U18ECT3101
SIGNALS AND SYSTEMS
Ms. A. Kalaiselvi, AP II
Department of ECE
The Z Transform
Part I
Inverse Z - Transform
17-Jan-23 U18ECT3101 - Signals and Systems The Inverse Z Transform 2
17-Jan-23 U18ECT3101 - Signals and Systems The Inverse Z-Transform 3
Outline
• Z transform
• Forward Transform
• Pole-zero plot
• Region of Convergence (RoC)
• Properties of Z transform
• Inverse Transform
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
4
U18ECT3101 - Signals and Systems The Inverse Z Transform
The Inverse Z transform
• Given X(z), find the sequence x[n] that has X(z) as its z-transform.
• By Z- Transform pair x[n] is given by
• We need to specify both algebraic expression and ROC to make the inverse Z-transform unique.
• Techniques for finding the inverse z-transform:
 Inspection Method
 Power series Method
 Residue Method,
 Long Division Method
 Partial Fraction methods
𝒙 𝒏 =
𝟏
𝟐𝝅𝒋 𝑪
𝒛𝒏−𝟏𝑿 𝒛 𝒅𝒛
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
5
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.1 Inspection Method
In order to find the inverse z transform we compare 𝑋(𝑧) to one of the standard transform pairs
Eg. Find the inverse z-transform of
From the transform pair
x[n] = 0.5nu[n].
  1
5
0
1
1



z
z
X
.
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
6
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.2 Power Series Expansion
𝑋 𝑧 =
𝑛=−∞
∞
𝑥 𝑛 𝑧−𝑛
By Definitions The z-Transform of a signal x[n] is given by
𝑋(𝑧) =. . . +𝑥 −2 𝑧2
+ 𝑥 −1 𝑧 + 𝑥 0 + 𝑥 1 𝑧−1
+ 𝑥 2 𝑧−2
+. . .
Expanding the above equation
Any particular value of the sequence is determined by finding the coefficient of the appropriate power of 𝑧−1
This method is used .
• For Finite length sequence
• X(z) expressed as polynomial in positive and negative powersof z.
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
7
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.2 Power Series Expansion
Example: 1
 Find the inverse z-transform of
Soln:
By direct expansion of X(z), we have
Thus,
𝑋 𝑧 = 𝑧2
1 − 0.5𝑧−1
1 + 𝑧−1
1 − 𝑧−1
𝑋 𝑧 = 𝑧2
− 0.5𝑧 − 1 + 0.5𝑧−1
𝑥 𝑛 = 𝛿 𝑛 + 2 − 0.5𝛿 𝑛 + 1 − 𝛿 𝑛 + 0.5𝛿 𝑛 − 1
𝑥 𝑛 =
1 𝑛 = −2
−0.5
−1
0.5
𝑛 = −1
𝑛 = 0
𝑛 = 1
Or
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
8
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.2 Power Series Expansion
Example: 2
Find the inverse z-transform of
Using the power series expansion for log(1+x) with |x|<1, we obtain
Thus
    a
z
az
z
X 

 
1 1
log
   







1
1
1
n
n
n
n
n
z
a
z
X
   










0
0
1
1
1
n
n
n
a
n
x
n
n
/
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
9
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.3 Inverse Z-Transform of Rational Functions
If X(z) is expressed as a ratio of two polynomials, then X(z) is a rational function of z , where
𝑋 𝑧 =
𝑁 𝑧
𝐷 𝑧
In such case, the inverse z-transform is obtained by
 Long Division Method (Power series)
 Partial Fraction Expansion
 Residue Method
Note:
• For the above method , the ROC must be specified.
• Roc decides whether the given signal is causal, non causal or two sided
5.4.3.2 Inverse Z-Transform by Long Division
• Consider:
Solution:
4
2
1
)
( 3
2




z
z
z
z
X
1
1
1
2
2
3
4
3
4
2
1
4
2










z
z
z
z
z
z
z
3
2
1
3
2
1
3
2
1
1
2
2
3
3
0
12
6
4
12
6
3
4
3
4
2
1
4
2

























z
z
z
z
z
z
z
z
z
z
z
z
z
z
4
3
2
1
4
3
2
4
3
1
3
2
1
3
2
1
1
2
2
3
4
3
0
16
20
6
16
8
4
12
6
4
12
6
3
4
3
4
2
1
4
2






































z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
...
]
4
[
4
]
3
[
3
]
1
[
1
]
[
0
]
[
...
4
3
0
)
( 4
3
2
1














