million) 829.92 1,142.56 472.86 Net Present Worth, RM (Million) 374.58 687.22 17.52 Internal rate of return 29% 34% 24% Cumulative cash position, RM (Million) 1,417.66 2,149.86 581.44 By Selling Gasoline Only
  • 22. Base Case Best Case Worst Case Annual Net Profit RM 58.36 Million RM 87.65 Million RM 24.91 Million + 50 % - 57 % Base, Best & Worst Case Payback Period 6 Years 4 Years 11 Years Cumulative Cash RM 1,417.66 Million RM 2,149.86 Million RM 581.44 Million + 52 % - 59 % Worst Case Scenario Parameters Worst (Gasoline Only) Total Annual Revenue, RM (Million) 211.90 Gross profit, RM (Million) 52.15 Corporate tax rate (%) 30 Salvage, RM (Million) 41.39 Total depreciable cost, RM (Million) 413.94 Average depreciation, RM (Million) 16.56 Turnover ratio 0.60 Annual net profit, RM (Million) 24.91 Net cash flow, RM (Million) 41.47 Return on Investment, % 6.02 Acceptable Rate of Return, % 8 Payback/payout period (years) 10.98 Reference Payback period 0.74 Venture profit, RM (Million) (11.51) Discounted factor, DF 0.15 Asset/book value, RM (Million) 41.39 Present Worth Factor 10.67 Present worth, RM (Million) 472.86 Net Present Worth, RM (Million) 17.52 Internal rate of return 24% Cumulative cash position, RM (Million) 581.44 Worst (Gasoline & All By-products) 238.71 78.97 30 41.39 413.94 16.56 0.68 43.69 60.24 10.55 8 7.56 0.74 7.26 0.15 41.39 10.67 673.25 217.91 27% 1,050.76 Venture profit, RM (Million) (11.51) 7.26 Payback/payout period (years) 10.98 7.56 Cumulative cash position, RM (Million) 581.44 1050.76 Source: Crystal Graphics (2015), Cohen (2013)
  • 23. Conclusion Hydroprocessing & Fluid Catalytic Cracking Mass and Energy Balance ✓ ✓ HAZOP, SCADA and Logic Control ✓ 95% Purity of Gasoline RM 58 Million of Annual Net Profit; 6 Years of Payback Period ✓ ✓ Source: Crystal Graphics (2015), Cohen (2013)
  • 24. References AcornStairlift. 2015. "Stair Lift Installation: Important Points to Consider." Accessed 2nd October 2015: http://www.acornstairliftsguide.com/installation-repair- service/stair-lift-installation-important-points-to-consider.html. Adenan, Haji. 2005. Environmental Quality Act 1974. Accessed September 30, 2015. http://www.env.go.jp/en/recycle/asian_net/Country_Information/Law_N_Regulation/Malaysia/Malaysia%20EQA%20Scheduled%20Waste%202005.pdf. Ahsan, M. 2015. "Prediction of Gasoline Yield in a Fluid Catalytic Cracking (Fcc) Riser Using K-Epsilon Turbulence and 4-Lump Kinetic Models: A Computational Fluid Dynamics (Cfd) Approach." Journal of King Saud University - Engineering Sciences 27 (2): 130-136. Allcheck. 2015. "Building Maintenance Inspection." Accessed 2nd October 2015: http://www.allcheck.com.au/building-maintenance-inspections/. Antos, G.J., and A.M. Aitani. 2004. Catalytic Naphtha Reforming, Revised and Expanded: CRC Press. Aronson, Emily. 2013. "Princeton Cuts Energy Use, Costs through Projects Big and Small." Princeton University. Accessed 2nd October 2015: http://www.princeton.edu/main/news/archive/S36/31/04A54/index.xml?section=featured. Balabin, Roman M., Rustem Z. Syunyaev, and Sergey A. Karpov. 2007. "Molar Enthalpy of Vaporization of Ethanol–Gasoline Mixtures and Their Colloid State." Fuel 86 (3): 323-327. doi: http://dx.doi.org/10.1016/j.fuel.2006.08.008.Bios, Ki. 2015. Employment Opportunities. Accessed October 1, http://www.kibois.org/home_employment.html. Beltramone, A.R., S. Crossley, D.E. Resasco, W.E. Alvarez, and T.V. Choudhary. 2008. "Inhibition of the Hydrogenation and Hydrodesulfurization Reactions by Nitrogen Compounds over Nimo/Al2o3." Catal Lett 123: 181-185. Boultton, Scott. 2013. "10 Easy (No/Low Cost) New Years Resolutions for Managers." Accessed 2nd October 2015: https://scottboulton.wordpress.com/2013/0/. ChemTeam. 