1 / 24
An Application of the Hyperfunction Theory to Numerical Integration
ECMI2016
∗Hidenori Ogata (The University of Electro-Communications, Japan)
Hiroshi Hirayama (Kanagawa Institute of Technology, Japan)
17 June 2016
Contents
2 / 24
✓ ✏
We show an application of the hyperfunction theory, a generalized function
theory based on complex analysis, to numerical computations, in particular,
to numerical integrations.
✒ ✑
Contents
2 / 24
✓ ✏
We show an application of the hyperfunction theory, a generalized function
theory based on complex analysis, to numerical computations, in particular,
to numerical integrations.
✒ ✑
1. Hyperfunction theory
2. Hyperfunction method for numerical integrations
3. Hyperfunction method for Hadamard’s finite parts
4. Numerical examples
5. Summary
Contents
3 / 24
1. Hyperfunction theory
2. Hyperfunction method for numerical integrations
3. Hyperfunction method for Hadamard’s finite parts
4. Numerical examples
5. Summary
1. Hyperfunction theory (M. Sato, 1958)
4 / 24
b
a
φ(x)δ(x)dx = φ(0).
1
2πi C
φ(z)
z
dz = φ(0).
( a < 0 < b )
Dirac delta function Cauchy integral formula
O
C
1. Hyperfunction theory (M. Sato, 1958)
4 / 24
b
a
φ(x)δ(x)dx = φ(0).
1
2πi C
φ(z)
z
dz = φ(0).
( a < 0 < b )
Dirac delta function Cauchy integral formula
O
C
Oa b
1
2πi C
φ(z)
z
dz = −
1
2πi
b
a
φ(x)
1
x + i0
−
1
x − i0
dx.
1. Hyperfunction theory (M. Sato, 1958)
4 / 24
b
a
φ(x)δ(x)dx = φ(0).
1
2πi C
φ(z)
z
dz = φ(0).
( a < 0 < b )
Dirac delta function Cauchy integral formula
O
C
Oa b
b
a
φ(x)δ(x)dx =
1
2πi C
φ(z)
z
dz = −
1
2πi
b
a
φ(x)
1
x + i0
−
1
x − i0
dx.
∴ δ(x) = −
1
2πi
1
x + i0
−
1
x − i0
.
1. Hyperfunction theory
5 / 24
Hyperfunction theory (M. Sato, 1958)✓ ✏
• A generalized function theory based on complex analysis.
• A hyperfunction f(x) on an interval I is the difference of the boundary
values of an analytic function F(z).
f(x) = [F(z)] ≡ F(x + i0) − F(x − i0).
F(z) : the defining function of the hyperfunction f(x)
analytic in D  I,
where D is a complex neighborhood of the interval I.
✒ ✑
D
I
R
1. Hyperfunction theory: examples
6 / 24
• Dirac delta function
δ(x) = −
1
2πiz
= −
1
2πi
1
x + i0
−
1
x − i0
.
• Heaviside step function
H(x) =
1 ( x > 0 )
0 ( x < 0 )
= −
1
2πi
{log(−(x + i0)) − log(−(x − i0))} .
∗ log z is the principal value s.t. −π ≦ arg z < π
• Non-integral powers
x+
α
=
xα ( x > 0 )
0 ( x < 0 )
= −
(−(x + i0))α − (−(x − i0))α
2i sin(πα)
(α ∈ Z const.).
∗ zα
is the principal value s.t. −π ≦ arg z < π.
1. Hyperfunction theory: examples
7 / 24
Heaviside step function
H(x) =
1 ( x > 0 )
0 ( x < 0 )
= F(x+i0)−F(x−i0), F(z) = −
1
2πi
log(−z).
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1Re z
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
Im z
-1
-0.5
0
0.5
1
Re F(z)
The real part of the defining function F(z) = −
1
2πi
log(−z).
1. Hyperfunction theory: examples
7 / 24
Heaviside step function
H(x) =
1 ( x > 0 )
0 ( x < 0 )
= F(x+i0)−F(x−i0), F(z) = −
1
2πi
log(−z).