 



n
n
n
n
n
x
z
z
z
z
z
X




17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
11
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.3.3 Inverse Z-Transform by Partial Fraction Expansion
Partial Fraction method
• used to find inverse z-transform for rational functions
• With corresponding ROC
• 𝑀 – order of numerator polynomial
• 𝑁 - Order of denominator polynomial
 If 𝑀 ≤ 𝑁 and denominator is factorizable and has ‘k’ distinct real roots then
 The coefficients A, B, C, D are given by
𝑋 𝑧 =
𝑁(𝑧)
𝐷(𝑧)
=
𝑎0 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + ⋯ + 𝑎𝑀𝑧−𝑀
𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2 + ⋯ + 𝑏𝑀𝑧−𝑁
𝑋 𝑧
𝑧
=
𝐴1
𝑧 − 𝑧1
+
𝐴2
𝑧 − 𝑧2
+ ⋯ +
𝐴𝑘
𝑧 − 𝑧𝑘
𝐴1 = 𝑧 − 𝑧1
𝑋 𝑧
𝑧 𝑧→𝑧1
, 𝐴2 = 𝑧 − 𝑧2
𝑋 𝑧
𝑧 𝑧→𝑧2
⋯ 𝐴𝑘 = 𝑧 − 𝑧𝑘
𝑋 𝑧
𝑧 𝑧→𝑧𝑘
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
12
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.3.3 Inverse Z-Transform by Partial Fraction Expansion
 If denominator polynomial has repeated roots where
 The coefficeints are determined by
 𝑀 ≥ 𝑁 use long division to make the denominator order 𝑁 greater than the numerator order 𝑀
and apply partial fraction method.
𝑋 𝑧
𝑧
=
𝐴1
𝑧 − 𝑧1
+
𝐴2
𝑧 − 𝑧1
2
+ ⋯ +
𝐴𝑘
𝑧 − 𝑧1
𝑚
𝐴𝑘 =
1
𝑚 − 𝑘 !
𝑑𝑚−𝑘
𝑑𝑧𝑚−𝑘
𝑧 − 𝑧1
𝑚
𝑋 𝑧
𝑧 𝑧→𝑧1
𝑋 𝑧 =
𝑟=0
𝑀−𝑁
𝐵𝑧−𝑟
+
𝑘=1
𝑁
𝐴𝑘
1 − 𝑑𝑘𝑧−1
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
13
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.3.3 Inverse Z-Transform by Partial Fraction Expansion
Example: Find the inverse z- Transform of X(z)
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
14
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.3.3 Inverse Z-Transform by Partial Fraction Expansion
Example :2
Solution:
Find the inverse z-transform of
First eliminate the negative power of z.
Dividing both sides by z,
Finding the constants:
𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑏𝑦 𝑧
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
15
U18ECT3101 - Signals and Systems The Inverse Z Transform
Example 3 :
Solution:
Find 𝑦 𝑛 if
Dividing Y(z) by z,
We first find B:
Applying the partial fraction expansion,
Next find A:
5.4.3.3 Inverse Z-Transform by Partial Fraction Expansion
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
16
U18ECT3101 - Signals and Systems The Inverse Z Transform
Using the polar form,
Now we have:
Therefore, the inverse z-transform is:
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
17
U18ECT3101 - Signals and Systems The Inverse Z Transform
Example 4:
Solution:
Find 𝑥 𝑛 if
Dividing both sides by z:
Where,
Using the formulas for mth-order,
𝑋 𝑧
𝑧
=
𝐴1
𝑧 − 𝑧1
+
𝐴2
𝑧 − 𝑧1
2
+ ⋯ +
𝐴𝑘
𝑧 − 𝑧1
𝑚
, 𝐴𝑘 =
1
𝑚 − 𝑘 !
𝑑𝑚−𝑘
𝑑𝑧𝑚−𝑘
𝑧 − 𝑧1
𝑚
𝑋 𝑧
𝑧 𝑧→𝑧1
m=3,k=2,z1=0.5
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
18
U18ECT3101 - Signals and Systems The Inverse Z Transform
Then,
From Table,
Finally we get,
17-Jan-23 19
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.3.4 Inverse Z-Transform by Residue Method
Residue Theorem
Inverse Z-Transform obtained by evaluating the contour integral:
• Where C is the path of integration enclosing all the poles of X(z).
Cauchy’s residue theorem:
• Sum of the residues of z n-1X(z) at all the poles inside C
• Every residue Ck, is associated with a pole at pk
• m is the order of the pole at z=pk
• For a first-order pole:
𝒙 𝒏 =
𝟏
𝟐𝝅𝒋 𝑪
𝒛𝒏−𝟏
𝑿 𝒛 𝒅𝒛
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
20
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.3.4 Inverse Z-Transform by Residue Method
Example:
Find the inverse z transform :
Single pole @ z=0.5, second-order pole @ z=1
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
21
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4.3.4 Inverse Z-Transform by Residue Method
Example:
Find the inverse z transform :
Single pole @ z=0.5, second-order pole @ z=1
x(n)=2[(n-1)+(0.5)n]
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform
Properties
22
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform
Properties
23
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform
Properties
24
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform
Properties
25
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform
Properties
26
17-Jan-23
U18ECT3101 - Signals and Systems The Z Transform Properties
27
U18ECT3101 - Signals and Systems The Inverse Z Transform
The Inverse Z transform
Comparison of the inverse z-transform Methods
• Power series:
Does not lead to a closed form solution, it is simple, easy computer implementation
• Partial fraction, residue:
 Closed form solution,
 Need to factorize polynomial (find poles of X(z))
 May involve high order differentiation (multiple poles)
• Partial fraction : Useful in generating the coefficients of parallel structures for digital filters.
• Residue method : widely used in the analysis of quantization errors in discrete-time systems.
17-Jan-23 28
U18ECT3101 - Signals and Systems The Inverse Z Transform
5.4_Inverse Z Transform.pptx

