SlideShare a Scribd company logo
River Mechanics
Dimensional Analysis
Dimensional Analysis and
Similarity Laws
Reason for Dimensional
Analysis…
 Usually we can’t determine all
essential facts based on theory
alone
 Experiments!
 Erosion Experiment
 We can greatly reduce the
number of tests needed by using
dimensional analysis
 We can derive easier set-ups
using similarity laws!
Similarity Laws
 Allow us to use small-scale models and
convenient fluids…
 Predict the performance of a PROTOTYPE (Full-size
device) from tests on a MODEL
 Geometric Similarity
 Kinematic Similarity
 Dynamic Similarity
Geometric Similarity
 Model (m) and its prototype (p) have identical
shapes but differ only in size
 GOAL: Flow patterns must be geometrically similar
Geometric Similarity
m
p
r
L
L
L 
 Length Scale Ratio:
 Model Ratio:
p
m
r L
L
L


1

Kinematic Similarity
 IN ADDITION TO GEOMETRIC SIMILARITY,
ratios of velocities at all corresponding points in
flow are same
Kinematic Similarity
m
p
r
V
V
V 
 Velocity Scale Ratio:
 Gives rise to Time Scale Ratio:
r
r
r
V
L
T 
Dynamic Similarity
 IN ADDITION TO KINEMATIC SIMILARITY,
corresponding forces are in the same ratio in
both prototype and model
Dynamic Similarity
m
p
r
F
F
F 
 Force Scale Ratio:
 Forces acting on fluid element:
2
2
2
4
2
3
2
2
2
3
:
:
:
:
L
V
T
L
T
L
L
ma
F
Inertia
L
F
Tension
Surface
L
E
A
E
F
Elasticity
VL
L
L
V
A
dy
du
F
Viscosity:
pL
pA
F
Pressure:
g
L
mg
F
Gravity
I
T
v
v
E
V
P
G







































Similarity
m
p
m
p
m
p
m
p
I
I
V
V
P
P
G
G
r
F
F
F
F
F
F
F
F
F 



 3 Independent Relations:
m
V
I
p
V
I
m
P
I
p
P
I
m
G
I
p
G
I
F
F
F
F
F
F
F
F
F
F
F
F



















































Dimensionless Numbers
 These Ratios give rise to dimensionless
numbers:
1. Reynold’s Number – Re or R
- Good for flow through completely filled conduits,
submarine or other object moving through water
deep enough that it does not produce surface
waves, airplane traveling at speeds below that at
which compression occurs




 LV
LV
LV
V
L
F
F
V
I












2
2
Re
Dimensionless Numbers
- To be dynamically equivalent in system where
viscous and inertia forces dominate:
p
m
p
m
LV
LV
















Re
Re
Dimensionless Numbers
2. Froude Number – Fr or F
- Good for flow in open channels, wave action set
up by a ship, forces of a stream or bridge pier, flow
over a spillway, the flow of jet from an orifice
gL
V
gL
V
gL
V
L
F
F
Fr
G
I












2
3
2
2


Dimensionless Numbers
 Note that in some cases all three forces are
dominate: gravity, friction, and inertia
 To achieve dynamic similarity, we must satisfy both Re and
Fr
 Only way is to use fluids of different kinematic viscosity
2
/
3









p
m
p
m
L
L


Dimensional Analysis
 Usually we can’t determine all
essential facts based on theory
alone
 Experiments!
 Erosion Experiment
 We can greatly reduce the
number of tests needed by using
dimensional analysis
Dimensional Analysis
 Technique called Buckingham Pi Theorem
 Arranges parameters into lesser number of
dimensionless groups of variables
 Based on Mass-Length-Time System (MLT)
 Let X1, X2, X3, … , Xn be n dimensional variables
 We can write a dimensionally homogeneous
equation relating these variables as…
  0
,...,
,
,
, 4
3
2
1 
n
X
X
X
X
X
f
Dimensional Analysis
 
 
k
n
k
n










,...,
0
,...,
,
2
1
2
1


 Technique called Buckingham Pi Theorem
 We can rearrange this equation into the following
where  is another function and each is an
independent dimensionless product of some of the
X’s

Dimensional Analysis
 Steps in Buckingham Pi Theorem:
 Let us focus on an example as we work through the
steps: Drag force (FD) on submerged sphere as it
moves through a stationary, viscous fluid
 STEP 1: Identify all variables and count the number
of variables (n)
n = 5   0
,
,
,
, 