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1Re z
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
Im z
-1
-0.5
0
0.5
1
Re F(z)
Many functions with singularities are expressed by analytic functions in the
hyperfunction theory.
1. Hyperfunction theory: integral
8 / 24
Integral of a hyperfunction f(x) = F(x + i0) − F(x − i0)✓ ✏
I
f(x)dx ≡ −
C
F(z)dz
C : closed path which encircles I in the positive sense
and is included in D (F(z) is analytic in D  I).
✒ ✑
D
C
I
• The integral in independent of the choise of C by the Cauchy integral theorem.
Contents
9 / 24
1. Hyperfunction theory
2. Hyperfunction method for numerical integrations
3. Hyperfunction method for Hadamard’s finite parts
4. Numerical examples
5. Summary
2. Hyperfunction method for numerical integrations
10 / 24
We consider the evaluation of an integral
I
f(x)w(x)dx,
f(x) : analytic in a domain D s.t.
(I ⊂ D ⊂ C),
w(x) : weight function.
D
I
R
2. Hyperfunction method for numerical integrations
10 / 24
We consider the evaluation of an integral
I
f(x)w(x)dx,
f(x) : analytic in a domain D s.t.
(I ⊂ D ⊂ C),
w(x) : weight function.
D
I
R
We regard the integrand as a hyperfunction.
✓ ✏
f(x)w(x)χI(x) = −
1
2πi
{f(x + i0)Ψ(x + i0) − f(x − i0)Ψ(x − i0)}
with χI(x) =
1 (x ∈ I)
0 (x ∈ I)
, Ψ(z) =
I
w(x)
z − x
dx.
✒ ✑
2. hyperfunction method for numerical integrations
11 / 24
From the definition of hyperfunction integrals, we have
✓ ✏
I
f(x)w(x)dx =
1
2πi C
f(z)Ψ(z)dz.
=
1
2πi
uperiod
0
f(ϕ(u))Ψ(ϕ(u))ϕ′
(u)du,
C : z = ϕ(u) ( 0 ≦ u ≦ uperiod ) periodic function of period uperiod.
✒ ✑
D
C : z = ϕ(u)
I
Approximating the r.h.s. by the trapezoidal rule, we have ...
2. Hyperfunction method for numerical integrations
12 / 24
Hyperfunction method✓ ✏
I
f(x)w(x)dx ≃
h
2πi
N−1
k=0
f(ϕ(kh))Ψ(ϕ(kh))ϕ′
(kh),
with Ψ(z) =
b
a
w(x)
z − x
dx and h =
uperiod
N
.
✒ ✑
D
C : z = ϕ(u), 0 ≦ u ≦ uperiod
I
2. Hyperfunction method for numerical integrations
12 / 24
Hyperfunction method✓ ✏
I
f(x)w(x)dx ≃
h
2πi
N−1
k=0
f(ϕ(kh))Ψ(ϕ(kh))ϕ′
(kh),
with Ψ(z) =
b
a
w(x)
z − x
dx and h =
uperiod
N
.
✒ ✑
Ψ(z) for typical weight functions w(x)
I w(x) Ψ(z)
(a, b) 1 log
z − a
z − b
∗
(0, 1) xα−1(1 − x)β−1 B(α, β)z−1F(α, 1; α + β; z−1)∗∗
( α, β > 0 )
∗ log z is the principal value s.t. −π ≦ arg z < π.
∗∗ F(α, 1; α + β, z−1
) can be evaluated by the continued fraction.
2. Hyperfunction method for numerical integrations
13 / 24
The trapezoidal rule is efficient for integrals of periodic analytic functions.
2. Hyperfunction method for numerical integrations
13 / 24
The trapezoidal rule is efficient for integrals of periodic analytic functions.
Theoretical error estimate✓ ✏
If f(ϕ(w)) and ϕ(w) are analytic in | Im w| < d0,
|error| ≦ 2uperiod max
Im w=±d
|f(ϕ(w))Ψ(ϕ(w))ϕ′
(w)|
×
exp(−(2πd/uperiod)N)
1 − exp(−(2πd/uperiod)N)
( 0 < ∀d < d0 ).