5.4_Inverse Z Transform.pptx

  • 1.
    U18ECT3101 SIGNALS AND SYSTEMS Ms.A. Kalaiselvi, AP II Department of ECE
  • 2.
    The Z Transform PartI Inverse Z - Transform 17-Jan-23 U18ECT3101 - Signals and Systems The Inverse Z Transform 2
  • 3.
    17-Jan-23 U18ECT3101 -Signals and Systems The Inverse Z-Transform 3 Outline • Z transform • Forward Transform • Pole-zero plot • Region of Convergence (RoC) • Properties of Z transform • Inverse Transform
  • 4.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 4 U18ECT3101 - Signals and Systems The Inverse Z Transform The Inverse Z transform • Given X(z), find the sequence x[n] that has X(z) as its z-transform. • By Z- Transform pair x[n] is given by • We need to specify both algebraic expression and ROC to make the inverse Z-transform unique. • Techniques for finding the inverse z-transform:  Inspection Method  Power series Method  Residue Method,  Long Division Method  Partial Fraction methods 𝒙 𝒏 = 𝟏 𝟐𝝅𝒋 𝑪 𝒛𝒏−𝟏𝑿 𝒛 𝒅𝒛
  • 5.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 5 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.1 Inspection Method In order to find the inverse z transform we compare 𝑋(𝑧) to one of the standard transform pairs Eg. Find the inverse z-transform of From the transform pair x[n] = 0.5nu[n].   1 5 0 1 1    z z X .
  • 6.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 6 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.2 Power Series Expansion 𝑋 𝑧 = 𝑛=−∞ ∞ 𝑥 𝑛 𝑧−𝑛 By Definitions The z-Transform of a signal x[n] is given by 𝑋(𝑧) =. . . +𝑥 −2 𝑧2 + 𝑥 −1 𝑧 + 𝑥 0 + 𝑥 1 𝑧−1 + 𝑥 2 𝑧−2 +. . . Expanding the above equation Any particular value of the sequence is determined by finding the coefficient of the appropriate power of 𝑧−1 This method is used . • For Finite length sequence • X(z) expressed as polynomial in positive and negative powersof z.
  • 7.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 7 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.2 Power Series Expansion Example: 1  Find the inverse z-transform of Soln: By direct expansion of X(z), we have Thus, 𝑋 𝑧 = 𝑧2 1 − 0.5𝑧−1 1 + 𝑧−1 1 − 𝑧−1 𝑋 𝑧 = 𝑧2 − 0.5𝑧 − 1 + 0.5𝑧−1 𝑥 𝑛 = 𝛿 𝑛 + 2 − 0.5𝛿 𝑛 + 1 − 𝛿 𝑛 + 0.5𝛿 𝑛 − 1 𝑥 𝑛 = 1 𝑛 = −2 −0.5 −1 0.5 𝑛 = −1 𝑛 = 0 𝑛 = 1 Or
  • 8.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 8 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.2 Power Series Expansion Example: 2 Find the inverse z-transform of Using the power series expansion for log(1+x) with |x|<1, we obtain Thus     a z az z X     1 1 log            1 1 1 n n n n n z a z X               0 0 1 1 1 n n n a n x n n /