V
D
F
f D
Dimensional Analysis
 Steps in Buckingham Pi Theorem:
 STEP 2: List the dimensions of each variable in the
MLT system and find the number of fundamental
dimensions (m)
m = 3 (M, L, T)
LT
M
L
M
T
L
V
L
D
T
ML
FD






 3
2
Dimensional Analysis
 Steps in Buckingham Pi Theorem:
 STEP 3: Find the reduction number, k
k = Usually equal to m (cannot exceed m,
rarely less than m)
k = try to find m dimensional variables that
cannot be formed into a
dimensionless group
If m are found, then k = m; if not reduce k
by one and retry
Dimensional Analysis
 Steps in Buckingham Pi Theorem:
 STEP 3:
m = 3 (M, L, T)
So k = m = 3!
LT
M
T
L
L
L
M
DV 
 3

Dimensional Analysis
 Steps in Buckingham Pi Theorem:
 STEP 4: Determine n-k (This is the number of
dimensionless groups needed!)
n-k = 5-3 = 2
 Step 5: Select k variables to be primary (repeating)
variables that contain all m (M, L, T) dimensions
V
D

 Steps in Buckingham Pi Theorem:
 Step 5: Select k variables to be primary (repeating)
variables that contain all m (M, L, T) dimensions
 Step 6: Equate exponents of each dimension on both
sides of Pi term (M0L0T0):
Dimensional Analysis
D
c
b
a
c
b
a
F
V
D
V
D
2
2
2
2
1
1
1
1







  0
0
0
1
1
1
3
1
1
1
1
1
T
L
M
LT
M
T
L
L
L
M
V
D
c
b
a
c
b
a






















 

 Steps in Buckingham Pi Theorem:
 Step 6: Working with the 1st Pi Term:
Dimensional Analysis
 
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
3
1
1
1
1
1
Re
1
,
1
,
1
0
1
:
0
1
3
:
0
1
:















































DV
V
D
c
b
a
c
T
c
b
a
L
a
M
T
L
M
LT
M
T
L
L
L
M
V
D
c
b
a
c
b
a






 Steps in Buckingham Pi Theorem:
 Step 6: Working with 2nd Pi Term:
Dimensional Analysis
 
2
2
2
2
1
2
1
1
1
1
1
1
1
1
0
0
0
2
1
1
1
3
2
2
2
2
2
2
,
1
,
2
0
2
:
0
1
3
:
0
1
:
V
D
F
F
V
D
b
a
c
c
T
c
b
a
L
a
M
T
L
M
T
ML
T
L
L
L
M
F
V
D
D
D
c
b
a
D
c
b
a
















































 Steps in Buckingham Pi Theorem:
 Step 7: Rearrange the Pi groups as desired:
Dimensional Analysis
   
 
 
Re
Re
2
2
2
2
1
1
2
2
1






V
D
F
V
D
F
D
D









Use dimensional analysis to arrange the following
groups into dimensionless parameters:
(a)
(b)
Example

 V


L
V

More Related Content

Similar to 5_2021_11_08!.ppt

dimensioanalysis-180614115528 (1).pdf
dimensioanalysis-180614115528 (1).pdfdimensioanalysis-180614115528 (1).pdf
dimensioanalysis-180614115528 (1).pdf
saptarshichatterjee33
 
Dimensional analysis
Dimensional analysisDimensional analysis
Dimensional analysis
Ronak Parmar
 
Dimesional Analysis
Dimesional Analysis Dimesional Analysis
Dimesional Analysis
Malla Reddy University
 
Units and dimension.pptx
Units and dimension.pptxUnits and dimension.pptx
Units and dimension.pptx
Shashwatsingh500380
 
Fluid Mechanics
Fluid MechanicsFluid Mechanics
Fluid Mechanics
Umang Parmar
 
008a (PPT) Dim Analysis & Similitude.pdf
008a (PPT) Dim Analysis & Similitude.pdf008a (PPT) Dim Analysis & Similitude.pdf
008a (PPT) Dim Analysis & Similitude.pdf
happycocoman
 
Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws
R A Shah
 
dimensional analysis
dimensional analysisdimensional analysis
dimensional analysis
RESHMAFEGADE
 
UNIT-III FMM
UNIT-III FMMUNIT-III FMM
UNIT-III FMM
Aravind Ra
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
rknatarajan
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
rknatarajan
 
