Lab 08
• Introduction
• The definition of a root locus
• Construction of root loci
• Closed loop stability via root locus
Introduction
• Consider a unity feedback control system shown
below.
• The open loop transfer function G(s) of the system
is
• And the closed transfer function is
K
s
K
s
G
s
G
s
R
s
C





1
)
(
1
)
(
)
(
)
(
1

s
K
)
(s
R )
(s
C
1
)
(


s
K
s
G
Introduction
• The open loop stability does not depend upon gain
K.
• Whereas, the location of closed loop poles vary
with the variation in gain.
K
s
K
s
R
s
C



1
)
(
)
(
1
)
(


s
K
s
G
Introduction
• Location of closed loop Pole for different values of K
(remember K>0).
K
s
K
s
R
s
C



1
)
(
)
(
K Pole
0.5 -1.5
1 -2
2 -3
3 -4
5 -6
10 -11
15 -16
Pole-Zero Map
Imaginary
Axis
-16 -14 -12 -10 -8 -6 -4 -2
-0.5
0
0.5
1
0

K


K
What is Root Locus?
• The root locus is the path of the roots of the
characteristic equation traced out in the s-plane
as a system parameter varies from zero to infinity.
How to Sketch root locus?
• One way is to compute the roots of the
characteristic equation for all possible values
of K.
K
s
K
s
R
s
C



1
)
(
)
(
K Pole
0.5 -1.5
1 -2
2 -3
3 -4
5 -6
10 -11
15 -16
How to Sketch root locus?
• Computing the roots for all values of K might
be tedious for higher order systems.
K
s
s
s
s
K
s
R
s
C





)
20
)(
10
)(
1
(
)
(
)
(
K Pole
0.5 ?
1 ?
2 ?
3 ?
5 ?
10 ?
15 ?
Construction of Root Loci
• Finding the roots of the characteristic equation of degree
higher than 3 is laborious and will need computer
solution.
• A simple method for finding the roots of the
characteristic equation has been developed by W. R.
Evans and used extensively in control engineering.
• This method, called the root-locus method, is one in
which the roots of the characteristic equation are plotted
for all values of a system parameter.
Construction of Root Loci
• The roots corresponding to a particular value of this
parameter can then be located on the resulting
graph.
• Note that the parameter is usually the gain, but any
other variable of the open-loop transfer function
may be used.
• By using the root-locus method the designer can
predict the effects on the location of the closed-loop
poles of varying the gain value or adding open-loop
poles and/or open-loop zeros.
Angle & Magnitude Conditions
• In constructing the root loci angle and magnitude
conditions are important.
• Consider the system shown in following figure.
• The closed loop transfer function is
)
(
)
(
1
)
(
)
(
)
(
s
H
s
G
s
G
s
R
s
C


Construction of Root Loci
• The characteristic equation is obtained by setting the
denominator polynomial equal to zero.
• Or
• Where G(s)H(s) is a ratio of polynomial in s.
• Since G(s)H(s) is a complex quantity it can be split
into angle and magnitude part.
0
)
(
)
(
1 
 s
H
s
G
1
)
(
)
( 

s
H
s
G
Angle & Magnitude Conditions
• The angle of G(s)H(s)=-1 is
• Where k=1,2,3…
• The magnitude of G(s)H(s)=-1 is
)
1
2
(
180
)
(
)
(
1
)
(
)
(








k
s
H
s
G
s
H
s
G

1
)
(
)
(
1
)
(
)
(



s
H
s
G
s
H
s
G
Angle & Magnitude Conditions
• Angle Condition
• Magnitude Condition
• The values of s that fulfill both the angle and
magnitude conditions are the roots of the
characteristic equation, or the closed-loop poles.
• A locus of the points in the complex plane satisfying
the angle condition alone is the root locus.
...)
3
,
2
,
1
(
)
1
2
(
180
)
(
)
( 



 k
k
s
H
s
G 
1
)
(
)
( 
s
H
s
G
Construction of root loci
• Step-1: The first step in constructing a root-locus plot
is to locate the open-loop poles and zeros in s-plane.
)
2
)(
1
(
)
(
)
(



s
s
s
K
s
H
s
G
-5 -4 -3 -2 -1 0 1 2
-1
-0.5
0
0.5
1
Pole-Zero Map
Real Axis
Imaginary
Axis
-5 -4 -3 -2 -1 0 1 2
-1
-0.5
0
0.5
1
Pole-Zero Map
Imaginary
Axis Construction of root loci
• Step-2: Determine the root loci on the real axis.
Construction of root loci
• Step-3: Determine the asymptotes of the root loci.
Asymptote is the straight line approximation of a curve
Actual Curve
Asymptotic Approximation
Construction of root loci
• Step-3: Determine the asymptotes of the root loci.
• where
• n-----> number of poles
• m-----> number of zeros
• For this Transfer Function
m
n
k
asymptotes
of
Angle






