Dr. Dave Hooker
University of Guelph Ridgetown Campus
Email: dhooker@uoguelph.ca
Dr. Bill Deen
University of Guelph, Dept. of Plant Agriculture
@cropdoc2
Can Crop Management Improve
Environmental Stress Tolerance?
Declining Crop Diversity in Ontario, 1981-2013
(Ontario Ministry of Agriculture, Food and Rural Affairs, Field Statistics 2014)
Harvested areas (hectares) of major field crops shown as % of total harvested area from 1970 to 2014 for Ontario.
(Source: Statistics Canada, 2016.) (Reproduced from Deen et al., 2016)
% total harvested areas USDA-NASS, 2014
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
2…
2…
2…
2…
2…
2…
2…
2…
2…
2…
2…
2…
2…
2…
Michigan
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
1…
2…
2…
2…
2…
2…
2…
2…
2…
2…
2…
2…
2…
2…
2…
Minnesota
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
19…
19…
19…
19…
19…
19…
19…
19…
19…
19…
19…
19…
19…
19…
19…
19…
19…
19…
19…
20…
20…
20…
20…
20…
20…
20…
20…
20…
20…
20…
20…
20…
20…
Iowa
Image of an old farmstead
Image of an old farmstead
• yield improvement
• nitrogen supply
• weed, disease and insect management
• integration with livestock
• labour distribution
• risk mitigation
• soil quality enhancement
“Past” Reasons for Crop Rotation
@cropdoc2
Drivers of rotation change – “past” to “present”
• Synthetic fertilizers
• Herbicides, insecticides, fungicides
• Improvements in crop genetics – e.g. GMO
• Specialization and separation of crop and livestock
production
• Increase in equipment size
• Government programs
• Market demand
• %age of rented land Source: Bill Deen (UG)
@cropdoc2
• Crop rotation diversity vs.
• corn and soybean yield?
• N requirements for corn?
• Soil quality?
• Economics?
• Impact of cover crops in the long-term?
Questions only for long-term studies
Elora
Ridgetown
Long-term crop
rotation experiments
• Initiated in 1980
• Rotations – CCCC, AAAA, CCAA, CCSS, CCSW, CCSWrc, CCOB, CCOrcBrc
• Conventional tillage and no-till
Corn
Soybean
Alfalfa
Barley
Wheat
Elora Long-term Tillage-Crop Rotation ~2800 CHU, silt loam
@cropdoc2
• Est. 1995
• 7 Crop Rotations
• C-C, S-S, C-S, C-S-W, C-S-Wrc, S-W, S-Wrc
• 4 N rates in corn and wheat
• 2 tillage systems (MB and NT/Strip-till)
Ridgetown Long-term Tillage-N-Crop Rotation,
3300 CHU, clay loam
@cropdoc2
@cropdoc2
No-Till Corn 1995-2011
Fall Strip-Till 2012-2014
@cropdoc2
Impact of diversity on corn yield?
GrainYield(bu/ac)
Tillage x Crop Rotation on Corn Yields
Ridgetown 2009-16 using 120 lbs fertilizer N/ac
Note: Mean separation within tillage system (p=0.05)
157c
141c
152c
169b172b 174ab
192a
183a
100
110
120
130
140
150
160
170
180
190
200
Plow No-Till
C-S
C-C
C-S-W
C-S-Wrc
C-S
C-C
C-S-W
C-S-Wrc
@cropdoc2
Rotation complexity effect on corn yield: Elora 1982-2012
7500
7700
7900
8100
8300
8500
8700
8900
9100
9300
CC CS CSW COB CSWrc COrcBrc CA
Meancornyields(kgha-1)
Deen (UG)
Tilled NT
First Year Corn Yield: Elora Rotation Trial 1982-2013
Moldboard plow
Reduced-till/NT
Source: Deen (2017)
Impact of underseeded red clover on
subsequent corn yields?
186
157
175
217
202
217
190 191
198
162
184
214
228
225
200 200
100
120
140
160
180
200
220
240
GrainYield(bu/ac)
2010 2011
Corn Yields after Wheat +/- Red Clover
Ridgetown 2010-16
+RC
2012 Ave
Hooker (UG Ridgetown)
Fertilizer N applied to all plots @ 180-240 lbs N/ac (N sufficient)
* = difference significant at P=0.05
2013
+RC
+RC
+RC
+RC
@cropdoc2
+RC
+RC
+RC
2014 2015 2016
*
Impact of crop rotation diversity on fertilizer N
requirements for corn?