2015. Molar Heat of Vaporization. Accessed September 9, http://www.chemteam.info/Thermochem/Molar-Heat-Vaporization.html.Coelho, Everado. 2007. "Crystal Project Shutdown." Accessed 2nd October 2015: https://commons.wikimedia.org/wiki/File:Crystal_Project_Shutdown.png. Cohen, D. 2013. Green Thumb? Facebook Uses Green Like Button When Users Were Invited to Like Pages By Friends. Adweek. Accessed October 2015, http://www.adweek.com/socialtimes/green-like-button/429561 Crystal Graphics. 2015. Dislike Icon Images, Pictures & Photos. Crystal Graphics Inc. Accessed October 2015, http://www.crystalgraphics.com/powerpictures/images.photos.asp?ss=dislike+icon Department of Labour. n.d. Occupational Safety & Health Administration. Accessed September 30, 2015. https://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=9749.DOE. 2010. Environmental Requirements: A Guide for Investors. (11) Accessed 24 August 2015, http://www.doe.gov.my/eia/wp-content/uploads/2012/03/A-Guide-For-Investors1.pdf. Dreamstime. 2015. "Printer." Accessed 2nd October 2015: http://www.dreamstime.com/illustration/printer.html. Dutta, B.K. 2007. Principles of Mass Transfer and Separation Processes. 1st ed. India: Prentice-Hall of India Private Limited.Environment, Minister of. 2007. Draft Guidelines for an Environmental Impact Assessment: Petroleum Refinery (Project Eider Rock). Province of New Brunswick. EIA. 2014. Malaysia. Accessed September 29, 2015. http://www.eia.gov/beta/international/analysis.cfm?iso=MYS. Fahim, M.A., T.A. Al-Sahhaf, and A. Elkilan. 2009. Fundamentals of Petroleum Refining: Elsevier. Ferdous, D., A.K. Dalai, and J. Adjaye. 2003. "Comparison of Hydrodenitrogenation of Model Basic and Nonbasic Nitrogen Species in a Trickle Bed Reactor Using Commercial Nimo/Al2o3 Catalyst." Energy & Fuels 17: 164-171. Flora and Fauna. 2015. A Doe, a Deer. Accessed October 1, http://www.fanpop.com/clubs/flora-and-fauna/images/18591410/title/doe-deer-wallpaper. Gibson, David. 2008. "Making Signal Systems Work for Cyclists." Accessed 2nd October 2015: https://www.fhwa.dot.gov/publications/publicroads/08may/02.cfm. Goh, Melissa. 2015. "Sleek Usb Hub Comes with Multiple Ports for Single-Port New Macbook." Accessed 2nd October 2015: http://designtaxi.com/news/375495/Sleek-USB- Hub-Comes-With-Multiple-Ports-For-Single-Port-New-MacBook/. Group, KLM Technology. 2011. "Layout and Spacing (Project Standards and Specifications)." 54. Accessed 17: http://webcache.googleusercontent.com/search?q=cache:vyT4JhYDTyEJ:kolmetz.com/pdf/ess/PROJECT_STANDARDS_AND_SPECIFICATIONS_layout_and_ spacing_Rev1.0.pdf+&cd=1&hl=en&ct=clnk. HimmeIblau, D.M., and J.B. Riggs. 2012. Basic Principles and Calculations in Chemical Engineering. 8th ed. United State: Pearson Education, Inc.Hughes, Baker. 2011. Hydrogen Sulfide Management: Mitigation Options in Petroleum Refining, Storage and Transportation. Accessed 22 August 2015, http://assets.cmp.bh.mxmcloud.com/system/423d7d28b39df28c79a3819b9039d5fa_28859-sulfix-h2s-white-paper-print-0311.pdf. IndexMundi. n.d. Malaysia Motor Gasoline Consumption Annual Growth Rate. Accessed September 30, 2015. Q & A

Editor's Notes

  1. 614- for General Purpose and Special Purpose Oil Systems 620-for operating <120oC & >17kPa 650-most common (gasoline, oil, chemicals)
  2. 614- for General Purpose and Special Purpose Oil Systems 620-for operating <120oC & >17kPa 650-most common (gasoline, oil, chemicals)
  3. 614- for General Purpose and Special Purpose Oil Systems 620-for operating <120oC & >17kPa 650-most common (gasoline, oil, chemicals)
  4. Waimun help me to include the Composition Table please TQ
  5. Waimun help me to include the Composition Table please TQ