. . . Geometric convergence.
✒ ✑
Contents
14 / 24
1. Hyperfunction theory
2. Hyperfunction method for numerical integrations
3. Hyperfunction method for Hadamard’s finite parts
4. Numerical examples
5. Summary
3. Hadamard’s finite parts
15 / 24
1
0
x−1
f(x)dx ( f(x) : finite as x → 0+ ) . . . divergent!
3. Hadamard’s finite parts
15 / 24
1
0
x−1
f(x)dx ( f(x) : finite as x → 0+ ) . . . divergent!
Hadamard’s finite part✓ ✏
fp
1
0
x−1
f(x)dx ≡ lim
ǫ→0+
1
ǫ
x−1
f(x)dx + f(0) log ǫ .
✒ ✑
3. Hadamard’s finite parts
15 / 24
1
0
x−1
f(x)dx ( f(x) : finite as x → 0+ ) . . . divergent!
Hadamard’s finite part✓ ✏
fp
1
0
x−1
f(x)dx ≡ lim
ǫ→0+
1
ǫ
x−1
f(x)dx + f(0) log ǫ .
✒ ✑
Hadamard’s finite part (n = 1, 2, . . .)✓ ✏
fp
1
0
x−n
f(x)dx
≡ lim
ǫ→+0
1
ǫ
x−n
f(x)dx +
n−2
k=0
ǫk+1−n
k!(k + 1 − n)
f(k)
(0) +
log ǫ
(n − 1)!
f(n−1)
(0) .
✒ ✑
3. Hadamard’s finite parts
16 / 24
Hadamard’s finite parts can be given by hyperfunction integrals.
fp
1
0
x−n
f(x)dx =
1
0
χ(0,1)x−n
f(x)dx
hyperfunction integral
+
n−2
k=0
f(k)
(0)
k!(k + 1 − n)
=
1
2πi C
z−n
f(z) log
z
z − 1
dz
approximated by the trapezoidal rule
+
n−2
k=0
f(k)
(0)
k!(k + 1 − n)
Contents
17 / 24
1. Hyperfunction theory
2. Hyperfunction method for numerical integrations
3. Hyperfunction method for Hadamard’s finite parts
4. Numerical examples
5. Summary
4. Example 1: numerical integration
18 / 24
1
0
ex
xα−1
(1−x)β−1
dx = B(α, β)F(α; α+β; 1) with α = β = 10−4
.
We evaluated the integral by
• the hyperfunction method
• the DE formula (efficient for integrals with end-point singularities)
and compared the errors of the two methods.
• C++ programs, double precision.
• integral path for the hyperfunction method
z = 0.5 + 2.575 cos u + i2.425 sin u, 0 ≦ u ≦ 2π (ellipse).
4. Example 1: numerical integrations
19 / 24
-16
-14
-12
-10
-8
-6
-4
-2
0
0 5 10 15 20 25 30
log10(relativeerror)
N
hyperfunction rule
DE rule
relative errors
• the hyperfunction method error = O(0.024N ) (geometric convergence).
• The DE formula does not work for this integral.
4. Example 1: Why the hyperfunction method works well?
20 / 24
integrand
e z
hyperfunction method
• (DE rule) The sampling points accumulate at the singularities.
• (hyperfunction method) The sampling points are distributed on a curve
in the complex plane where the integrand varies slowly.
4. Example 2: Hadamard’s finite part
21 / 24
fp
x
0
x−n
ex
dx =
∞
k=0(k=n−1)
1
k!(k − n + 1)
( n = 1, 2, . . . ).
We computed it by the hyperfunction method.
• C++ program & double precision
• integral path
z =
1
2
+
1
4
ρ +
1
ρ
cos u +
i
4
ρ −
1
ρ
sin u,
0 ≦ u < 2π ( ρ = 10, ellipse ).