95c
90d91c
112c
119b
139b
148a
156a
50
70
90
110
130
150
Corn yield response to soil N capacity
-- zero fertilizer N –
Ridgetown 2010-2014
Hooker (UG)
Yield (bu/ac)
Tilled No-Till
n=20 observations per mean (4 reps x 5 years)
Mean separation within tillage Fisher’s Protected LSD (0.05)
CC CS CSW CSW
rc
@cropdoc2
CC CS CSW CSW
rc
+173a +173a+173a
139a
158ab
112ab
84b
101b
0
20
40
60
80
100
120
140
160
180
200
No-till + crop rotation reduces N fertilizer requirement
Ridgetown 2010-2014
Hooker (UG)
(lbs N/ac)
Tilled No-Till
n=20 observations per mean (4 reps x 5 years)
MERN >173 lbs N/ac in “+173” values
Mean separation within tillage Fisher’s Protected LSD (0.05)
Maximum Economic Rates of N in corn
@cropdoc2
CC CS CSW CSW
rc
CC CS CSW CSW
rc
Impact of crop rotation diversity on soybean yield?
GrainYield(bu/ac)
Tillage x Crop Rotation on Soybean Yields
Ridgetown 2009-16
Note: Mean separation within tillage system (p=0.05)
56.4b
60.1c
58.2b
61.7c
64.6a
65.3ab
66.2a
64.0b
64.6a
66.7a
66.2a
64.4b
50
52
54
56
58
60
62
64
66
68
Plow No-Till
S-S
C-S
C-S-W
C-S-Wrc
S-Wrc
S-W
S-S
C-S
C-S-W
C-S-Wrc
S-Wrc
S-W
@cropdoc2
Rotation effect on soybean yield: Elora 1982-2012
2000
2200
2400
2600
2800
3000
3200
CCSS CCSW CCSWRC
Soybeanyields(kgha-1)
CS CSW CSWrc
a
b b
a
b b
Tilled NT
Deen (UG)
(36)
(42)
First Year Soybean Yield: Elora rotation trial 1982-2013
Moldboard plow
Reduced-till/NT
Source: Deen (2017)
Impact of crop rotation diversity in future years with
greater weather extremes?
y = 1.0025x - 1936.5
y = 2.0993x - 4071.4
y = 0.3393x - 639.43
0
20
40
60
80
100
120
140
160
180
1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015
Yield(bu/ac)
CORN
SOY
WHEAT
Trending Yield in Ontario, 1981-2016
@cropdoc2
Higher crop yields require more water
corn
@cropdoc2
Source: http://www.grainsa.co.za/
Source: http://www.grainsa.co.za/
Higher crop yields require more water
wheat
@cropdoc2
Crop Rotation and Stress Reduction
How much can you impact the water supply to your crop?
@cropdoc2
<Cold/wet years
Hot/dry years
High yielding years
<Cold/wet years
Hot/dry years
@cropdoc2
CSW
CSWrc Hot/dry years
Hot/dry years
High yielding years
High yielding years
CSW
CSWrc
< Cold/wet years
Hot/dry years
< High yielding years
< Cold/wet years
Hot/dry years
< High yielding years
Hot/dry years
Hot/dry years
@cropdoc2
Evidence that water is becoming more limiting
Metrics
• Yield stability: “downside risk”
• Yield volatility: “temporal yield variability”
@cropdoc2
Evidence that water is becoming more limiting
Metrics
• Yield stability: “downside risk”
• Yield volatility: “temporal yield variability”
• Elora and Ridgetown corn and soybean yields unstable in hot, dry
summers (Gaudin et al. PLOSone, 2015)
• In 4 US States (IL, MI, MN, PA) 2000-2014 (Williams et al. PLOSone, 2016)
• drought and heat lowered yields and increased instability/volatility
• Soil water holding capacity buffered weather effects
• SOM and yield stability strongly correlated (Pan et al. 2009; Congreves et al 2016)
@cropdoc2
Source: Blake Vince, Merlin, ON
Organic
matter
and
water
holding
capacity
Available water
double at 4.5% OM
vs. 1.5%
Change in SOM from 2002-2016
All Ontario vs. Essex, Lambton, Kent Counties
12,300-23,100
samples per year
SOM Trend in Ontario 2002-2016: 12-23K samples/year
Data from Jack Legg
(SGS Labs); compiled
by Brown (OMAFRA)
15-yr trend for Essex, Lambton,