)
1
2
(
180

)
2
)(
1
(
)
(
)
(



s
s
s
K
s
H
s
G
0
3
)
1
2
(
180





k

Construction of root loci
• Step-3: Determine the asymptotes of the root loci.
• Since the angle repeats itself as k is varied, the distinct angles
for the asymptotes are determined as 60°, –60°, -180°and
180°.
• Thus, there are three asymptotes having angles 60°, –60°,
180°.
3
when
420
2
when
300
1
when
180
0
n
whe
60
















k
k
k
k

Construction of root loci
• Step-3: Determine the asymptotes of the root loci.
• Before we can draw these asymptotes in the complex
plane, we must find the point where they intersect the
real axis.
• Point of intersection of asymptotes on real axis (or
centroid of asymptotes) can be find as out
m
n
zeros
poles






Construction of root loci
• Step-3: Determine the asymptotes of the root loci.
• For
0
3
0
)
2
1
0
(






)
2
)(
1
(
)
(
)
(



s
s
s
K
s
H
s
G
1
3
3





Construction of root loci
• Step-3: Determine the asymptotes of the root loci.
-5 -4 -3 -2 -1 0 1 2
-1
-0.5
0
0.5
1
Pole-Zero Map
Real Axis
Imaginary
Axis


60

 60

180




 180
,
60
,
60

1



Home Work
• Consider following unity feedback system.
• Determine
– Root loci on real axis
– Angle of asymptotes
– Centroid of asymptotes
Construction of root loci
• Step-4: Determine the breakaway point.
• The breakaway point
corresponds to a point
in the s plane where
multiple roots of the
characteristic equation
occur.
• It is the point from
which the root locus
branches leaves real
axis and enter in
complex plane. -5 -4 -3 -2 -1 0 1 2
-1
-0.5
0
0.5
1
Pole-Zero Map
Real Axis
Imaginary
Axis
Construction of root loci
• Step-4: Determine the break-in point.
• The break-in point
corresponds to a point
in the s plane where
multiple roots of the
characteristic equation
occur.
• It is the point where the
root locus branches
arrives at real axis.
-5 -4 -3 -2 -1 0 1 2
-1
-0.5
0
0.5
1
Pole-Zero Map
Real Axis
Imaginary
Axis
Construction of root loci
• Step-4: Determine the breakaway point or break-in point.
• The breakaway or break-in points can be determined from the
roots of
• It should be noted that not all the solutions of dK/ds=0
correspond to actual breakaway points.
• If a point at which dK/ds=0 is on a root locus, it is an actual
breakaway or break-in point.
• Stated differently, if at a point at which dK/ds=0 the value of K
takes a real positive value, then that point is an actual breakaway
or break-in point.
0

ds
dK
Construction of root loci
• Step-4: Determine the breakaway point or break-in point.
• The characteristic equation of the system is
• The breakaway point can now be determined as
)
2
)(
1
(
)
(
)
(



s
s
s
K
s
H
s
G
0
)
2
)(
1
(
1
)
(
)
(
1 





s
s
s
K
s
H
s
G
1
)
2
)(
1
(



 s
s
s
K
 
)
2
)(
1
( 


 s
s
s
K
 
)
2
)(
1
( 


 s
s
s
ds
d
ds
dK
Construction of root loci
• Step-4: Determine the breakaway point or break-in point.
• Set dK/ds=0 in order to determine breakaway point.
 
)
2
)(
1
( 


 s
s
s
ds
d
ds
dK
 
s
s
s
ds
d
ds
dK
2
3 2
3




2
6
3 2



 s
s
ds
dK
0
2
6
3 2



 s
s
0
2
6
3 2


 s
s
5774
.
1
4226
.
0




s
Construction of root loci
• Step-4: Determine the breakaway point or break-in point.
• Since the breakaway point must lie on a root locus between 0
and –1, it is clear that s=–0.4226 corresponds to the actual
breakaway point.
• Point s=–1.5774 is not on the root locus. Hence, this point is
not an actual breakaway or break-in point.
• In fact, evaluation of the values of K corresponding to s=–
0.4226 and s=–1.5774 yields
5774
.
1
4226
.
0




s
Construction of root loci
• Step-4: Determine the breakaway point.
-5 -4 -3 -2 -1 0 1 2
-1
-0.5
0
0.5
1
Pole-Zero Map
Real Axis
Imaginary
Axis