4. Example 2: Hadamard’s finite part
22 / 24
-16
-14
-12
-10
-8
-6
-4
-2
0
0 5 10 15 20
log10(relativeerror)
N
n=0
n=1
n=2
n=3
n=4
n=5
the relative errors of the hyperfunction method
n 1 2 3 4 5
error O(0.021N ) O(0.023N ) O(0.018N ) O(0.034N ) O(0.032N )
... geometric convergenc
Contents
23 / 24
1. Hyperfunction theory
2. Hyperfunction method for numerical integrations
3. Hyperfunction method for Hadamard’s finite parts
4. Numerical examples
5. Summary
5. Summary
24 / 24
• The hyperfunction theory is a generalized function theory based on complex
analysis.
• The hyperfunction method approximately computes desired integral by
evaluating the complex integrals which define them as hyperfunction
integrals
• Numerical examples show that the hyperfunction method is efficient for
integral with end-point singularities.
5. Summary
24 / 24
• The hyperfunction theory is a generalized function theory based on complex
analysis.
• The hyperfunction method approximately computes desired integral by
evaluating the complex integrals which define them as hyperfunction
integrals
• Numerical examples show that the hyperfunction method is efficient for
integral with end-point singularities.
functions with singularities
(poles, discontinuities,
delta functions, ...)
←−←−←−
hyperfunction
analytic
functions
5. Summary
24 / 24
• The hyperfunction theory is a generalized function theory based on complex
analysis.
• The hyperfunction method approximately computes desired integral by
evaluating the complex integrals which define them as hyperfunction
integrals
• Numerical examples show that the hyperfunction method is efficient for
integral with end-point singularities.
functions with singularities
(poles, discontinuities,
delta functions, ...)
←−←−←−
hyperfunction
analytic
functions
We expect that we can apply the hyperfunction theory to a wide range of
scientific computations.
!
Gracias!

An application of the hyperfunction theory to numerical integration

  • 1.
    1 / 24 AnApplication of the Hyperfunction Theory to Numerical Integration ECMI2016 ∗Hidenori Ogata (The University of Electro-Communications, Japan) Hiroshi Hirayama (Kanagawa Institute of Technology, Japan) 17 June 2016
  • 2.
    Contents 2 / 24 ✓✏ We show an application of the hyperfunction theory, a generalized function theory based on complex analysis, to numerical computations, in particular, to numerical integrations. ✒ ✑
  • 3.
    Contents 2 / 24 ✓✏ We show an application of the hyperfunction theory, a generalized function theory based on complex analysis, to numerical computations, in particular, to numerical integrations. ✒ ✑ 1. Hyperfunction theory 2. Hyperfunction method for numerical integrations 3. Hyperfunction method for Hadamard’s finite parts 4. Numerical examples 5. Summary
  • 4.
    Contents 3 / 24 1.Hyperfunction theory 2. Hyperfunction method for numerical integrations 3. Hyperfunction method for Hadamard’s finite parts 4. Numerical examples 5. Summary
  • 5.
    1. Hyperfunction theory(M. Sato, 1958) 4 / 24 b a φ(x)δ(x)dx = φ(0). 1 2πi C φ(z) z dz = φ(0). ( a < 0 < b ) Dirac delta function Cauchy integral formula O C
  • 6.
    1. Hyperfunction theory(M. Sato, 1958) 4 / 24 b a φ(x)δ(x)dx = φ(0). 1 2πi C φ(z) z dz = φ(0). ( a < 0 < b ) Dirac delta function Cauchy integral formula O C Oa b 1 2πi C φ(z) z dz = − 1 2πi b a φ(x) 1 x + i0 − 1 x − i0 dx.
  • 7.
    1. Hyperfunction theory(M. Sato, 1958) 4 / 24 b a φ(x)δ(x)dx = φ(0). 1 2πi C φ(z) z dz = φ(0). ( a < 0 < b ) Dirac delta function Cauchy integral formula O C Oa b b a φ(x)δ(x)dx = 1 2πi C φ(z) z dz = − 1 2πi b a φ(x) 1 x + i0 − 1 x − i0 dx. ∴ δ(x) = − 1 2πi 1 x + i0 − 1 x − i0 .