Kent Counties; 0.8% decline =
16,000 lbs/ac less SOM
Data from Jack Legg
(SGS Labs); compiled
by Brown (OMAFRA)
Change in SOM from 2002-2016
All Ontario vs. Essex, Lambton, Kent Counties
12,300-23,100
samples per year
SOM Trend in Ontario 2002-2016: 12-23K samples/year
Economics of a diverse rotation
-- it’s more complicated than you may think --
• Input costs - 2017 Field Crop Budgets, OMAFRA, 2017
• P and K by crop removal
• NPK costs – 2013-2017 Crop Input Surveys
• Crop prices: 2012-2015 OMAFRA Field Crops Statistics
• Straw removed: yield, price and P and K removal cost estimated
• All costs and prices adjusted to 2017 CDN$
Economic analysis assumptions
@cropdoc2
Source: Deen (2017)
Conventional Tillage Reduced Tillage
+
CCCC $2,519 $2,387
CCSS $2,137 $2,323
CCSW $2,744 $3,047
CCSW(rc) $2,980 $3,122
C – corn, S – soybeans, W – winter wheat, (rc) – underseeded red clover.
*Oats replaced first year barley in the spring cereal rotations starting in 2000.
+
Average revenue by rotation (1982-2013), in $ ha
-1
.
$799$843
Source: Deen (2017)
$843/ha greater net return for plowed CCSW(rc) compared to CCSS
• Yes but….
– Not everyone can sell straw - $350/ha
– Red clover does not always establish
- Lose N credit - $102/ha
- Lose soybean yield increase - $26/ha
- Lose corn yield increase - $27/ha
– A shorter season soybean is required - $60/ha
– CCSS not the same as CSCS - $123/ha
Total deductions - $688/ha
Source: Deen (2017)@cropdoc2
=$155/ha ?
• BUT…….
- Other cover crops than red clover ??/ha
- Grazing/forage opportunities of cover crops ??/ha
- Herbicide resistance management improved ??/ha
- More opportunity to sustainably sell crop residue ??/ha
- More timely seeding of corn and soybean ??/ha
- Future rotation benefit may be much larger ??/ha
- Increased potential for environmental service ??/ha
CCSW(rc) net return is (only) $155 greater than CCSS
Source: Deen (2017)@cropdoc2
Corn Soybean Wheat
Marginal yield
increase
+10 bu/ac +5 bu/ac
$/bu $4.50/bu $13.00/bu
Crop value
increase
$45/ac $65/ac
+ N credit $35/ac $0
Marginal rev
Corn Soybean Wheat
Marginal yield
increase
+10 bu/ac +5 bu/ac
$/bu $4.50/bu $13.00/bu
Crop value
increase
$45/ac $65/ac
+ N credit $35/ac $0
Marginal rev $80/ac $65/ac $145/ac
Corn Soybean Wheat
Marginal yield
increase
+10 bu/ac +5 bu/ac
$/bu $4.50/bu $13.00/bu
Crop value
increase
$45/ac $65/ac
+ N credit $35/ac $0
Marginal rev $80/ac $65/ac $145/ac
In equivalent wheat yield @ $5.50/bu +26 bu/ac
OR in equivalent wheat price @ 90 bu/ac +$1.61/bu
Submitted: Assessing long-term historical and future trends in corn yields and soil carbon under diversified crop rotations. Jarecki et al. (2017)
Future
trends in
corn yields
vs. rotation
37 bu/ac diff
CCSS vs CSW
64 bu/ac diff
CCSS vs CCSW
Long-term trials show corn-soybean rotations:
• Reduce yield and causes greater yield instability
• Lower soil organic matter/poorest soil structure
• Increase N requirement for corn
• Reduces opportunity to incorporate cover crops
• Reduces opportunity for sustainable biomass removal
• Reduces profitability
Meyer-Aurich et al, 2006a; Meyer-Aurich et al 2006b; Sanscartier et al, 2013; Munkholm et
al, 2012; Munkholm et al, 2013; Muellera et al, 2009; Gaudin et al, 2013; Gaudin et al. 2014;
Gaudin et al. 2015, Kludze et al. 2013.; Van Eerd et al.. 2014
Source: Deen (2017)
@cropdoc2
QUESTIONS?