60

 60

180
4226
.
0


s
Construction of root loci
• Step-4: Determine the breakaway point.
4226
.
0


s
-5 -4 -3 -2 -1 0 1 2
-1
-0.5
0
0.5
1
Pole-Zero Map
Real Axis
Imaginary
Axis
Construction of root loci
• Step-5: Determine the points where root loci cross the
imaginary axis.
-5 -4 -3 -2 -1 0 1 2
-1
-0.5
0
0.5
1
Pole-Zero Map
Imaginary
Axis


60

 60

180
Construction of root loci
• Step-5: Determine the points where root loci cross the
imaginary axis.
– These points can be found by use of Routh’s stability criterion.
– Since the characteristic equation for the present system is
– The Routh Array Becomes
Construction of root loci
• Step-5: Determine the points where root loci cross the
imaginary axis.
• The value(s) of K that makes the system
marginally stable is 6.
• The crossing points on the imaginary
axis can then be found by solving the
auxiliary equation obtained from the
s2 row, that is,
• Which yields
Construction of root loci
• Step-5: Determine the points where root loci cross the
imaginary axis.
• An alternative approach is to let s=jω in the characteristic
equation, equate both the real part and the imaginary part to
zero, and then solve for ω and K.
• For present system the characteristic equation is
0
2
3 2
3



 K
s
s
s
0
2
)
(
3
)
( 2
3



 K
j
j
j 


0
)
2
(
)
3
( 3
2



 

 j
K
Construction of root loci
• Step-5: Determine the points where root loci cross the
imaginary axis.
• Equating both real and imaginary parts of this equation
to zero
• Which yields
0
)
2
(
)
3
( 3
2



 

 j
K
0
)
3
( 2

 
K
0
)
2
( 3



-7 -6 -5 -4 -3 -2 -1 0 1 2
-5
-4
-3
-2
-1
0
1
2
3
4
5
Root Locus
Real Axis
Imaginary
Axis
Example#1
• Consider following unity feedback system.
• Determine the value of K such that the damping ratio of
a pair of dominant complex-conjugate closed-loop poles
is 0.5.
)
2
)(
1
(
)
(
)
(



s
s
s
K
s
H
s
G
Example#1
• The damping ratio of 0.5 corresponds to

 cos


 1
cos



 
60
)
5
.
0
(
cos 1

?
Example#1
• The value of K that yields such poles is found from the
magnitude condition
1
)
2
)(
1
( 5780
.
0
3337
.
0


 

 j
s
s
s
s
K
Example#1
• The third closed loop pole at K=1.0383 can be obtained
as
0
)
2
)(
1
(
1
)
(
)
(
1 





s
s
s
K
s
H
s
G
0
)
2
)(
1
(
0383
.
1
1 



s
s
s
0
0383
.
1
)
2
)(
1
( 


 s
s
s
Home Work
• Consider following unity feedback system.
• Determine the value of K such that the natural
undamped frequency of dominant complex-conjugate
closed-loop poles is 1 rad/sec.
)
2
)(
1
(
)
(
)
(



s
s
s
K
s
H
s
G
-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
Root Locus
Imaginary
Axis
-0.2+j0.96
Example#2
• Sketch the root locus of following system and
determine the location of dominant closed loop
poles to yield maximum overshoot in the step
response less than 30%.
Example#2
• Step-1: Pole-Zero Map
-5 -4 -3 -2 -1 0 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Pole-Zero Map
Real Axis
Imaginary
Axis
Example#2
• Step-2: Root Loci on Real axis
-5 -4 -3 -2 -1 0 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Pole-Zero Map
Real Axis
Imaginary
Axis
Example#2
• Step-3: Asymptotes
-5 -4 -3 -2 -1 0 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Pole-Zero Map
Real Axis
Imaginary
Axis


 90

2



Example#2
• Step-4: breakaway point
-5 -4 -3 -2 -1 0 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
Pole-Zero Map
Real Axis
Imaginary
Axis
-1.55
Example#2
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-8
-6
-4
-2
0
2
4
6
8
Root Locus
Real Axis
Imaginary
Axis
Example#2
• Mp<30% corresponds to
100
2
1