  • 8.
    1. Hyperfunction theory 5/ 24 Hyperfunction theory (M. Sato, 1958)✓ ✏ • A generalized function theory based on complex analysis. • A hyperfunction f(x) on an interval I is the difference of the boundary values of an analytic function F(z). f(x) = [F(z)] ≡ F(x + i0) − F(x − i0). F(z) : the defining function of the hyperfunction f(x) analytic in D I, where D is a complex neighborhood of the interval I. ✒ ✑ D I R
  • 9.
    1. Hyperfunction theory:examples 6 / 24 • Dirac delta function δ(x) = − 1 2πiz = − 1 2πi 1 x + i0 − 1 x − i0 . • Heaviside step function H(x) = 1 ( x > 0 ) 0 ( x < 0 ) = − 1 2πi {log(−(x + i0)) − log(−(x − i0))} . ∗ log z is the principal value s.t. −π ≦ arg z < π • Non-integral powers x+ α = xα ( x > 0 ) 0 ( x < 0 ) = − (−(x + i0))α − (−(x − i0))α 2i sin(πα) (α ∈ Z const.). ∗ zα is the principal value s.t. −π ≦ arg z < π.
  • 10.
    1. Hyperfunction theory:examples 7 / 24 Heaviside step function H(x) = 1 ( x > 0 ) 0 ( x < 0 ) = F(x+i0)−F(x−i0), F(z) = − 1 2πi log(−z). -0.4 -0.2 0 0.2 0.4 0.6 0.8 1Re z -0.6 -0.4 -0.2 0 0.2 0.4 0.6 Im z -1 -0.5 0 0.5 1 Re F(z) The real part of the defining function F(z) = − 1 2πi log(−z).
  • 11.
    1. Hyperfunction theory:examples 7 / 24 Heaviside step function H(x) = 1 ( x > 0 ) 0 ( x < 0 ) = F(x+i0)−F(x−i0), F(z) = − 1 2πi log(−z). -0.4 -0.2 0 0.2 0.4 0.6 0.8 1Re z -0.6 -0.4 -0.2 0 0.2 0.4 0.6 Im z -1 -0.5 0 0.5 1 Re F(z) Many functions with singularities are expressed by analytic functions in the hyperfunction theory.
  • 12.
    1. Hyperfunction theory:integral 8 / 24 Integral of a hyperfunction f(x) = F(x + i0) − F(x − i0)✓ ✏ I f(x)dx ≡ − C F(z)dz C : closed path which encircles I in the positive sense and is included in D (F(z) is analytic in D I). ✒ ✑ D C I • The integral in independent of the choise of C by the Cauchy integral theorem.
  • 13.
    Contents 9 / 24 1.Hyperfunction theory 2. Hyperfunction method for numerical integrations 3. Hyperfunction method for Hadamard’s finite parts 4. Numerical examples 5. Summary
  • 14.
    2. Hyperfunction methodfor numerical integrations 10 / 24 We consider the evaluation of an integral I f(x)w(x)dx, f(x) : analytic in a domain D s.t. (I ⊂ D ⊂ C), w(x) : weight function. D I R
  • 15.
    2. Hyperfunction methodfor numerical integrations 10 / 24 We consider the evaluation of an integral I f(x)w(x)dx, f(x) : analytic in a domain D s.t. (I ⊂ D ⊂ C), w(x) : weight function. D I R We regard the integrand as a hyperfunction. ✓ ✏ f(x)w(x)χI(x) = − 1 2πi {f(x + i0)Ψ(x + i0) − f(x − i0)Ψ(x − i0)} with χI(x) = 1 (x ∈ I) 0 (x ∈ I) , Ψ(z) = I w(x) z − x dx. ✒ ✑
  • 16.