Dave Hooker dhooker@uoguelph.ca
@cropdoc2
9. Environmental Stress Tolerance - Dave Hooker

9. Environmental Stress Tolerance - Dave Hooker

  • 1.
    Dr. Dave Hooker Universityof Guelph Ridgetown Campus Email: dhooker@uoguelph.ca Dr. Bill Deen University of Guelph, Dept. of Plant Agriculture @cropdoc2 Can Crop Management Improve Environmental Stress Tolerance?
  • 2.
    Declining Crop Diversityin Ontario, 1981-2013 (Ontario Ministry of Agriculture, Food and Rural Affairs, Field Statistics 2014) Harvested areas (hectares) of major field crops shown as % of total harvested area from 1970 to 2014 for Ontario. (Source: Statistics Canada, 2016.) (Reproduced from Deen et al., 2016)
  • 3.
    % total harvestedareas USDA-NASS, 2014 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… Michigan 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 1… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… 2… Minnesota 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 19… 19… 19… 19… 19… 19… 19… 19… 19… 19… 19… 19… 19… 19… 19… 19… 19… 19… 19… 20… 20… 20… 20… 20… 20… 20… 20… 20… 20… 20… 20… 20… 20… Iowa
  • 5.
    Image of anold farmstead
  • 6.
    Image of anold farmstead • yield improvement • nitrogen supply • weed, disease and insect management • integration with livestock • labour distribution • risk mitigation • soil quality enhancement “Past” Reasons for Crop Rotation @cropdoc2
  • 7.
    Drivers of rotationchange – “past” to “present” • Synthetic fertilizers • Herbicides, insecticides, fungicides • Improvements in crop genetics – e.g. GMO • Specialization and separation of crop and livestock production • Increase in equipment size • Government programs • Market demand • %age of rented land Source: Bill Deen (UG) @cropdoc2
  • 8.
    • Crop rotationdiversity vs. • corn and soybean yield? • N requirements for corn? • Soil quality? • Economics? • Impact of cover crops in the long-term? Questions only for long-term studies
  • 9.
  • 10.
    • Initiated in1980 • Rotations – CCCC, AAAA, CCAA, CCSS, CCSW, CCSWrc, CCOB, CCOrcBrc • Conventional tillage and no-till Corn Soybean Alfalfa Barley Wheat Elora Long-term Tillage-Crop Rotation ~2800 CHU, silt loam @cropdoc2
  • 11.
    • Est. 1995 •7 Crop Rotations • C-C, S-S, C-S, C-S-W, C-S-Wrc, S-W, S-Wrc • 4 N rates in corn and wheat • 2 tillage systems (MB and NT/Strip-till) Ridgetown Long-term Tillage-N-Crop Rotation, 3300 CHU, clay loam @cropdoc2 @cropdoc2
  • 12.
    No-Till Corn 1995-2011 FallStrip-Till 2012-2014 @cropdoc2
  • 13.
    Impact of diversityon corn yield?
  • 14.
    GrainYield(bu/ac) Tillage x CropRotation on Corn Yields Ridgetown 2009-16 using 120 lbs fertilizer N/ac Note: Mean separation within tillage system (p=0.05) 157c 141c 152c 169b172b 174ab 192a 183a 100 110 120 130 140 150 160 170 180 190 200 Plow No-Till C-S C-C C-S-W C-S-Wrc C-S C-C C-S-W C-S-Wrc @cropdoc2
  • 15.
    Rotation complexity effecton corn yield: Elora 1982-2012 7500 7700 7900 8100 8300 8500 8700 8900 9100 9300 CC CS CSW COB CSWrc COrcBrc CA Meancornyields(kgha-1) Deen (UG) Tilled NT
  • 16.
    First Year CornYield: Elora Rotation Trial 1982-2013 Moldboard plow Reduced-till/NT Source: Deen (2017)
  • 17.
    Impact of underseededred clover on subsequent corn yields?
  • 18.
    186 157 175 217 202 217 190 191 198 162 184 214 228 225 200 200 100 120 140 160 180 200 220 240 GrainYield(bu/ac) 20102011 Corn Yields after Wheat +/- Red Clover Ridgetown 2010-16 +RC 2012 Ave Hooker (UG Ridgetown) Fertilizer N applied to all plots @ 180-240 lbs N/ac (N sufficient) * = difference significant at P=0.05 2013 +RC +RC +RC +RC @cropdoc2 +RC +RC +RC 2014 2015 2016 *
  • 19.