 



e
M p
100
%
30
2
1

 



e
35
.
0


Example#2
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-8
-6
-4
-2
0
2
4
6
8
0.35
0.35
6
6
Root Locus
Real Axis
Imaginary
Axis
Example#2
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
-8
-6
-4
-2
0
2
4
6
8
0.35
0.35
6
6
System: sys
Gain: 28.9
Pole: -1.96 + 5.19i
Damping: 0.354
Overshoot (%): 30.5
Frequency (rad/sec): 5.55
Root Locus
Real Axis
Imaginary
Axis
Consider the following unity feedback system
num=[1 0];
den=[1 1];
G=tf(num,den);
rlocus(G)
sgrid
1

S
KS
)
(S
R )
(S
C


1

S
KS
)
(S
R )
(S
C


1
)
2
(


S
S
K
)
(S
R )
(S
C


Consider the following unity feedback system
num=1;
den1=[1 0];
den2=[1 3];
den=conv(den1,den2);
G=tf(num,den);
rlocus(G)
sgrid
)
3
( 
S
S
K
)
(S
R )
(S
C


)
1
(
)
3
(


S
S
S
K
)
(S
R )
(S
C


)
(S
R )
(S
C


)
1
(
)
3
)(
2
(



S
S
S
S
K
(1)
(2)
Consider the following unity feedback system
)
(S
R )
(S
C


)
2
)(
1
( 
 S
S
S
K
Determine the closed loop gain that would
make the system marginally stable.
num=1;
den1=[1 0];
den2=[1 1];
den3=[1 2];
den12=conv(den1,den2);
den=conv(den12,den3);
G=tf(num,den);
rlocus(G)
sgrid
)
(S
R )
(S
C


)
2
)(
1
(
)
3
(



S
S
S
S
K
)
(S
R )
(S
C


)
2
)(
1
(
)
5
)(
3
(




S
S
S
S
S
K
(1)
(2)
k=3;
z=-5;
p=[0 -1 -2];
G=zpk(z,p,k);
rlocus(G)
sgrid
)
(S
R )
(S
C


)
2
)(
1
(
)
5
(
3



S
S
S
S
1
4
3
3
2
)
( 2




S
S
S
S
G
num=[2 3];
den=[3 4 1];
G=tf(num,den);
[kd,poles]=rlocfind(G)
sgrid
• Consider the Following Unity feedback system
k=4
p=[0 -2 ]
z=[];
usys=zpk(z,p,k)
rlocus(usys)
csys=feedback(usys,1)
[wn b]=damp(csys)
sgrid(b,wn)
axis([-3 0 -3 3 ])
)
( 2
4

S
S
)
(S
R )
(S
C


Design Requirements
• It is desired to increase ωn to 4 rad/sec without changing
damping ratio of closed loop poles.
k=4
p=[0 -2 ]
z=[];
usys=zpk(z,p,k)
rlocus(usys)
wn=[2 4]; b=[0.5 0.5];
sgrid(b,wn)
axis([-5 0 -5 5 ])
)
( 2
4

S
S
)
(S
R )
(S
C


)
4
.
5
(
)
9
.
2
(
68
.
4
)
(



S
S
S
Gc
kc=4.68
pc=-5.4
zc=-2.9
lc=zpk(zc,pc,kc)
ltiview(lc)
Root locus of Compensated & uncompensated Systems
)
4
.
5
)(
2
(
)
9
.
2
(
7
.
18
)
(
)
(




S
S
S
S
S
G
S
G c
b=0.5; wn=[2 4];
ku=4
pu=[0 -2 ]
zu=[ ];
usys=zpk(zu,pu,ku)
k=18.7
p=[0 -2 -5.4]
z=-2.9
csys=zpk(z,p,k)
rlocus(usys, ‘g’,csys,’b’)
Sgrid(b,wn)
)
2
(
4
)
(


S
S
S
G
Compensated Vs Uncompensated System
Root Locus
Real Axis
Imag
Axis
-5 -4 -3 -2 -1 0
-10
-8
-6
-4
-2
0
2
4
6
8
10
4
2
4
2
0.5
0.5
Root locus of Compensated & uncompensated Systems
Compensated Vs Uncompensated System
Response of compensated & Uncompensated system
23
.
54
5
.
29
4
.
7
23
.
54
7
.
18
)
(
)
(
1
)
(
)
(
2
3





 S
S
S
S
S
G
S
G
S
G
S
G
c
c
numu=4;
denu=[1 2 4];
numc=[18.7 54.23];
denc=[1 7.4 29.5 54.23];
csys=tf(numc,denc);
usys=tf(numu,denu);
ltiview(usys, ‘g:’,csys,’b’)
4
2
4
)
(
1
)
(
2