Chapter 1(3)DIMENSIONAL ANALYSIS
Chapter 1(3)DIMENSIONAL ANALYSISChapter 1(3)DIMENSIONAL ANALYSIS
Chapter 1(3)DIMENSIONAL ANALYSIS
FIKRI RABIATUL ADAWIAH
 
Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics
Ravaliya Nirmal
 
Lec 2 FM-II by Dr. Mubashir Qureshi
Lec 2 FM-II by Dr. Mubashir QureshiLec 2 FM-II by Dr. Mubashir Qureshi
Lec 2 FM-II by Dr. Mubashir Qureshi
Civil Zone
 
Open Channel Flow Dimensional Analysis.pdf
Open Channel Flow Dimensional Analysis.pdfOpen Channel Flow Dimensional Analysis.pdf
Open Channel Flow Dimensional Analysis.pdf
VinayVitekari
 
Chapter 13-1219584195577289-8
Chapter 13-1219584195577289-8Chapter 13-1219584195577289-8
Chapter 13-1219584195577289-8
Walt Disney World
 
Numerical method for pricing american options under regime
Numerical method for pricing american options under regime Numerical method for pricing american options under regime
Numerical method for pricing american options under regime
Alexander Decker
 
Lecture 1.ppt
Lecture 1.pptLecture 1.ppt
Lecture 1.ppt
SyedMuhammadTaqqiHai
 
Chemistry t1
Chemistry t1Chemistry t1
Chemistry t1
enpi275
 
A Bibliography on the Numerical Solution of Delay Differential Equations.pdf
A Bibliography on the Numerical Solution of Delay Differential Equations.pdfA Bibliography on the Numerical Solution of Delay Differential Equations.pdf
A Bibliography on the Numerical Solution of Delay Differential Equations.pdf
Jackie Gold
 

Similar to 5_2021_11_08!.ppt (20)

dimensioanalysis-180614115528 (1).pdf
dimensioanalysis-180614115528 (1).pdfdimensioanalysis-180614115528 (1).pdf
dimensioanalysis-180614115528 (1).pdf
 
Dimensional analysis
Dimensional analysisDimensional analysis
Dimensional analysis
 
Dimesional Analysis
Dimesional Analysis Dimesional Analysis
Dimesional Analysis
 
Units and dimension.pptx
Units and dimension.pptxUnits and dimension.pptx
Units and dimension.pptx
 
Fluid Mechanics
Fluid MechanicsFluid Mechanics
Fluid Mechanics
 
008a (PPT) Dim Analysis & Similitude.pdf
008a (PPT) Dim Analysis & Similitude.pdf008a (PPT) Dim Analysis & Similitude.pdf
008a (PPT) Dim Analysis & Similitude.pdf
 
Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws
 
dimensional analysis
dimensional analysisdimensional analysis
dimensional analysis
 
UNIT-III FMM
UNIT-III FMMUNIT-III FMM
UNIT-III FMM
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Chapter 1(3)DIMENSIONAL ANALYSIS
Chapter 1(3)DIMENSIONAL ANALYSISChapter 1(3)DIMENSIONAL ANALYSIS
Chapter 1(3)DIMENSIONAL ANALYSIS
 
Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics Dimension Analysis in Fluid mechanics
Dimension Analysis in Fluid mechanics
 
Lec 2 FM-II by Dr. Mubashir Qureshi
Lec 2 FM-II by Dr. Mubashir QureshiLec 2 FM-II by Dr. Mubashir Qureshi
Lec 2 FM-II by Dr. Mubashir Qureshi
 
Open Channel Flow Dimensional Analysis.pdf
Open Channel Flow Dimensional Analysis.pdfOpen Channel Flow Dimensional Analysis.pdf
Open Channel Flow Dimensional Analysis.pdf
 
Chapter 13-1219584195577289-8
Chapter 13-1219584195577289-8Chapter 13-1219584195577289-8
Chapter 13-1219584195577289-8
 
Numerical method for pricing american options under regime
Numerical method for pricing american options under regime Numerical method for pricing american options under regime
Numerical method for pricing american options under regime
 
Lecture 1.ppt
Lecture 1.pptLecture 1.ppt
Lecture 1.ppt
 
Chemistry t1
Chemistry t1Chemistry t1
Chemistry t1
 
A Bibliography on the Numerical Solution of Delay Differential Equations.pdf
A Bibliography on the Numerical Solution of Delay Differential Equations.pdfA Bibliography on the Numerical Solution of Delay Differential Equations.pdf
A Bibliography on the Numerical Solution of Delay Differential Equations.pdf
 