    Impact of croprotation diversity on fertilizer N requirements for corn?
  • 20.
    95c 90d91c 112c 119b 139b 148a 156a 50 70 90 110 130 150 Corn yield responseto soil N capacity -- zero fertilizer N – Ridgetown 2010-2014 Hooker (UG) Yield (bu/ac) Tilled No-Till n=20 observations per mean (4 reps x 5 years) Mean separation within tillage Fisher’s Protected LSD (0.05) CC CS CSW CSW rc @cropdoc2 CC CS CSW CSW rc
  • 21.
    +173a +173a+173a 139a 158ab 112ab 84b 101b 0 20 40 60 80 100 120 140 160 180 200 No-till +crop rotation reduces N fertilizer requirement Ridgetown 2010-2014 Hooker (UG) (lbs N/ac) Tilled No-Till n=20 observations per mean (4 reps x 5 years) MERN >173 lbs N/ac in “+173” values Mean separation within tillage Fisher’s Protected LSD (0.05) Maximum Economic Rates of N in corn @cropdoc2 CC CS CSW CSW rc CC CS CSW CSW rc
  • 22.
    Impact of croprotation diversity on soybean yield?
  • 23.
    GrainYield(bu/ac) Tillage x CropRotation on Soybean Yields Ridgetown 2009-16 Note: Mean separation within tillage system (p=0.05) 56.4b 60.1c 58.2b 61.7c 64.6a 65.3ab 66.2a 64.0b 64.6a 66.7a 66.2a 64.4b 50 52 54 56 58 60 62 64 66 68 Plow No-Till S-S C-S C-S-W C-S-Wrc S-Wrc S-W S-S C-S C-S-W C-S-Wrc S-Wrc S-W @cropdoc2
  • 24.
    Rotation effect onsoybean yield: Elora 1982-2012 2000 2200 2400 2600 2800 3000 3200 CCSS CCSW CCSWRC Soybeanyields(kgha-1) CS CSW CSWrc a b b a b b Tilled NT Deen (UG) (36) (42)
  • 25.
    First Year SoybeanYield: Elora rotation trial 1982-2013 Moldboard plow Reduced-till/NT Source: Deen (2017)
  • 26.
    Impact of croprotation diversity in future years with greater weather extremes?
  • 27.
    y = 1.0025x- 1936.5 y = 2.0993x - 4071.4 y = 0.3393x - 639.43 0 20 40 60 80 100 120 140 160 180 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 Yield(bu/ac) CORN SOY WHEAT Trending Yield in Ontario, 1981-2016 @cropdoc2
  • 28.
    Higher crop yieldsrequire more water corn @cropdoc2
  • 29.
  • 30.
  • 31.
    Crop Rotation andStress Reduction How much can you impact the water supply to your crop? @cropdoc2
  • 32.
    <Cold/wet years Hot/dry years Highyielding years <Cold/wet years Hot/dry years @cropdoc2 CSW CSWrc Hot/dry years Hot/dry years High yielding years High yielding years
  • 33.
    CSW CSWrc < Cold/wet years Hot/dryyears < High yielding years < Cold/wet years Hot/dry years < High yielding years Hot/dry years Hot/dry years @cropdoc2
  • 34.
    Evidence that wateris becoming more limiting Metrics • Yield stability: “downside risk” • Yield volatility: “temporal yield variability” @cropdoc2
  • 35.
    Evidence that wateris becoming more limiting Metrics • Yield stability: “downside risk” • Yield volatility: “temporal yield variability” • Elora and Ridgetown corn and soybean yields unstable in hot, dry summers (Gaudin et al. PLOSone, 2015) • In 4 US States (IL, MI, MN, PA) 2000-2014 (Williams et al. PLOSone, 2016) • drought and heat lowered yields and increased instability/volatility • Soil water holding capacity buffered weather effects • SOM and yield stability strongly correlated (Pan et al. 2009; Congreves et al 2016) @cropdoc2
  • 36.
  • 37.
  • 38.
    Change in SOMfrom 2002-2016 All Ontario vs. Essex, Lambton, Kent Counties 12,300-23,100 samples per year SOM Trend in Ontario 2002-2016: 12-23K samples/year Data from Jack Legg (SGS Labs); compiled by Brown (OMAFRA)
  • 39.