 S
S
S
G
S
G
Compensated Vs Uncompensated System
Step Response
Time (sec)
Amplitude
0 1 2 3 4 5 6
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Step response of Compensated & Uncompensated System
Compensated Vs Uncompensated System

8dassajdlkasjdaslkdjaslkdjaslkdjasldkajsdlkasjdlk

  • 1.
    Lab 08 • Introduction •The definition of a root locus • Construction of root loci • Closed loop stability via root locus
  • 2.
    Introduction • Consider aunity feedback control system shown below. • The open loop transfer function G(s) of the system is • And the closed transfer function is K s K s G s G s R s C      1 ) ( 1 ) ( ) ( ) ( 1  s K ) (s R ) (s C 1 ) (   s K s G
  • 3.
    Introduction • The openloop stability does not depend upon gain K. • Whereas, the location of closed loop poles vary with the variation in gain. K s K s R s C    1 ) ( ) ( 1 ) (   s K s G
  • 4.
    Introduction • Location ofclosed loop Pole for different values of K (remember K>0). K s K s R s C    1 ) ( ) ( K Pole 0.5 -1.5 1 -2 2 -3 3 -4 5 -6 10 -11 15 -16 Pole-Zero Map Imaginary Axis -16 -14 -12 -10 -8 -6 -4 -2 -0.5 0 0.5 1 0  K   K
  • 5.
    What is RootLocus? • The root locus is the path of the roots of the characteristic equation traced out in the s-plane as a system parameter varies from zero to infinity.
  • 6.
    How to Sketchroot locus? • One way is to compute the roots of the characteristic equation for all possible values of K. K s K s R s C    1 ) ( ) ( K Pole 0.5 -1.5 1 -2 2 -3 3 -4 5 -6 10 -11 15 -16
  • 7.
    How to Sketchroot locus? • Computing the roots for all values of K might be tedious for higher order systems. K s s s s K s R s C      ) 20 )( 10 )( 1 ( ) ( ) ( K Pole 0.5 ? 1 ? 2 ? 3 ? 5 ? 10 ? 15 ?
  • 8.
    Construction of RootLoci • Finding the roots of the characteristic equation of degree higher than 3 is laborious and will need computer solution. • A simple method for finding the roots of the characteristic equation has been developed by W. R. Evans and used extensively in control engineering. • This method, called the root-locus method, is one in which the roots of the characteristic equation are plotted for all values of a system parameter.
  • 9.
    Construction of RootLoci • The roots corresponding to a particular value of this parameter can then be located on the resulting graph. • Note that the parameter is usually the gain, but any other variable of the open-loop transfer function may be used. • By using the root-locus method the designer can predict the effects on the location of the closed-loop poles of varying the gain value or adding open-loop poles and/or open-loop zeros.
  • 10.
    Angle & MagnitudeConditions • In constructing the root loci angle and magnitude conditions are important. • Consider the system shown in following figure. • The closed loop transfer function is ) ( ) ( 1 ) ( ) ( ) ( s H s G s G s R s C  
  • 11.
    Construction of RootLoci • The characteristic equation is obtained by setting the denominator polynomial equal to zero. • Or • Where G(s)H(s) is a ratio of polynomial in s. • Since G(s)H(s) is a complex quantity it can be split into angle and magnitude part. 0 ) ( ) ( 1   s H s G 1 ) ( ) (   s H s G
  • 12.
    Angle & MagnitudeConditions • The angle of G(s)H(s)=-1 is • Where k=1,2,3… • The magnitude of G(s)H(s)=-1 is ) 1 2 ( 180 ) ( ) ( 1 ) ( ) (         k s H s G s H s G  1 ) ( ) ( 1 ) ( ) (    s H s G s H s G
  • 13.
    Angle & MagnitudeConditions • Angle Condition • Magnitude Condition • The values of s that fulfill both the angle and magnitude conditions are the roots of the characteristic equation, or the closed-loop poles. • A locus of the points in the complex plane satisfying the angle condition alone is the root locus. ...) 3 , 2 , 1 ( ) 1 2 ( 180 ) ( ) (      k k s H s G  1 ) ( ) (  s H s G