  • 9.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 9 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.3 Inverse Z-Transform of Rational Functions If X(z) is expressed as a ratio of two polynomials, then X(z) is a rational function of z , where 𝑋 𝑧 = 𝑁 𝑧 𝐷 𝑧 In such case, the inverse z-transform is obtained by  Long Division Method (Power series)  Partial Fraction Expansion  Residue Method Note: • For the above method , the ROC must be specified. • Roc decides whether the given signal is causal, non causal or two sided
  • 10.
    5.4.3.2 Inverse Z-Transformby Long Division • Consider: Solution: 4 2 1 ) ( 3 2     z z z z X 1 1 1 2 2 3 4 3 4 2 1 4 2           z z z z z z z 3 2 1 3 2 1 3 2 1 1 2 2 3 3 0 12 6 4 12 6 3 4 3 4 2 1 4 2                          z z z z z z z z z z z z z z 4 3 2 1 4 3 2 4 3 1 3 2 1 3 2 1 1 2 2 3 4 3 0 16 20 6 16 8 4 12 6 4 12 6 3 4 3 4 2 1 4 2                                       z z z z z z z z z z z z z z z z z z z z z ... ] 4 [ 4 ] 3 [ 3 ] 1 [ 1 ] [ 0 ] [ ... 4 3 0 ) ( 4 3 2 1                    n n n n n x z z z z z X    
  • 11.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 11 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.3.3 Inverse Z-Transform by Partial Fraction Expansion Partial Fraction method • used to find inverse z-transform for rational functions • With corresponding ROC • 𝑀 – order of numerator polynomial • 𝑁 - Order of denominator polynomial  If 𝑀 ≤ 𝑁 and denominator is factorizable and has ‘k’ distinct real roots then  The coefficients A, B, C, D are given by 𝑋 𝑧 = 𝑁(𝑧) 𝐷(𝑧) = 𝑎0 + 𝑎1𝑧−1 + 𝑎2𝑧−2 + ⋯ + 𝑎𝑀𝑧−𝑀 𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2 + ⋯ + 𝑏𝑀𝑧−𝑁 𝑋 𝑧 𝑧 = 𝐴1 𝑧 − 𝑧1 + 𝐴2 𝑧 − 𝑧2 + ⋯ + 𝐴𝑘 𝑧 − 𝑧𝑘 𝐴1 = 𝑧 − 𝑧1 𝑋 𝑧 𝑧 𝑧→𝑧1 , 𝐴2 = 𝑧 − 𝑧2 𝑋 𝑧 𝑧 𝑧→𝑧2 ⋯ 𝐴𝑘 = 𝑧 − 𝑧𝑘 𝑋 𝑧 𝑧 𝑧→𝑧𝑘
  • 12.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 12 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.3.3 Inverse Z-Transform by Partial Fraction Expansion  If denominator polynomial has repeated roots where  The coefficeints are determined by  𝑀 ≥ 𝑁 use long division to make the denominator order 𝑁 greater than the numerator order 𝑀 and apply partial fraction method. 𝑋 𝑧 𝑧 = 𝐴1 𝑧 − 𝑧1 + 𝐴2 𝑧 − 𝑧1 2 + ⋯ + 𝐴𝑘 𝑧 − 𝑧1 𝑚 𝐴𝑘 = 1 𝑚 − 𝑘 ! 𝑑𝑚−𝑘 𝑑𝑧𝑚−𝑘 𝑧 − 𝑧1 𝑚 𝑋 𝑧 𝑧 𝑧→𝑧1 𝑋 𝑧 = 𝑟=0 𝑀−𝑁 𝐵𝑧−𝑟 + 𝑘=1 𝑁 𝐴𝑘 1 − 𝑑𝑘𝑧−1
  • 13.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 13 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.3.3 Inverse Z-Transform by Partial Fraction Expansion Example: Find the inverse z- Transform of X(z)
  • 14.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 14 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.3.3 Inverse Z-Transform by Partial Fraction Expansion Example :2 Solution: Find the inverse z-transform of First eliminate the negative power of z. Dividing both sides by z, Finding the constants: 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑖𝑛𝑔 𝑏𝑦 𝑧
  • 15.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 15 U18ECT3101 - Signals and Systems The Inverse Z Transform Example 3 : Solution: Find 𝑦 𝑛 if Dividing Y(z) by z, We first find B: Applying the partial fraction expansion, Next find A: 5.4.3.3 Inverse Z-Transform by Partial Fraction Expansion