    15-yr trend forEssex, Lambton, Kent Counties; 0.8% decline = 16,000 lbs/ac less SOM Data from Jack Legg (SGS Labs); compiled by Brown (OMAFRA) Change in SOM from 2002-2016 All Ontario vs. Essex, Lambton, Kent Counties 12,300-23,100 samples per year SOM Trend in Ontario 2002-2016: 12-23K samples/year
  • 40.
    Economics of adiverse rotation -- it’s more complicated than you may think --
  • 41.
    • Input costs- 2017 Field Crop Budgets, OMAFRA, 2017 • P and K by crop removal • NPK costs – 2013-2017 Crop Input Surveys • Crop prices: 2012-2015 OMAFRA Field Crops Statistics • Straw removed: yield, price and P and K removal cost estimated • All costs and prices adjusted to 2017 CDN$ Economic analysis assumptions @cropdoc2 Source: Deen (2017)
  • 42.
    Conventional Tillage ReducedTillage + CCCC $2,519 $2,387 CCSS $2,137 $2,323 CCSW $2,744 $3,047 CCSW(rc) $2,980 $3,122 C – corn, S – soybeans, W – winter wheat, (rc) – underseeded red clover. *Oats replaced first year barley in the spring cereal rotations starting in 2000. + Average revenue by rotation (1982-2013), in $ ha -1 . $799$843 Source: Deen (2017)
  • 43.
    $843/ha greater netreturn for plowed CCSW(rc) compared to CCSS • Yes but…. – Not everyone can sell straw - $350/ha – Red clover does not always establish - Lose N credit - $102/ha - Lose soybean yield increase - $26/ha - Lose corn yield increase - $27/ha – A shorter season soybean is required - $60/ha – CCSS not the same as CSCS - $123/ha Total deductions - $688/ha Source: Deen (2017)@cropdoc2 =$155/ha ?
  • 44.
    • BUT……. - Othercover crops than red clover ??/ha - Grazing/forage opportunities of cover crops ??/ha - Herbicide resistance management improved ??/ha - More opportunity to sustainably sell crop residue ??/ha - More timely seeding of corn and soybean ??/ha - Future rotation benefit may be much larger ??/ha - Increased potential for environmental service ??/ha CCSW(rc) net return is (only) $155 greater than CCSS Source: Deen (2017)@cropdoc2
  • 45.
    Corn Soybean Wheat Marginalyield increase +10 bu/ac +5 bu/ac $/bu $4.50/bu $13.00/bu Crop value increase $45/ac $65/ac + N credit $35/ac $0 Marginal rev
  • 46.
    Corn Soybean Wheat Marginalyield increase +10 bu/ac +5 bu/ac $/bu $4.50/bu $13.00/bu Crop value increase $45/ac $65/ac + N credit $35/ac $0 Marginal rev $80/ac $65/ac $145/ac
  • 47.
    Corn Soybean Wheat Marginalyield increase +10 bu/ac +5 bu/ac $/bu $4.50/bu $13.00/bu Crop value increase $45/ac $65/ac + N credit $35/ac $0 Marginal rev $80/ac $65/ac $145/ac In equivalent wheat yield @ $5.50/bu +26 bu/ac OR in equivalent wheat price @ 90 bu/ac +$1.61/bu
  • 48.
    Submitted: Assessing long-termhistorical and future trends in corn yields and soil carbon under diversified crop rotations. Jarecki et al. (2017) Future trends in corn yields vs. rotation 37 bu/ac diff CCSS vs CSW 64 bu/ac diff CCSS vs CCSW
  • 49.
    Long-term trials showcorn-soybean rotations: • Reduce yield and causes greater yield instability • Lower soil organic matter/poorest soil structure • Increase N requirement for corn • Reduces opportunity to incorporate cover crops • Reduces opportunity for sustainable biomass removal • Reduces profitability Meyer-Aurich et al, 2006a; Meyer-Aurich et al 2006b; Sanscartier et al, 2013; Munkholm et al, 2012; Munkholm et al, 2013; Muellera et al, 2009; Gaudin et al, 2013; Gaudin et al. 2014; Gaudin et al. 2015, Kludze et al. 2013.; Van Eerd et al.. 2014 Source: Deen (2017) @cropdoc2
  • 50.