    2. hyperfunction methodfor numerical integrations 11 / 24 From the definition of hyperfunction integrals, we have ✓ ✏ I f(x)w(x)dx = 1 2πi C f(z)Ψ(z)dz. = 1 2πi uperiod 0 f(ϕ(u))Ψ(ϕ(u))ϕ′ (u)du, C : z = ϕ(u) ( 0 ≦ u ≦ uperiod ) periodic function of period uperiod. ✒ ✑ D C : z = ϕ(u) I Approximating the r.h.s. by the trapezoidal rule, we have ...
  • 17.
    2. Hyperfunction methodfor numerical integrations 12 / 24 Hyperfunction method✓ ✏ I f(x)w(x)dx ≃ h 2πi N−1 k=0 f(ϕ(kh))Ψ(ϕ(kh))ϕ′ (kh), with Ψ(z) = b a w(x) z − x dx and h = uperiod N . ✒ ✑ D C : z = ϕ(u), 0 ≦ u ≦ uperiod I
  • 18.
    2. Hyperfunction methodfor numerical integrations 12 / 24 Hyperfunction method✓ ✏ I f(x)w(x)dx ≃ h 2πi N−1 k=0 f(ϕ(kh))Ψ(ϕ(kh))ϕ′ (kh), with Ψ(z) = b a w(x) z − x dx and h = uperiod N . ✒ ✑ Ψ(z) for typical weight functions w(x) I w(x) Ψ(z) (a, b) 1 log z − a z − b ∗ (0, 1) xα−1(1 − x)β−1 B(α, β)z−1F(α, 1; α + β; z−1)∗∗ ( α, β > 0 ) ∗ log z is the principal value s.t. −π ≦ arg z < π. ∗∗ F(α, 1; α + β, z−1 ) can be evaluated by the continued fraction.
  • 19.
    2. Hyperfunction methodfor numerical integrations 13 / 24 The trapezoidal rule is efficient for integrals of periodic analytic functions.
  • 20.
    2. Hyperfunction methodfor numerical integrations 13 / 24 The trapezoidal rule is efficient for integrals of periodic analytic functions. Theoretical error estimate✓ ✏ If f(ϕ(w)) and ϕ(w) are analytic in | Im w| < d0, |error| ≦ 2uperiod max Im w=±d |f(ϕ(w))Ψ(ϕ(w))ϕ′ (w)| × exp(−(2πd/uperiod)N) 1 − exp(−(2πd/uperiod)N) ( 0 < ∀d < d0 ). . . . Geometric convergence. ✒ ✑
  • 21.
    Contents 14 / 24 1.Hyperfunction theory 2. Hyperfunction method for numerical integrations 3. Hyperfunction method for Hadamard’s finite parts 4. Numerical examples 5. Summary
  • 22.
    3. Hadamard’s finiteparts 15 / 24 1 0 x−1 f(x)dx ( f(x) : finite as x → 0+ ) . . . divergent!
  • 23.
    3. Hadamard’s finiteparts 15 / 24 1 0 x−1 f(x)dx ( f(x) : finite as x → 0+ ) . . . divergent! Hadamard’s finite part✓ ✏ fp 1 0 x−1 f(x)dx ≡ lim ǫ→0+ 1 ǫ x−1 f(x)dx + f(0) log ǫ . ✒ ✑
  • 24.
    3. Hadamard’s finiteparts 15 / 24 1 0 x−1 f(x)dx ( f(x) : finite as x → 0+ ) . . . divergent! Hadamard’s finite part✓ ✏ fp 1 0 x−1 f(x)dx ≡ lim ǫ→0+ 1 ǫ x−1 f(x)dx + f(0) log ǫ . ✒ ✑ Hadamard’s finite part (n = 1, 2, . . .)✓ ✏ fp 1 0 x−n f(x)dx ≡ lim ǫ→+0 1 ǫ x−n f(x)dx + n−2 k=0 ǫk+1−n k!(k + 1 − n) f(k) (0) + log ǫ (n − 1)! f(n−1) (0) . ✒ ✑
  • 25.