  • 14.
    Construction of rootloci • Step-1: The first step in constructing a root-locus plot is to locate the open-loop poles and zeros in s-plane. ) 2 )( 1 ( ) ( ) (    s s s K s H s G -5 -4 -3 -2 -1 0 1 2 -1 -0.5 0 0.5 1 Pole-Zero Map Real Axis Imaginary Axis
  • 15.
    -5 -4 -3-2 -1 0 1 2 -1 -0.5 0 0.5 1 Pole-Zero Map Imaginary Axis Construction of root loci • Step-2: Determine the root loci on the real axis.
  • 16.
    Construction of rootloci • Step-3: Determine the asymptotes of the root loci. Asymptote is the straight line approximation of a curve Actual Curve Asymptotic Approximation
  • 17.
    Construction of rootloci • Step-3: Determine the asymptotes of the root loci. • where • n-----> number of poles • m-----> number of zeros • For this Transfer Function m n k asymptotes of Angle       ) 1 2 ( 180  ) 2 )( 1 ( ) ( ) (    s s s K s H s G 0 3 ) 1 2 ( 180      k 
  • 18.
    Construction of rootloci • Step-3: Determine the asymptotes of the root loci. • Since the angle repeats itself as k is varied, the distinct angles for the asymptotes are determined as 60°, –60°, -180°and 180°. • Thus, there are three asymptotes having angles 60°, –60°, 180°. 3 when 420 2 when 300 1 when 180 0 n whe 60                 k k k k 
  • 19.
    Construction of rootloci • Step-3: Determine the asymptotes of the root loci. • Before we can draw these asymptotes in the complex plane, we must find the point where they intersect the real axis. • Point of intersection of asymptotes on real axis (or centroid of asymptotes) can be find as out m n zeros poles      
  • 20.
    Construction of rootloci • Step-3: Determine the asymptotes of the root loci. • For 0 3 0 ) 2 1 0 (       ) 2 )( 1 ( ) ( ) (    s s s K s H s G 1 3 3     
  • 21.
    Construction of rootloci • Step-3: Determine the asymptotes of the root loci. -5 -4 -3 -2 -1 0 1 2 -1 -0.5 0 0.5 1 Pole-Zero Map Real Axis Imaginary Axis   60   60  180      180 , 60 , 60  1   
  • 22.
    Home Work • Considerfollowing unity feedback system. • Determine – Root loci on real axis – Angle of asymptotes – Centroid of asymptotes
  • 23.
    Construction of rootloci • Step-4: Determine the breakaway point. • The breakaway point corresponds to a point in the s plane where multiple roots of the characteristic equation occur. • It is the point from which the root locus branches leaves real axis and enter in complex plane. -5 -4 -3 -2 -1 0 1 2 -1 -0.5 0 0.5 1 Pole-Zero Map Real Axis Imaginary Axis
  • 24.
    Construction of rootloci • Step-4: Determine the break-in point. • The break-in point corresponds to a point in the s plane where multiple roots of the characteristic equation occur. • It is the point where the root locus branches arrives at real axis. -5 -4 -3 -2 -1 0 1 2 -1 -0.5 0 0.5 1 Pole-Zero Map Real Axis Imaginary Axis
  • 25.
    Construction of rootloci • Step-4: Determine the breakaway point or break-in point. • The breakaway or break-in points can be determined from the roots of • It should be noted that not all the solutions of dK/ds=0 correspond to actual breakaway points. • If a point at which dK/ds=0 is on a root locus, it is an actual breakaway or break-in point. • Stated differently, if at a point at which dK/ds=0 the value of K takes a real positive value, then that point is an actual breakaway or break-in point. 0  ds dK
  • 26.
    Construction of rootloci • Step-4: Determine the breakaway point or break-in point. • The characteristic equation of the system is • The breakaway point can now be determined as ) 2 )( 1 ( ) ( ) (    s s s K s H s G 0 ) 2 )( 1 ( 1 ) ( ) ( 1       s s s K s H s G 1 ) 2 )( 1 (     s s s K   ) 2 )( 1 (     s s s K   ) 2 )( 1 (     s s s ds d ds dK
  • 27.