Recently uploaded

Data Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptxData Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptx
ramrag33
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
VANDANAMOHANGOUDA
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
KrishnaveniKrishnara1
 
integral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdfintegral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdf
gaafergoudaay7aga
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
Gino153088
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
PKavitha10
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
bjmsejournal
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
AI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptxAI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptx
architagupta876
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
RamonNovais6
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
SakkaravarthiShanmug
 
artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
GauravCar
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
ElakkiaU
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
bijceesjournal
 

Recently uploaded (20)

Data Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptxData Control Language.pptx Data Control Language.pptx
Data Control Language.pptx Data Control Language.pptx
 
ITSM Integration with MuleSoft.pptx
ITSM  Integration with MuleSoft.pptxITSM  Integration with MuleSoft.pptx
ITSM Integration with MuleSoft.pptx
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.pptUnit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
Unit-III-ELECTROCHEMICAL STORAGE DEVICES.ppt
 
integral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdfintegral complex analysis chapter 06 .pdf
integral complex analysis chapter 06 .pdf
 
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
4. Mosca vol I -Fisica-Tipler-5ta-Edicion-Vol-1.pdf
 
CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1CEC 352 - SATELLITE COMMUNICATION UNIT 1
CEC 352 - SATELLITE COMMUNICATION UNIT 1
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Design and optimization of ion propulsion drone
Design and optimization of ion propulsion droneDesign and optimization of ion propulsion drone
Design and optimization of ion propulsion drone
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
AI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptxAI assisted telemedicine KIOSK for Rural India.pptx
AI assisted telemedicine KIOSK for Rural India.pptx
 
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURSCompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
CompEx~Manual~1210 (2).pdf COMPEX GAS AND VAPOURS
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
 
artificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptxartificial intelligence and data science contents.pptx
artificial intelligence and data science contents.pptx
 
An Introduction to the Compiler Designss
An Introduction to the Compiler DesignssAn Introduction to the Compiler Designss
An Introduction to the Compiler Designss
 
Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...Rainfall intensity duration frequency curve statistical analysis and modeling...
Rainfall intensity duration frequency curve statistical analysis and modeling...
 