    3. Hadamard’s finiteparts 16 / 24 Hadamard’s finite parts can be given by hyperfunction integrals. fp 1 0 x−n f(x)dx = 1 0 χ(0,1)x−n f(x)dx hyperfunction integral + n−2 k=0 f(k) (0) k!(k + 1 − n) = 1 2πi C z−n f(z) log z z − 1 dz approximated by the trapezoidal rule + n−2 k=0 f(k) (0) k!(k + 1 − n)
  • 26.
    Contents 17 / 24 1.Hyperfunction theory 2. Hyperfunction method for numerical integrations 3. Hyperfunction method for Hadamard’s finite parts 4. Numerical examples 5. Summary
  • 27.
    4. Example 1:numerical integration 18 / 24 1 0 ex xα−1 (1−x)β−1 dx = B(α, β)F(α; α+β; 1) with α = β = 10−4 . We evaluated the integral by • the hyperfunction method • the DE formula (efficient for integrals with end-point singularities) and compared the errors of the two methods. • C++ programs, double precision. • integral path for the hyperfunction method z = 0.5 + 2.575 cos u + i2.425 sin u, 0 ≦ u ≦ 2π (ellipse).
  • 28.
    4. Example 1:numerical integrations 19 / 24 -16 -14 -12 -10 -8 -6 -4 -2 0 0 5 10 15 20 25 30 log10(relativeerror) N hyperfunction rule DE rule relative errors • the hyperfunction method error = O(0.024N ) (geometric convergence). • The DE formula does not work for this integral.
  • 29.
    4. Example 1:Why the hyperfunction method works well? 20 / 24 integrand e z hyperfunction method • (DE rule) The sampling points accumulate at the singularities. • (hyperfunction method) The sampling points are distributed on a curve in the complex plane where the integrand varies slowly.
  • 30.
    4. Example 2:Hadamard’s finite part 21 / 24 fp x 0 x−n ex dx = ∞ k=0(k=n−1) 1 k!(k − n + 1) ( n = 1, 2, . . . ). We computed it by the hyperfunction method. • C++ program & double precision • integral path z = 1 2 + 1 4 ρ + 1 ρ cos u + i 4 ρ − 1 ρ sin u, 0 ≦ u < 2π ( ρ = 10, ellipse ).
  • 31.
    4. Example 2:Hadamard’s finite part 22 / 24 -16 -14 -12 -10 -8 -6 -4 -2 0 0 5 10 15 20 log10(relativeerror) N n=0 n=1 n=2 n=3 n=4 n=5 the relative errors of the hyperfunction method n 1 2 3 4 5 error O(0.021N ) O(0.023N ) O(0.018N ) O(0.034N ) O(0.032N ) ... geometric convergenc
  • 32.
    Contents 23 / 24 1.Hyperfunction theory 2. Hyperfunction method for numerical integrations 3. Hyperfunction method for Hadamard’s finite parts 4. Numerical examples 5. Summary
  • 33.
    5. Summary 24 /24 • The hyperfunction theory is a generalized function theory based on complex analysis. • The hyperfunction method approximately computes desired integral by evaluating the complex integrals which define them as hyperfunction integrals • Numerical examples show that the hyperfunction method is efficient for integral with end-point singularities.
  • 34.
    5. Summary 24 /24 • The hyperfunction theory is a generalized function theory based on complex analysis. • The hyperfunction method approximately computes desired integral by evaluating the complex integrals which define them as hyperfunction integrals • Numerical examples show that the hyperfunction method is efficient for integral with end-point singularities. functions with singularities (poles, discontinuities, delta functions, ...) ←−←−←− hyperfunction analytic functions
  • 35.
    5. Summary 24 /24 • The hyperfunction theory is a generalized function theory based on complex analysis. • The hyperfunction method approximately computes desired integral by evaluating the complex integrals which define them as hyperfunction integrals • Numerical examples show that the hyperfunction method is efficient for integral with end-point singularities. functions with singularities (poles, discontinuities, delta functions, ...) ←−←−←− hyperfunction analytic functions We expect that we can apply the hyperfunction theory to a wide range of scientific computations. ! Gracias!