    Construction of rootloci • Step-4: Determine the breakaway point or break-in point. • Set dK/ds=0 in order to determine breakaway point.   ) 2 )( 1 (     s s s ds d ds dK   s s s ds d ds dK 2 3 2 3     2 6 3 2     s s ds dK 0 2 6 3 2     s s 0 2 6 3 2    s s 5774 . 1 4226 . 0     s
  • 28.
    Construction of rootloci • Step-4: Determine the breakaway point or break-in point. • Since the breakaway point must lie on a root locus between 0 and –1, it is clear that s=–0.4226 corresponds to the actual breakaway point. • Point s=–1.5774 is not on the root locus. Hence, this point is not an actual breakaway or break-in point. • In fact, evaluation of the values of K corresponding to s=– 0.4226 and s=–1.5774 yields 5774 . 1 4226 . 0     s
  • 29.
    Construction of rootloci • Step-4: Determine the breakaway point. -5 -4 -3 -2 -1 0 1 2 -1 -0.5 0 0.5 1 Pole-Zero Map Real Axis Imaginary Axis   60   60  180 4226 . 0   s
  • 30.
    Construction of rootloci • Step-4: Determine the breakaway point. 4226 . 0   s -5 -4 -3 -2 -1 0 1 2 -1 -0.5 0 0.5 1 Pole-Zero Map Real Axis Imaginary Axis
  • 31.
    Construction of rootloci • Step-5: Determine the points where root loci cross the imaginary axis. -5 -4 -3 -2 -1 0 1 2 -1 -0.5 0 0.5 1 Pole-Zero Map Imaginary Axis   60   60  180
  • 32.
    Construction of rootloci • Step-5: Determine the points where root loci cross the imaginary axis. – These points can be found by use of Routh’s stability criterion. – Since the characteristic equation for the present system is – The Routh Array Becomes
  • 33.
    Construction of rootloci • Step-5: Determine the points where root loci cross the imaginary axis. • The value(s) of K that makes the system marginally stable is 6. • The crossing points on the imaginary axis can then be found by solving the auxiliary equation obtained from the s2 row, that is, • Which yields
  • 34.
    Construction of rootloci • Step-5: Determine the points where root loci cross the imaginary axis. • An alternative approach is to let s=jω in the characteristic equation, equate both the real part and the imaginary part to zero, and then solve for ω and K. • For present system the characteristic equation is 0 2 3 2 3     K s s s 0 2 ) ( 3 ) ( 2 3     K j j j    0 ) 2 ( ) 3 ( 3 2        j K
  • 35.
    Construction of rootloci • Step-5: Determine the points where root loci cross the imaginary axis. • Equating both real and imaginary parts of this equation to zero • Which yields 0 ) 2 ( ) 3 ( 3 2        j K 0 ) 3 ( 2    K 0 ) 2 ( 3   
  • 37.
    -7 -6 -5-4 -3 -2 -1 0 1 2 -5 -4 -3 -2 -1 0 1 2 3 4 5 Root Locus Real Axis Imaginary Axis
  • 38.
    Example#1 • Consider followingunity feedback system. • Determine the value of K such that the damping ratio of a pair of dominant complex-conjugate closed-loop poles is 0.5. ) 2 )( 1 ( ) ( ) (    s s s K s H s G
  • 39.
    Example#1 • The dampingratio of 0.5 corresponds to   cos    1 cos      60 ) 5 . 0 ( cos 1 
  • 40.
  • 41.
    Example#1 • The valueof K that yields such poles is found from the magnitude condition 1 ) 2 )( 1 ( 5780 . 0 3337 . 0       j s s s s K
  • 43.
    Example#1 • The thirdclosed loop pole at K=1.0383 can be obtained as 0 ) 2 )( 1 ( 1 ) ( ) ( 1       s s s K s H s G 0 ) 2 )( 1 ( 0383 . 1 1     s s s 0 0383 . 1 ) 2 )( 1 (     s s s
  • 45.
    Home Work • Considerfollowing unity feedback system. • Determine the value of K such that the natural undamped frequency of dominant complex-conjugate closed-loop poles is 1 rad/sec. ) 2 )( 1 ( ) ( ) (    s s s K s H s G
  • 46.
    -3 -2.5 -2-1.5 -1 -0.5 0 0.5 1 1.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 Root Locus Imaginary Axis -0.2+j0.96
  • 47.
    Example#2 • Sketch theroot locus of following system and determine the location of dominant closed loop poles to yield maximum overshoot in the step response less than 30%.