5_2021_11_08!.ppt

  • 2. Reason for Dimensional Analysis…  Usually we can’t determine all essential facts based on theory alone  Experiments!  Erosion Experiment  We can greatly reduce the number of tests needed by using dimensional analysis  We can derive easier set-ups using similarity laws!
  • 3. Similarity Laws  Allow us to use small-scale models and convenient fluids…  Predict the performance of a PROTOTYPE (Full-size device) from tests on a MODEL  Geometric Similarity  Kinematic Similarity  Dynamic Similarity
  • 4. Geometric Similarity  Model (m) and its prototype (p) have identical shapes but differ only in size  GOAL: Flow patterns must be geometrically similar
  • 5. Geometric Similarity m p r L L L   Length Scale Ratio:  Model Ratio: p m r L L L   1 
  • 6. Kinematic Similarity  IN ADDITION TO GEOMETRIC SIMILARITY, ratios of velocities at all corresponding points in flow are same
  • 7. Kinematic Similarity m p r V V V   Velocity Scale Ratio:  Gives rise to Time Scale Ratio: r r r V L T 
  • 8. Dynamic Similarity  IN ADDITION TO KINEMATIC SIMILARITY, corresponding forces are in the same ratio in both prototype and model
  • 9. Dynamic Similarity m p r F F F   Force Scale Ratio:  Forces acting on fluid element: 2 2 2 4 2 3 2 2 2 3 : : : : L V T L T L L ma F Inertia L F Tension Surface L E A E F Elasticity VL L L V A dy du F Viscosity: pL pA F Pressure: g L mg F Gravity I T v v E V P G                                       
  • 10. Similarity m p m p m p m p I I V V P P G G r F F F F F F F F F      3 Independent Relations: m V I p V I m P I p P I m G I p G I F F F F F F F F F F F F                                                   
  • 11. Dimensionless Numbers  These Ratios give rise to dimensionless numbers: 1. Reynold’s Number – Re or R - Good for flow through completely filled conduits, submarine or other object moving through water deep enough that it does not produce surface waves, airplane traveling at speeds below that at which compression occurs      LV LV LV V L F F V I             2 2 Re
  • 12. Dimensionless Numbers - To be dynamically equivalent in system where viscous and inertia forces dominate: p m p m LV LV                 Re Re
  • 13. Dimensionless Numbers 2. Froude Number – Fr or F - Good for flow in open channels, wave action set up by a ship, forces of a stream or bridge pier, flow over a spillway, the flow of jet from an orifice gL V gL V gL V L F F Fr G I             2 3 2 2  
  • 14. Dimensionless Numbers  Note that in some cases all three forces are dominate: gravity, friction, and inertia  To achieve dynamic similarity, we must satisfy both Re and Fr  Only way is to use fluids of different kinematic viscosity 2 / 3          p m p m L L  
  • 15. Dimensional Analysis  Usually we can’t determine all essential facts based on theory alone  Experiments!  Erosion Experiment  We can greatly reduce the number of tests needed by using dimensional analysis
  • 16. Dimensional Analysis  Technique called Buckingham Pi Theorem  Arranges parameters into lesser number of dimensionless groups of variables  Based on Mass-Length-Time System (MLT)  Let X1, X2, X3, … , Xn be n dimensional variables  We can write a dimensionally homogeneous equation relating these variables as…   0 ,..., , , , 4 3 2 1  n X X X X X f
  • 17. Dimensional Analysis     k n k n           ,..., 0 ,..., , 2 1 2 1    Technique called Buckingham Pi Theorem  We can rearrange this equation into the following where  is another function and each is an independent dimensionless product of some of the X’s 
  • 18. Dimensional Analysis  Steps in Buckingham Pi Theorem:  Let us focus on an example as we work through the steps: Drag force (FD) on submerged sphere as it moves through a stationary, viscous fluid  STEP 1: Identify all variables and count the number of variables (n) n = 5   0 , , , ,    V D F f D
  • 19. Dimensional Analysis  Steps in Buckingham Pi Theorem:  STEP 2: List the dimensions of each variable in the MLT system and find the number of fundamental dimensions (m) m = 3 (M, L, T) LT M L M T L V L D T ML FD        3 2
  • 20. Dimensional Analysis  Steps in Buckingham Pi Theorem:  STEP 3: Find the reduction number, k k = Usually equal to m (cannot exceed m, rarely less than m) k = try to find m dimensional variables that cannot be formed into a dimensionless group If m are found, then k = m; if not reduce k by one and retry
  • 21. Dimensional Analysis  Steps in Buckingham Pi Theorem:  STEP 3: m = 3 (M, L, T) So k = m = 3! LT M T L L L M DV   3 
  • 22. Dimensional Analysis  Steps in Buckingham Pi Theorem:  STEP 4: Determine n-k (This is the number of dimensionless groups needed!) n-k = 5-3 = 2  Step 5: Select k variables to be primary (repeating) variables that contain all m (M, L, T) dimensions V D 
  • 23.  Steps in Buckingham Pi Theorem:  Step 5: Select k variables to be primary (repeating) variables that contain all m (M, L, T) dimensions  Step 6: Equate exponents of each dimension on both sides of Pi term (M0L0T0): Dimensional Analysis D c b a c b a F V D V D 2 2 2 2 1 1 1 1          0 0 0 1 1 1 3 1 1 1 1 1 T L M LT M T L L L M V D c b a c b a                         
  • 24.  Steps in Buckingham Pi Theorem:  Step 6: Working with the 1st Pi Term: Dimensional Analysis   1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 3 1 1 1 1 1 Re 1 , 1 , 1 0 1 : 0 1 3 : 0 1 :                                                DV V D c b a c T c b a L a M T L M LT M T L L L M V D c b a c b a      
  • 25.  Steps in Buckingham Pi Theorem:  Step 6: Working with 2nd Pi Term: Dimensional Analysis   2 2 2 2 1 2 1 1 1 1 1 1 1 1 0 0 0 2 1 1 1 3 2 2 2 2 2 2 , 1 , 2 0 2 : 0 1 3 : 0 1 : V D F F V D b a c c T c b a L a M T L M T ML T L L L M F V D D D c b a D c b a                                                
  • 26.  Steps in Buckingham Pi Theorem:  Step 7: Rearrange the Pi groups as desired: Dimensional Analysis         Re Re 2 2 2 2 1 1 2 2 1       V D F V D F D D         
  • 27. Use dimensional analysis to arrange the following groups into dimensionless parameters: (a) (b) Example   V   L V