  • 16.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 16 U18ECT3101 - Signals and Systems The Inverse Z Transform Using the polar form, Now we have: Therefore, the inverse z-transform is:
  • 17.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 17 U18ECT3101 - Signals and Systems The Inverse Z Transform Example 4: Solution: Find 𝑥 𝑛 if Dividing both sides by z: Where, Using the formulas for mth-order, 𝑋 𝑧 𝑧 = 𝐴1 𝑧 − 𝑧1 + 𝐴2 𝑧 − 𝑧1 2 + ⋯ + 𝐴𝑘 𝑧 − 𝑧1 𝑚 , 𝐴𝑘 = 1 𝑚 − 𝑘 ! 𝑑𝑚−𝑘 𝑑𝑧𝑚−𝑘 𝑧 − 𝑧1 𝑚 𝑋 𝑧 𝑧 𝑧→𝑧1 m=3,k=2,z1=0.5
  • 18.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 18 U18ECT3101 - Signals and Systems The Inverse Z Transform Then, From Table, Finally we get,
  • 19.
    17-Jan-23 19 U18ECT3101 -Signals and Systems The Inverse Z Transform 5.4.3.4 Inverse Z-Transform by Residue Method Residue Theorem Inverse Z-Transform obtained by evaluating the contour integral: • Where C is the path of integration enclosing all the poles of X(z). Cauchy’s residue theorem: • Sum of the residues of z n-1X(z) at all the poles inside C • Every residue Ck, is associated with a pole at pk • m is the order of the pole at z=pk • For a first-order pole: 𝒙 𝒏 = 𝟏 𝟐𝝅𝒋 𝑪 𝒛𝒏−𝟏 𝑿 𝒛 𝒅𝒛
  • 20.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 20 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.3.4 Inverse Z-Transform by Residue Method Example: Find the inverse z transform : Single pole @ z=0.5, second-order pole @ z=1
  • 21.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 21 U18ECT3101 - Signals and Systems The Inverse Z Transform 5.4.3.4 Inverse Z-Transform by Residue Method Example: Find the inverse z transform : Single pole @ z=0.5, second-order pole @ z=1 x(n)=2[(n-1)+(0.5)n]
  • 22.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 22
  • 23.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 23
  • 24.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 24
  • 25.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 25
  • 26.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 26
  • 27.
    17-Jan-23 U18ECT3101 - Signalsand Systems The Z Transform Properties 27 U18ECT3101 - Signals and Systems The Inverse Z Transform The Inverse Z transform Comparison of the inverse z-transform Methods • Power series: Does not lead to a closed form solution, it is simple, easy computer implementation • Partial fraction, residue:  Closed form solution,  Need to factorize polynomial (find poles of X(z))  May involve high order differentiation (multiple poles) • Partial fraction : Useful in generating the coefficients of parallel structures for digital filters. • Residue method : widely used in the analysis of quantization errors in discrete-time systems.
  • 28.
    17-Jan-23 28 U18ECT3101 -Signals and Systems The Inverse Z Transform

Editor's Notes