  • 48.
    Example#2 • Step-1: Pole-ZeroMap -5 -4 -3 -2 -1 0 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Pole-Zero Map Real Axis Imaginary Axis
  • 49.
    Example#2 • Step-2: RootLoci on Real axis -5 -4 -3 -2 -1 0 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Pole-Zero Map Real Axis Imaginary Axis
  • 50.
    Example#2 • Step-3: Asymptotes -5-4 -3 -2 -1 0 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Pole-Zero Map Real Axis Imaginary Axis    90  2   
  • 51.
    Example#2 • Step-4: breakawaypoint -5 -4 -3 -2 -1 0 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Pole-Zero Map Real Axis Imaginary Axis -1.55
  • 52.
    Example#2 -4.5 -4 -3.5-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 -8 -6 -4 -2 0 2 4 6 8 Root Locus Real Axis Imaginary Axis
  • 53.
    Example#2 • Mp<30% correspondsto 100 2 1       e M p 100 % 30 2 1       e 35 . 0  
  • 54.
    Example#2 -4.5 -4 -3.5-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 -8 -6 -4 -2 0 2 4 6 8 0.35 0.35 6 6 Root Locus Real Axis Imaginary Axis
  • 55.
    Example#2 -4.5 -4 -3.5-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 -8 -6 -4 -2 0 2 4 6 8 0.35 0.35 6 6 System: sys Gain: 28.9 Pole: -1.96 + 5.19i Damping: 0.354 Overshoot (%): 30.5 Frequency (rad/sec): 5.55 Root Locus Real Axis Imaginary Axis
  • 56.
    Consider the followingunity feedback system num=[1 0]; den=[1 1]; G=tf(num,den); rlocus(G) sgrid 1  S KS ) (S R ) (S C  
  • 57.
  • 58.
    Consider the followingunity feedback system num=1; den1=[1 0]; den2=[1 3]; den=conv(den1,den2); G=tf(num,den); rlocus(G) sgrid ) 3 (  S S K ) (S R ) (S C  
  • 59.
  • 60.
    Consider the followingunity feedback system ) (S R ) (S C   ) 2 )( 1 (   S S S K Determine the closed loop gain that would make the system marginally stable. num=1; den1=[1 0]; den2=[1 1]; den3=[1 2]; den12=conv(den1,den2); den=conv(den12,den3); G=tf(num,den); rlocus(G) sgrid
  • 61.
  • 62.
    k=3; z=-5; p=[0 -1 -2]; G=zpk(z,p,k); rlocus(G) sgrid ) (S R) (S C   ) 2 )( 1 ( ) 5 ( 3    S S S S
  • 63.
    1 4 3 3 2 ) ( 2     S S S S G num=[2 3]; den=[34 1]; G=tf(num,den); [kd,poles]=rlocfind(G) sgrid
  • 64.
    • Consider theFollowing Unity feedback system k=4 p=[0 -2 ] z=[]; usys=zpk(z,p,k) rlocus(usys) csys=feedback(usys,1) [wn b]=damp(csys) sgrid(b,wn) axis([-3 0 -3 3 ]) ) ( 2 4  S S ) (S R ) (S C  
  • 65.
    Design Requirements • Itis desired to increase ωn to 4 rad/sec without changing damping ratio of closed loop poles. k=4 p=[0 -2 ] z=[]; usys=zpk(z,p,k) rlocus(usys) wn=[2 4]; b=[0.5 0.5]; sgrid(b,wn) axis([-5 0 -5 5 ]) ) ( 2 4  S S ) (S R ) (S C  
  • 66.
  • 67.
    Root locus ofCompensated & uncompensated Systems ) 4 . 5 )( 2 ( ) 9 . 2 ( 7 . 18 ) ( ) (     S S S S S G S G c b=0.5; wn=[2 4]; ku=4 pu=[0 -2 ] zu=[ ]; usys=zpk(zu,pu,ku) k=18.7 p=[0 -2 -5.4] z=-2.9 csys=zpk(z,p,k) rlocus(usys, ‘g’,csys,’b’) Sgrid(b,wn) ) 2 ( 4 ) (   S S S G Compensated Vs Uncompensated System
  • 68.
    Root Locus Real Axis Imag Axis -5-4 -3 -2 -1 0 -10 -8 -6 -4 -2 0 2 4 6 8 10 4 2 4 2 0.5 0.5 Root locus of Compensated & uncompensated Systems Compensated Vs Uncompensated System
  • 69.
    Response of compensated& Uncompensated system 23 . 54 5 . 29 4 . 7 23 . 54 7 . 18 ) ( ) ( 1 ) ( ) ( 2 3       S S S S S G S G S G S G c c numu=4; denu=[1 2 4]; numc=[18.7 54.23]; denc=[1 7.4 29.5 54.23]; csys=tf(numc,denc); usys=tf(numu,denu); ltiview(usys, ‘g:’,csys,’b’) 4 2 4 ) ( 1 ) ( 2     S S S G S G Compensated Vs Uncompensated System
  • 70.
    Step Response Time (sec) Amplitude 01 2 3 4 5 6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Step response of Compensated & Uncompensated System Compensated Vs Uncompensated System